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Oscillators

24.1 Introduction

Our aim in this chapter is to show how quantized detector networks (QDN)

describe the quantized one-dimensional bosonic (harmonic) oscillator. The adjec-

tive bosonic here refers to the fact that in the standard quantum theory of

this system under observation (SUO), the phase space operators of position

and momentum satisfy commutation properties, in contrast to the fermionic

oscillator, whose corresponding variables satisfy anticommutation properties and

which is studied at the end of this chapter.

The one-dimensionality referred to here is somewhat misleading: it refers to

the classical mechanics (CM) theory of a single particle moving in one spatial

dimension under the influence of an attractive quadratic force potential. In the

quantized version of the same SUO, there are infinitely many degrees of freedom,

requiring the use of an infinite-rank quantum register. This is one of the few

occasions in QDN in which we refer to the concept of infinity.

Because the rank of the oscillator’s quantum register is infinite, we find that the

QDN representation comes with a tremendous amount of mathematical overkill

and redundancy. Specifically, the Hilbert space dimension of such a quantum reg-

ister is far bigger than that actually needed to describe a quantized bosonic oscil-

lator, the vast bulk of states in the register being what we shall call transbosonic.

As a Hilbert space, the infinite-dimension quantum register is nonseparable,

which means that it has no denumerable (that is, countable) basis, unlike the

Hilbert space HHO of energy eigenstates used to describe the standard QM

bosonic oscillator. While the improper position coordinate basis {|x〉 : x real} is

nondenumerable, the normalized energy eigenstate basis for HHO is countable.

We will show how the QDN labstates that are the analogues of standard QM

oscillator states are restricted to a subspace of the register of measure zero and

remain there from stage to stage.

The degree of “overkill” in the QDN description of the oscillator is no different

in essence to that encountered in the quantum field theory (QFT) description
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310 Oscillators

of the oscillator. QFT is a many particle theory that allows for the possibility

of more than one oscillator to be excited at the same time. This is in contrast

to Heisenberg’s matrix mechanics (Heisenberg, 1925) and Schrödinger’s wave

mechanics (Schrödinger, 1926), which are one-particle descriptions of the oscilla-

tor. Being based on signal detector principles, QDN can readily describe arbitrary

numbers of oscillator-type signals, over and above quantum superpositions of one-

particle signal states. This underlines the point that QDN looks much more like

a halfway house to QFT rather than another representation of standard QM.

The transbosonic states referred to above are really a reflection of that fact.

24.2 The Classical Oscillator Register

The first step in the QDN description of the harmonic oscillator is to define an

infinite-rank classical bit register R[∞]. This is an infinite, countable collection of

classical bits, each bit being labeled by a distinct nonnegative integer n running

from zero to infinity. We shall call R[∞] the classical oscillator register and write

R[∞] ≡ B0B1B2 . . ., where Bi is the ith classical bit.

Here we adopt the convention that R[∞] is the Cartesian product of the binary

sets B0, B1, and so on.

Our QDN approach to the harmonic oscillator raises a significant issue. Up

to this point, we have argued that no experiment deals with actual infinities, so

QDN has exploited that fact. Indeed, finiteness seems to be a strength of QDN

rather than a weakness. We should explain why we now introduce an infinite-rank

quantum register to describe one of the simplest of SUOs, the harmonic oscillator.

We have found that whenever such issues arise in QDN, the answers are to

be found by looking at what happens in the laboratory and what the observer

actually does. QDN discusses detectors, not the supposed objects being detected.

There are two contrasting facts about apparatus, however. The first fact is that

relative to any real observer, all apparatus comes in discrete packages, at any

empirical level.1 At the highest empirical level, which we may call the emergent

level, a detector has a single objectivized identity, which is as a detector.2 In

QDN we model this by a single binary detector. At the lowest empirical level,

which we may call the reductionist level, a real detector is described as a vast

but countable number of discrete components called molecules and atoms. At

that level, it need not be recognizable as a detector at all.

The second fact is that despite the countability associated with the emergent

and reductionist levels, there are three scenarios where infinity makes an

appearance.

