
http://dx.doi.org/10.4153/CJM-2017-041-8
©Canadian Mathematical Society 2019

Nearly Approximate Transitivity (AT) for
Circulant Matrices

David Handelman

Abstract. By previous work of Giordano and the author, ergodic actions of Z (and other discrete
groups) are completely classiûed measure-theoretically by their dimension space, a construction
analogous to the dimension group used in C*-algebras and topological dynamics. Here we inves-
tigate how far from approximately transitive (AT) actions can be that derive from circulant (and
related) matrices. It turns out not very: although non-AT actions can arise from this method of
construction, under very modest additional conditions, approximate transitivity arises. KIn addi-
tion, if we drop the positivity requirement in the isomorphism of dimension spaces, then all these
ergodic actions satisfy an analogue of AT. Many examples are provided.

1 Introduction

Let (X , µ, T) (o�en abbreviated T) be a measure space with an invertible measurable
transformation T (up to sets of measure zero), such that µ ○T k is absolutely continu-
ous with respect to µ for all integers k. We also assume the action of T is ergodic, that
is, any T-invariant set has measure zero or one.

Motivated by the fundamental results of Connes andWoods [CW] on the classiû-
cation of such systems, particularly those that are approximately transitive, and by the
ordered K0-theoretic classiûcation of C*-algebras initiated by Elliott [E], Giordano
and I [GH] constructed a complete invariant for the measure theoretic classiûcation
of ergodic T , called a dimension space (together with a speciûed positive element
thereof). _is formed part of a more general construction, specialized to Z-actions,
i.e., single automorphisms.

Here we discuss a class of examples arising from (dual) abelian group actions on
product type systems. _ese translate to circulant (and an obvious generalization
called hemicirculant) matrix-valued random walks. Before we can state the results,
we must describe the invariant in more detail.

We outline the construction given in [GH]. Let A = R[x , x−1] be the usual Laurent
polynomial ring. We use inner product notation to describe the coeõcients of a poly-
nomial p, that is, p = ∑(p, xk)xk . _e ring A is equipped with the obvious partial
ordering, A+ = {p ∈ A ∣ (p, xk) ≥ 0 for all k}, making it into a partially ordered ring.
We impose the l 1-norm on A, ∥p∥ = ∑ ∣(p, xk)∣, and, of course, the completion is
l 1(Z), with convolution-extending multiplication. _e evaluation (or augmentation)
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map, fromA toR, given p ↦ p(1) is, of course, positive, and ∥p∥ ≥ ∣p(1)∣with equality
when p ∈ A+.

Now form the space of columns of size n, denoted An . Equipped with the obvi-
ous (coordinatewise) positive cone, (An)+ = {(p1 , p2 , . . . , pn)

T ∈ An ∣ p i ∈ A+},
An becomes a partially ordered A-module, and multiplication by x (described by
(p j)

T ↦ (xp j)
T) is a positive invertible A-module transformation. In addition, the

augmentation map extends to the obvious map An → Rn , which is again positive.
Now let n(1), n(2), . . . , be an inûnite sequence of positive integers, and let Mk be

n(k + 1) × n(k) matrices with entries from A+. We can also evaluate each matrix
entrywise using the augmentation map; the resulting real matrix M i(1) (obtained
by evaluating each entry at x = 1) is, of course, nonnegative, and thus induces an
order-preserving map Rn(k) → Rn(k+1). _is gives rise to a (preliminary) direct limit
construction.

An(1) M1 //

��

An(2) M2 //

��

An(3) M3 //

��

⋅ ⋅ ⋅ G = lim
Ð→

Mk ∶ An(k) → An(k+1)

ρ

��
Rn(1) M1(1) // Rn(2) M2(1) // Rn(3) M3(1) // ⋅ ⋅ ⋅ G(1) = lim

Ð→
Mk(1)∶ Rn(k) → Rn(k+1)

_edirect limit of the top rowG is a partially orderedA-module, the direct limit of the
bottom row is a partially ordered vector space, and the vertical map(s), augmentation,
induce a positive onto map. Now we make another assumption on the matrices: that
the column sums of all the M i(1) are one. _is justiûes the alternative namematrix-
valued random walks [CW].

