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Abstract. Dispersion relations for elliptically polarized extraordinary as well as
linearly polarized ordinary electromagnetic waves propagating across an external
magnetic field in a dense magnetoplasma are derived, taking into account the
combined effects of the quantum electrodynamical (QED) field, as well as the
quantum forces associated with the Bohm potential and the magnetization energy
of the electrons due to the electron-1/2 spin effect. The QED (vacuum polarization)
effects, which contribute to the nonlinear electron current density, modify the
refractive index. Our results concern the propagation characteristics of perpendic-
ularly propagating high-frequency electromagnetic waves in dense astrophysical
objects (e.g. neutron stars and magnetars), as well as the next-generation intense
laser–solid density plasma interaction experiments and quantum free-electron laser
schemes.

Recently, there has been a great deal of interest, e.g. [1, 2], in investigating the
properties of electromagnetic waves in plasmas incorporating quantum electro-
dynamical (or vacuum polarization) effects [3]. In particular, Lundin et al. [2]
presented a general dispersion relation for large-amplitude circularly polarized
electromagnetic (CPEM) waves [4,5] propagating along an external magnetic field
by including the vacuum polarization current [2] in the Maxwell equation. They
reported some new features of the CPEMwaves in dense quantummagnetoplasmas.
In this letter, we derive dispersion relations for elliptically polarized extraordin-

ary (EX) and linearly polarized ordinary (O) electromagnetic (EM) waves propagat-
ing across an external constant magnetic field B0z ẑ, where B0z is the strength of
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the external magnetic field and ẑ is a unit vector along the z-axis in a Cartesian
coordinate system, in a dense magnetoplasma accounting for vacuum polarization,
electron tunneling and electron-1/2 spin effects.
The propagation of the EM waves in a magnetized plasma is governed by the

Faraday law

c∇ × E+
∂B
∂t

= 0, (1)

and the modified (by the QED effect) Maxwell equation [2,3]

(1 − β)
(

c∇ × B− ∂E
∂t

)
+ 4πn0eu = 0, (2)

where E and B are the wave electric and wave magnetic field vectors, respectively,
c is the speed of light in vacuum, e is the magnitude of the electron charge, n0 is
the unperturbed electron number density, and u is the electron fluid velocity. The
ions do not respond to the high-frequency EM waves, and are therefore considered
as being stationary. In (2), we have used the symbol

β =
2α

45πE2
c
[B2

0z + E · E(n2 − 1)], (3)

where α = e2/�c is the fine structure constant, � is the Planck constant divided by
2π, Ec = m2c3/�e,m is the electron rest mass, and n = kc/ω is the refractive index.
Here ω and k are the EM wave frequency and wave vector, respectively. We note
that β represents the contribution of the vacuum polarization current [3] under
the approximation that the wave magnetic (wave electric) field is much smaller
than B0z (Ec) and that the EM wave frequencies are smaller than the Compton
frequency mc2/�.
The electron fluid velocity u is determined from the equation of motion

m
∂u
∂t

= −e

(
E+

1
c
u× B0

)
− ∇P1

n0
+ FQ , (4)

where the electron pressure perturbation [6] for a dense quantum plasma is

P1 = 2TFn1 , (5)

with TF = (�2/2m)(3π2)2/3n
2/3
0 the Fermi electron temperature [7], and n1(�n0)

the small electron density perturbation in our non-relativistic quantum electron–
ion magnetoplasma. It is obtained from the Poisson equation

n1 = −(1/4πe)∇ · E. (6)

The quantum force acting on the electron fluid is [8,9]

FQ =
�

2

4mn0
∇∇2n1 − η(α)μB∇Bz , (7)

where the first and second terms on the right-hand side of (7) are associated with
the quantum Bohm potential [10] and the magnetization energy of the electrons
due to the electron-1/2 spin effect [11], respectively. The Langevin parameter [12]
η(α) = 2 tanh(α) accounts for the macroscopic magnetization of the electrons owing
to the thermal motion and electron–electron collisions. Here α = μBB0/TF , where
μB = e�/2mc is the magnitude of the electron magnetic moment (Bohr magneton).
The parallel (to ẑ) component of the wave magnetic field is denoted by Bz .
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From (1) and (2) we obtain the modified EX–EM wave equation