1 By this we mean what is observable, not what is theorized.
2 If we view reductionism as the counterbalance to emergence, then the highest empirical level
corresponds to the lowest reductionist level, where minimal mathematical details are given.
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Modeling Space Is Not Easy

The great mathematical physicist Schwinger gave the following succinct state-

ment on how he viewed QM, apparatus, space, and time:

The mathematical machinery of quantum mechanics is a symbolic expression
of the laws of atomic measurement, abstracted from the specific properties of
individual techniques of measurement. In particular, the space-time manifold
that is the background of any quantum-mechanical description is an idealiza-
tion of the function of a measurement apparatus to define a macroscopic frame
of reference. (Schwinger, 1958)

This is in accord with the principles of QDN. If we wish to model space-

time itself, rather than just apparatus that is in space-time (a rather different

proposition altogether), then we are faced with the concept of indefiniteness

rather than infinity. By this we mean that there no natural, obvious, or observable

limits to space and time as far as any observer is concerned. Even if we discretized

space and time coordinates, thereby eliminating continuity, how many points

would we include in our modeling?

Apparatus Depends on Continuous Parameters

Continuity cannot be eliminated even when we have very simple apparatus. For

example, in the Stern–Gerlach experiment, the orientation of the main magnetic

field is parametrized by three angles in a continuum of angles, and there is no

natural way of discretizing any of those.

Quantum Process in the Information Void

QDN uses, but does not derive from reductionist principles, any transition ampli-

tudes from stage to stage: it is designed to work with the architecture of processes

and how those amplitudes are related to observable signals. The calculation of

such amplitudes will usually (but not invariably) involve working models of empty

space (the vacuum) that depend on continuity.

Every classical bit Bi has two elements, 0i and 1i, representing “no signal” and

“signal” respectively. A rank-r classical register has 2r elements, soR[∞] contains

an infinite number of classical states. Representing these requires dealing with

infinite sets.

The mathematical difficulty here is that these sets are nondenumerable, that

is, are not countable. The paradox is that while the bits making up the register

are each of finite cardinality, and the bits themselves can be counted (our labeling

proves this), the number of states is not countable. Mathematically, this is the

same phenomenon that allows mathematicians to express every rational real

number in terms of a recurring decimal expansion, but none of the irrationals.
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312 Oscillators

The Signal Basis Representation

The most natural representation of a classical state in R[∞] is the signal basis

representation (SBR), which we have met before. An arbitrary state Ψ in R[∞]

can be defined in the form

Ψ ≡ i0i1i2 . . . =

∞∏
a=0

ia, ia = 0a or 1a for a = 0, 1, 2, . . . (24.1)

Every such state therefore corresponds to a unique binary sequence SΨ ≡
{i0, i1, i2, . . .}, consisting of an infinite string of ones and zeros.

Example 24.1 The register state

Ψ ≡ 00011213041506171809110111012113114015116. . . (24.2)

corresponds to the binary sequence

SΨ ≡ {0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . .}. (24.3)

The nondenumerability of R[∞] creates a potential problem when we come

to quantization, because the Hilbert space Q[∞] corresponding to R[∞] is an

infinite tensor product. Such Hilbert spaces are always nonseparable (Streater

and Wightman, 1964), which means that they have no countable basis. This con-

trasts with the fact that the Hilbert space of the standard QM quantized bosonic

oscillator has a complete, countable basis set, consisting of energy eigenstates.

Fortunately, in the QDN analysis for the harmonic oscillator, we can restrict

our attention to a set of special operators, referred to here as bosonic operators

over the infinite-rank quantum register Q[∞], which have the merit that, in phys-

ical applications dealing with a single oscillator, the problems of nonseparability

can be avoided. A similar phenomenon occurs in relativistic quantum field theory

(Streater and Wightman, 1964; Klauder and Sudarshan, 1968).

To understand how this comes about, we first classify each state in R[∞] as one

of three possible types. Two of these types form countable subsets of the register,

while the third type forms a nondenumerable subset. These types correspond,

roughly speaking, to the integers, the rationals, and the irrationals, respectively,

in the real number system. This can be seen by the following heuristic arguments.

Finite Countable States

The first type, the set of all finite countable states in R[∞], consists of

states associated with binary sequences that consist of zeros after some given

finite element J , which depends on the sequence. For example, the state

10110213040506070809010 . . . is finite countable (J = 4), whereas the state

corresponding to the infinitely recurring sequence

10011203140516071809110 . . . (24.4)
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is not finite countable. For a finite countable state i0i1i2 . . . iJ0J+10J+2 . . . a

modification of the computational basis map (5.14) maps this state to the integer

i0 + 2i1 + 22i2 + · · ·+ 2J ij , which is finite.