Now we must ûnd a linear functional on the direct limit which will (eventually)
translate to the measure µ. Elements of the j-th term in the top row will be indicated
by (v , j), where v ∈ An( j); the image of the latter in the direct limit will be denoted
[v , j], so that [M jv , j+ 1] = [v , j]. Because we will be working almost exclusively with
invariant measures, we are interested here only in x-invariant linear functionals, that
is, positive linear functionals τ onG such that τ[xv , j] = τ[v , j]. By [GH, Lemma 2.3],
these must factor through the vertical map G → G(1).

_e direct limit G(1) is itself a dimension group (over the reals, rather than the
usual integers), and under weak conditions (e.g., if all the M i(1) have no zero entries
or if {n(i)} is bounded and G(1) is not the trivial group) will itself admit a posi-
tive linear functional known as a trace. In all our examples, such a ϕ will exist. Let
ϕ ∶ G(1) → R be a trace onG(1); then τ ∶= ϕ○ρ is a positive invariant linear functional
on G.

Now we complete G with respect to the L1 norm induced by τ; (see [GoH]). On
elements of any partially ordered abelian group J with a trace τ, deûne the (possibly
pseudo-) norm

∥ j∥ = inf{τ( j1) + τ( j2) ∣ j1 , j2 ∈ J+ , j = j1 − j2}.

In the case of G, the completion is of the form H ∶= L1(Y , µ) and the action of mul-
tiplication by x is an invertible positive isometry thereon. We can thus regard the
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completion H as an ordered l 1(Z)-module. Moreover, µ is determined by the trace τ:
τ extends to the completion, and ∫Y f dµ = τ( f ).

_e action of x on Y (induced by the action of x on the H) is ergodic if and only
if ρ, the trace on the vector space G(1), is extremal as a trace thereon [GH, Proposi-
tion 3.8]. Although the Y is impossibly complicated to work with directly, we can
easily decide when the action will be ergodic. Not only does this construction yield
an ergodic Z-action, but all ergodic Z-actions with invariant measure can be realized
by this method of construction. (_is is part of a more general result of Elliott annd
Giordano [EG], that every ergodic amenable action of a discrete group can be con-
structed using RG in place of A = R[x , x−1] = R[Z], with suitable Radon–Nikodym
derivatives in the non-invariant case.)
Although the space (Y , µ) is normally far too complicated to work with, we can

decide relatively easily whether two such systems are isomorphic. Here isomorphism
means that the corresponding Z-actions are measure-theoretically conjugate. _e or-
dered A-module, together with its associated trace (measure), is known as the dimen-
sion space associated with (M j). If H and H′ with all their structures (that is, with
the trace, with the ordered A-module structure) are isomorphic, then the actions are
isomorphic; this is almost tautological. However, when both are ergodic, there is a
criterion which sometimes allows us to determine isomorphism.

SupposeH is constructed from the sequence (M j) andH′ is constructed from the
sequence (M′

k). Each comes with its own L1-norm induced by the ergodic invariant
trace (measure). _ere is a notion of approximate intertwining that is equivalent to
isomorphism of the dimension spaces, as follows.
First, we may form telescopings of (M j) and (M′

k), that is, two strictly increasing
sequences 1 ≤ m(1) < m(2) < m(3) < ⋅ ⋅ ⋅ and 1 ≤ m′(1) < m′(2) < m′(3) < ⋅ ⋅ ⋅ from
which we deûne new sequences (M( j) = Mm( j+1)−1Mm( j+1)−2 ⋅ ⋅ ⋅Mm( j+1)Mm( j))

and (M(k)′ = Mm′(k+1)−1Mm(k+1)−2 ⋅ ⋅ ⋅Mm′(k+1)Mm′(k)). Now suppose we have se-
quences of rectangular matrices Rk and Sk with entries from A+ such that SkRk and
M(k) have the same dimensions, and Rk+1Sk and M(k)′ have the same dimensions.
We do not insist on the equalities, SkRk = M(k) and Rk+1Sk = M(k)′, but, instead,
that they be close in the following sense.