(1 − βx)
(

∂2E⊥
∂t2

− c2∇2E⊥ + c2∇⊥∇ · E
)

− 4πn0e
∂u⊥
∂t

= 0, (8)

where βx = (2α/45πE2
c )[B

2
0z + E2

⊥(n2 − 1)], E2
⊥ = E2

x + E2
y , ⊥ denotes components

transverse to ẑ, E⊥ = (Ex,Ey , 0), and Ex (Ey ) is the x (y) component of the wave
electric field perpendicular to ẑ.
In the following, we first focus on wave propagation along the x-axis. Thus,

∇ = (∂/∂x, 0, 0). Following [8] we then obtain, from (4) and (8),(
∂2

∂t2
− c2 ∂2

∂x2 + Ω2
p

)[
∂2

∂t2
+ Ω2

H − V 2
F

(
1 − λ2

q
∂2

∂x2

)]
Ey

− Ω2
pω

2
c

[
1 − η(α)λ2

B
∂2

∂x2

]
Ey = 0, (9)

where ΩH = (Ω2
p + ω2

c )
1/2 , Ω2

p = ω2
p/(1 − βx), ωp = (4πn0e

2/m)1/2 , ωc = eB0/mc,
VF = (2TF/m)1/2 , λB =

√
�/2mωc, and λq = �/2mVF.

Supposing that Ey is proportional to exp(ikx − iωt), where k and ω are the
wavenumber and the frequency, respectively, we Fourier transform (9) to obtain
the dispersion relation for the EX–EM waves

(1 − βx)(n2 − 1) +
ω2
p

ω2 +
ω2
pω

2
c [1 + η(α)k2λ2

B]
ω2 [ω2 − Ω2

H − k2V 2
F (1 + k2λ2

q)]
= 0. (10)

Two comments are in order. First, in the absence of the QED effects we have
βx = 0 and (10) then reproduces the results of [8]. Second, in the absence of the
quantum forces, (10) yields

(1 − βx)(n2 − 1) +
ω2
p(ω

2 − Ω2
p)

ω2(ω2 − Ω2
p − ω2

c )
= 0. (11)

Equation (11) reveals that the cut-off frequency (at which k = 0) in our QED
plasma is obtained from

ω = ±ωc
2

± 1
2

[
ω2
c +

4ω2
p

(1 − βx0)

]1/2

, (12)

where βx0 = (2α/45πE2
c )(B

2
0z − E2

⊥).
Next, we consider the O-mode radiation [13] for which E = ẑEz and u = ẑuz .

There are no density and parallel (to ẑ) magnetic field fluctuations associated with
the linearly polarized O-mode radiation. Thus, from (1), (2), and (4) we have(

∂2

∂t2
− c2 ∂2

∂x2 + Ω2
p

)
Ez = 0, (13)

where Ω2
p = ω2

p/(1 − β0), and β0 = (2α/45πE2
c )[B

2
0z +E2

z (n2 − 1)]. We observe that
the quantum forces do not affect the O-mode radiation.
Supposing that Ez is proportional to exp(ikx − iωt), we Fourier transform (13)

to obtain the dispersion relation for the O-mode radiation

(1 − β0)(n2 − 1) +
ω2
p

ω2 = 0. (14)
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Equation (14) reveals that the cut-off frequency for the linearly polarized O-mode
radiation in our QED plasma is

ω = ±
ωp

(1 − β0O )1/2 , (15)

where β0O = (2α/45πE2
c )(B

2
0z − E2

z ).
To summarize, we have derived the general dispersion relations for high-frequency

elliptically polarized extraordinary and linearly polarized ordinary electromagnetic
waves in a dense quantum magnetoplasma accounting for the quantum forces
(involving electron tunneling and electron-1/2 spin effects) and vacuum polarization
effects. The plasma and vacuum polarization currents have been retained on an
equal footing. It is found that vacuum polarization effects significantly modify the
electron plasma frequency. Accordingly, the cut-off frequencies strongly depend
on the external magnetic and wave electric fields. This conclusion should be of
much interest for the propagation characteristics of the high-frequency EM waves
in dense magnetoplasmas, such as those in magnetars [14–16], as well as in the next
generation of intense laser–solid density plasma interaction experiments [1,17–19]
and free-electron laser schemes [20, 21] in which quantum vacuum and electron
degeneracy can play an important role.
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