Recurring Sequence States

The second type, the recurring sequence states in R[∞], consists of those

sequences that would be finite countable sequences but for the fact that the

infinite string of zeros after J is replaced by some nontrivial recurring binary

sequence. Recurring sequence states cannot be classified by finite integers using

the computational map (5.14). However, we can use another map, defined by

i0i1i2 . . . → i0 +
i1

21
+

i2

22
+ · · · (24.5)

to map such states into the interval [0, 2]. We shall call this the continuum map.

It is easy to see that, in fact, all states in R[∞] can be mapped into the interval

[0, 2] via the continuum map. The signal ground state 000102 . . . maps into 0,

while the fully occupied state 101112 . . . maps into 2. All other states necessarily

map into the open interval (0, 2).

It is not hard to see that finite countable states and recurring sequence states

map into the rationals via the continuum map, but not in a one-to-one way. For

example, the finite countable state 10010203 . . . maps into the number 1 by the

continuum map, which is also the value mapped from the recurring sequence

state 00111213 . . .

Remark 24.2 In standard decimal-based arithmetic, it is generally asserted

that the infinitely recurring decimal 0.9̇ ≡ 0.9999 . . . is “equal” to the number

1. While the register states 10010203 . . . and 00111213 . . . map to the same

value 1 via the continuum map, physically, these are two very different states.

This underlines the difference between pure mathematics (0.9̇ = 1) and physics

(10010203 . . . 	= 00111213 . . .).

Not all pure mathematicians would agree that 0.9̇ = 1 is an absolute

equality; some would argue that the difference 1 − 0.9̇ is an infinitesimal.

But not every mathematician accepts the concept of infinitesimals as sound.

Irrational Sequence States

The problem with nondenumerability arises because of the existence of the third

type of infinite binary sequence. This consists of all those binary sequences that

are not recurring, such as

{1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, . . .}, (24.6)

an example based on the successive digits in the decimal representation of π.

There are infinitely many such sequences and they cannot be counted, as they

correspond to the irrationals, which is easy to prove.
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Our conclusion is, therefore, that states in R[∞] cannot be classified by the

integers alone. Instead, we may use the sequence corresponding to each state as

an index. Specifically, if S is the binary sequence

S ≡ {sa : sa = 0 or 1 for a = 0, 1, 2, . . .} , (24.7)

then the corresponding state S in R[∞] is given uniquely by the expression

S ≡ s0s1s2 . . . =

∞∏
a=0

sa. (24.8)

Remark 24.3 The zero sequence Z ≡ {0, 0, 0, . . .} corresponds to the signal
ground state, denoted 000102 . . . in the occupation representation and 0 in

the computation representation. This state is not the QDN analogue of the

conventional oscillator ground state |0〉.

Given two binary sequences S, T corresponding to register states S and T ,

respectively, their “inner product” ST is defined in the obvious way, viz.

ST =

{ ∞∏
a=0

sa

}{ ∞∏
b=0

tb

}
≡

∞∏
a=0

sata ≡ δST , (24.9)

where the generalized Kronecker symbol δST takes the value unity if and only if

the binary sequences S and T are identical; otherwise, it is zero.

Definition 24.4 Two binary sequences S ≡ {sa : a = 0, 1, 2, . . .} , T ≡
{ta : a = 0, 1, 2, . . .} are identical if and only if sa = ta for all nonnegative

integers, that is, for a = 0, 1, 2, . . .

We take it as an axiom that, given two binary sequences S and T , the product
∞∏
a=0

sata is 1 if the sequences are identical and 0 otherwise.

24.3 Quantization

Quantization amounts to associating the set of states in R[∞] as a (preferred)

basis B[∞] for a nonseparable Hilbert space Q[∞]. States in Q[∞] will be called

quantum register states and are of the form

Ψ =
∑
S

Ψ(S)S, (24.10)

where the summation is over all possible infinite binary sequences S and the

coefficients Ψ (S) are complex. The Hilbert space inner product is defined in the

obvious way, that is,

ΨΦ =

(∑
S

Ψ(S)S

)(∑
T

Φ(T )T

)
=
∑
S

∑
T

Ψ(S)Φ(T )ST︸︷︷︸
δST

=
∑
S

Ψ∗ (S)Φ (S) . (24.11)
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As discussed above, finite countable sequences can be mapped into the integers

via the computational map (5.14). For a sequence S that maps into integer n,

we can use the notation n rather than S to denote the corresponding quantum

register state.

24.4 Bosonic Operators

The quantum register states in QDN required to represent the standard discrete

set of quantized bosonic oscillator energy eigenstates {|n〉 : n = 0, 1, 2, 3, . . .}
form a subset of the finite countable states. We shall call any normalized element

of this subset a bosonic state. To identify this subset, we need to filter out of the

set of all finite countable states those states that are redundant. To do this, we

first define the bosonic projection operators as follows.

Each component Ba of the classical oscillator register R[∞] is a classical

bit with two elements. Quantization starts with the interpretation of the two

bit states 0a, 1a in Ba as the two preferred basis quantum outcomes states

of a quantum bit, Qa, representing the two states, ground and signal, of a

detector. Each quantum bit Qa is a two-dimensional Hilbert space with its own

set of projection and signal operators
{
P a, P̂

a
,Aa, Â

a
}
satisfying Table 24.1, a

generalization of Table 4.1.

The quantized bosonic register Q[∞] is the infinite-dimensional Hilbert space

given by the commuting tensor product of all the individual qubits, i.e.,

Q[∞] ≡ Q0 ⊗Q1 ⊗Q2 ⊗ · · · = Q0Q1Q2 . . . (24.12)

Here and below we shall drop the tensor product symbol ⊗, it being understood

we are dealing with commuting tensor products.

Definition 24.5 The set of bosonic filter operators {P̂a
B : a = 0, 1, 2, . . .} is

defined by the commuting tensor product

P̂a
B ≡

⎧⎨⎩
∞∏
b�=a

P b

⎫⎬⎭ P̂
a
= P 0P 1 . . .P a−1P̂

a
P a+1 . . . , a = 0, 1, 2, . . . (24.13)

Each bosonic projection operator P̂a
B defines a one-dimensional Hilbert sub-

space of Q[∞] with basis {2a} in the computational basis representation. Eigen-

states of these operators with eigenvalue +1 will be called bosonic eigenstates.

Table 24.1 Products of signal bit operators

P a P̂
a

Aa Â
a

P a P a 0 Aa 0

P̂
a

0 P̂
a

0 Â
a

Aa 0 Aa 0 P a

Â
a

Â
a

0 P̂
a

0
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Theorem 24.6 The bosonic filter operators satisfy the multiplicative rule

P̂a
BP̂

b
B = δabP̂a

B , a, b ∈ N ≡ {0, 1, 2, . . .}. (24.14)

The element 2n in Q[∞] corresponds to the energy eigenstate |n〉 in the stan-

dard quantum theory of the oscillator.

The bosonic filter operator P̂a
B should not be confused with the signal projec-

tion operators P̂a ≡
{∏∞

b�=a I
b
}
P̂

a
, where Ib is the identity operator for qubit

Qb. The difference is based on logic: an eigenstate of P̂a will return a positive

signal if detector a is examined, regardless of whatever signal state any other

detector is in, whereas an eigenstate of P̂a
B will return a positive signal in detector

a only if all the other detectors are each in their signal ground state.

Given the bosonic projection operators P̂a, the next step is to define the bosonic

identity operator

IB ≡
∞∑
a=0

P̂a
B . (24.15)

This operator satisfies the idempotency condition required of any projection

operator, that is,

IBIB = IB (24.16)

and plays the role of a “bosonic filter,” passing only those states and operators

associated with the quantum register that have the desired properties associated

with the harmonic oscillator.

Definition 24.7 A quantum register operator O is bosonic if and only if it

commutes with the bosonic identity, i.e.,

O bosonic ⇔ [O, IB ] = 0. (24.17)

Definition 24.8 A bosonic state is defined to be any vector in Q[∞] that

is an eigenstate of IB with eigenvalue +1. All other states in Q[∞] will be

referred to as transbosonic.

The set of all bosonic states is denoted QB and is the QDN analogue of the

Hilbert space of quantum oscillator states in standard QM.

Examples of transbosonic states are the signal ground state 0 and all those

finite countable elements p of the computational basis B where p is not some

power of two. In fact, almost all elements in the quantum register are trans-

bosonic. It can be readily verified that linear superpositions of bosonic states are

always bosonic states, while the linear superposition of any transbosonic state

with any other state in the register is always transbosonic.
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The importance of the bosonic operators is that when they are applied to

bosonic states, the result is always a bosonic state, which can be easily proved.

24.5 Quantum Register Oscillator Operators

We now in a position to discuss how we map the standard quantum oscillator

into the quantum register.

In the standard QM of the bosonic oscillator, the most important operators

are the ladder operators a and a†. These satisfy the commutation relation[
a, a†

]
= 2I, (24.18)

where I is the identity operator in the standard oscillator Hilbert space H and we

take Planck’s constant � and the oscillator constant ω to be unity. These ladder

operators have the representations

a =

∞∑
n=0

|n〉
√

(n+ 1) 2〈n+ 1|,

a† =
∞∑

n=0

|n+ 1〉
√

(n+ 1) 2〈n|, (24.19)

where the states |n〉, n = 1, 2, 3, . . . are the usual orthonormal excited states of

the oscillator ground state |0〉. The key to the QDN description is the observation

that these states are identified one-to-one with the bosonic states 2n discussed

above, namely,

|n〉 ↔ 2n, n = 0, 1, 2, . . . (24.20)

We note that

|0〉 ↔ 10010203 . . . = 1, |1〉 ↔ 00110203 . . . = 2, (24.21)

and so on. A particularly significant observation is that the quantum register

signal ground state 0 is not the oscillator ground state |0〉. This is one of the

reasons we felt it necessary to introduce nonstandard notation for labstates:

keeping a clear distinction between those and conventional QM states is more

than a matter of notion but reflects deeper interpretational issues.

To find a quantum register representation of the ladder operators, we first

introduce some auxiliary notation. We define the register operators

P ≡
{ ∞∏

a=0

P a

}
, Aa ≡

⎧⎨⎩
∞∏
b�=a

Ib

⎫⎬⎭Aa, Âa ≡

⎧⎨⎩
∞∏
b�=a

Ib

⎫⎬⎭ Â
a
. (24.22)

None of these operators is bosonic.

Exercise 24.9 Prove that the operators P, Aa, and Âa do not commute

with the bosonic identity IB defined by Eq. (24.15).
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The operators Âa can be used to generate bosonic states from the signal ground

state 0, which is transbosonic.3 Specifically, we have

2a = Âa0, a = 0, 1, 2, . . . (24.23)

With these definitions we construct the operators

B̂a ≡ ÂaPAa+1, Ba ≡ Âa+1PAa. (24.24)

Remarkably, these operators are bosonic, as can be readily proved from the fact

that

AaIB = Aa. (24.25)

We find for a = 0, 1, 2, . . .

Ba ≡
{

∞
⊗

b�=a,a+1
P b

}
AaÂa+1 = P 0P 1 . . .P a−1AaÂa+1P a+2P a+3 . . .

B̂a ≡
{

∞
⊗

b�=a,a+1
P b

}
ÂaAa+1 = P 0P 1 . . .P a−1ÂaAa+1P a+1P a+3 . . .

(24.26)

These operators satisfy the relations

B̂aBb = δabPa+1, BaB̂b = δabPa. (24.27)

Then the standard ladder operators a, a† take the quantum register

representation

a ↔ aB ≡
∞∑

n=0

√
2 (n+ 1)Bn,

a† ↔ a†B ≡
∞∑

n=0

√
2 (n+ 1)B̂n. (24.28)

These operators are bosonic and have the commutation relation[
aB , a

†
B

]
= 2IB . (24.29)

Because these register ladder operators commute with the bosonic identity IB ,

any states that they create from bosonic states are also bosonic. We find for

example

|n〉 ≡
(
a†
)n

√
2nn!

|0〉 ↔

(
a†B

)n
√
2nn!

1 = 2n, n = 0, 1, 2, . . . (24.30)

Note that aB annihilates the bosonic ground state 1, giving the zero vector 0 in

the quantum register Q[∞], not the signal ground state 0.

3 The signal ground state 0 is not the same as the oscillator ground state |0〉, which is
identified with the quantum register state 20 = 1 in the computational basis representation
and 10010203 . . . in the occupation basis representation.
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The standard QM bosonic oscillator Hamiltonian operator Ĥ ≡ 1
2a

†a+ 1
2 has

quantum register representation

Ĥ ↔ HB ≡ 1

2
a†BaB +

1

2
IB =

∞∑
n=0

(
n+

1

2

)
Pn
B . (24.31)

This operator commutes with the bosonic identity IB , and therefore, any states

in the quantum register that start off bosonic at initial time remain bosonic, if

they evolve under this Hamiltonian.

24.6 Comparison with Quantum Field Theory

Several factors indicate that the QDN formalism is a halfway house between fixed-

particle number Schrödinger–Dirac quantum mechanics and the multiparticle

formalism of quantum field theory (QFT). First, the QDN strategy focuses

not on particles but on signals. There is no intrinsic requirement to conserve

signality except in those experiments where there is a physical reason, such

as the conservation of some quantum number, such as electric charge. Second,

the existence of transbosonic states in the QDN register Q[∞] is a clear marker

that the QDN formalism can accommodate the equivalent of QFT multiparticle

states.

An important similarity between QDN and QFT is the existence of the Fock

vacuum state |0〉 in QFT and the signal ground state 0 in QDN. We recall that

in QFT, Fock space F is defined by expansions of the form

F ≡ {|0〉} ⊕ H ⊕S(H⊗H)⊕ · · · , (24.32)

that is, as the infinite direct sum of appropriately symmetrized tensor products

of copies of a single-particle Hilbert space H. Looking at the above presented

QDN version of the bosonic oscillator, we see that the QDN signal ground

state 0 corresponds to the QFT vacuum |0〉; the QDN bosonic state space

QB corresponds to H; and the transbosonic states in QDN correspond to the

multiparticle states in QFT.

The QDN formalism may be interpreted as an attempt to encode Fock’s vision

of QFT into a mathematical formalism that is based on detectors rather than

SUOs. In the next chapter, we go further in this respect by extending the QDN

formalism to allow for the possibility of constructing the signal ground state

0 itself through the creation of apparatus in the laboratory from a state of

nonexistence, denoted ∅, that corresponds to the information void that we have

focused on in other chapters. The information void represents the state of a

laboratory in which there are no detectors whatsoever. However, this certainly

does not mean that there is no observer or laboratory.
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24.7 Fermionic Oscillators

In this section we extend the above discussion of the bosonic oscillator to the

fermionic oscillator, that is, a system under observation (SUO) that requires

anticommuting degrees of freedom in its classical (Martin, 1959b; Casalbuoni,

1976a) and quantum formulations (Candlin, 1956; Martin, 1959a; Casalbuoni,

1976b).

Not long after the discovery of quantum mechanics by Heisenberg and

Schrödinger, Jordan and Wigner showed how to describe fermions in quantum

register terms (Jordan and Wigner, 1928; Bjorken and Drell, 1965). Their

construction of local fermionic quantum field operators requires tensor product

contributions from all of the qubits in a quantum register. In a QDN approach to

fermionic quantum fields (Eakins and Jaroszkiewicz, 2005), their techniques were

used to describe fermionic quantum fields using an infinite-rank quantum register

associated with a net of detectors distributed throughout all of physical space.

Because the Jordan–Wigner construction requires nontrivial contributions from

all qubits in the register, fermionic fields are manifestly and inherently nonlocal

in QDN.

In contrast with the bosonic oscillator studied above, we may restrict attention

to a finite-rank quantum register Q[N ] ≡ Q1Q2 . . . QN .

The most convenient basis here is the signal basis representation. We follow the

approach outlined in Bjorken and Drell (1965) for the construction of fermionic

operators.

We use all the bit operators discussed previously and introduce a new one,

denoted σa, for each qubit a = 1, 2, . . . , N in the register, defined by

σa ≡ P a − P̂ a, a = 1, 2, . . . , N. (24.33)

Next, we define a set of nonlocal operators, αa, α̂a, a = 1, 2, . . . , N :

α1 ≡ A1I2I3 . . . IN ,

αa ≡ σ1σ2 . . .σa−1AaIa+1 . . . IN ,

α̂1 ≡ Â1I2I3 . . . IN ,

α̂a ≡ σ1σ2 . . .σa−1ÂaIa+1 . . . IN , a = 1, 2, . . . , N. (24.34)

These are the required “fermionic field operators.” They satisfy the anticommu-

tation relations

αaαb + αbαa = 0, α̂aα̂b + α̂bα̂a = 0,

αaα̂b + α̂bαa = δabI, 1 � a, b,� N. (24.35)

where I ≡ I1I2 . . . IN is the register identity operator.

Exercise 24.10 Use the signal bit algebra listed in Table 4.1 to prove

(24.35).
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The αa, α̂b operators have the following properties, which are easy to prove:

αa0 = 0,

α̂a0 	= 0,

α̂aα̂a0 = 0, a = 1, 2, . . . , N. (24.36)

This means that we can reconstruct all the relevant structure of fermionic field

theory, the operators α̂a and αa playing the role of fermionic creation and

annihilation operators.

A significant feature of the above anticommutation relations is that they are

achieved via the use of the nonlocal operators and do not invoke Grassmannian

(anticommuting) numbers to do so.

https://doi.org/10.1017/9781009401432.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.025