We can consider the diòerence M(k) − SkRk as a map An(k) → An(k+1). Each of
its columns corresponds to an element of G, and we take its norm in G (the L1-norm
induced by the trace). _en we take the maximum over all the columns (this corre-
sponds to the 1− 1 norm, as a map between L1-spaces). Denote the resulting norm via
∣∣∣M(k) − SkRk ∣∣∣. We similarly deûne ∣∣∣Rk+1Sk −M(k)′∣∣∣ (the notation does not re�ect
the dependence on the choice of dimension space; this would be too cumbersome).
_en we say the resulting diagram

(1.1) Am(1) M(1) //

R1
��

Am(2)

R2
��

M(2) // Am(3) M(3) //

R3
��

⋅ ⋅ ⋅

Am′(1) M(1)′ //

S1

;;

Am(2) M(2)′ //

S2
::

Am′(3) M(3)′ //

S3
<<

⋅ ⋅ ⋅
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is approximately intertwining if

∑
k

∣∣∣M(k)
− SkRk ∣∣∣ < ∞ and ∑

k
∣∣∣Rk+1Sk −M(k)′

∣∣∣ < ∞.

Finally, the two-dimensional spaces (respectively, the ergodic transformations) are
isomorphic if and only if there exists an approximately intertwining diagram between
them [GH, _eorem 3.1]. We can also reûne this to ensure that R and S are norm
one. Despite the complications, computations are frequently quite simple, especially
dealing with circulant and related matrices.

Order-preserving A-module maps between dimension spaces are implemented by
the one-sided version of the preceding (no S involved).

_edimension space (equivalently, the transformation, or the sequence ofmatrices
(M j)) is said to be AT(n) if it can be represented as a sequence with matrix sizes at
most n (this is not the actual deûnition, but is equivalent to it [GH, pp. 32–33]), and it
is AT (or approximately transitive) if it is AT(1) (again, this is not the actual deûnition,
but is equivalent to it).

In this paper, we typically dealwith dimension spaces arising from sequences (M j),
where the M j all have le� eigenvector 111n = (1, 1, . . . , 1) (with constant n), and we use
the resulting ρ to obtain the invariant linear functional τ. We ûrst need to investigate
when this is ergodic, which we do in Section 2. We also show that for this class of
examples, the matrix of squares (M2

j ) (and higher, varying powers) is AT. (_ere are
very diõcult examples of this type arising from n = 2 for which (M j) is not AT (but
is necessarily AT(2).)

1.1 Statement of Results

Section 2 provides the preliminaries on sequences of hemicirculant matrices (a gen-
eralization of circulant matrices deûned for ûnite abelian groups), and a surprising
result that if they are squares or (higher powers), then the resulting sequence, if er-
godic, yields an AT action. Section 3 deals with a strong property that guarantees
isomorphism of the dynamical system with the sequence of traces, called hollowness.
As a special case, we show that if

M j = (
1 x g(n)

x g(n) 1 ) ,

then the dynamical system towhich it corresponds is hollow if g satisûes an even-term
recurrence relation, and is not hollow (but still AT) if it satisûes an odd-term recur-
rence relation.

Section 4 deals with tensor products. We can construct tensor products of dimen-
sion modules in a natural way, thereby obtaining a construction of new dynamical
systems (which always preserves ergodicity); however, it is not clear how to obtain
these dynamically (without reference to dimension modules). In any event, under
very modest conditions on the hemicirculant matrices, (M2

j ) and (M j ⊗ M j) yield
conjugate systems, and this is used in a later example.

Section 5 recalls a class of numerical invariants from [H], and uses it to show that
if (M2

j ) is not hollow, then M j is not isomorphic to its sequence of traces (the latter
is automatically AT, the former generically). Combined with Section 4, we obtain a
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sequence of hemicirculant matrices (M j) such that (M j ⊗MT
j ) and (M jMT

j ) do not
yield conjugate systems, in contrast to the main result of Section 4.

_e brief Section 6 explains how sequences of hemicirculant matrices arise natu-
rally from the dual action of product type actions of ûnite abelian groups on some
W*-algebras.

Section 7 deals with a general problem: given an ergodic dynamical system
(X , µ, T) with corresponding dimension module, how do we construct the dimen-
sion module for a power of T , that is, (X , µ, Tn) (assuming Tn is ergodic)? _is is
very closely related to systems of circulant matrices. Among other things, we show
that if T is AT and T k is ergodic, then T k ⊗ T k is AT, a somewhat mystifying result
(since T k need not be AT).

2 Circulant Matrices and Their Relatives

Let H be a ûnite abelian group of order n, and form the group algebra V = RH,
treating it as a vector space with basis {eg}g∈H , on which RH (a diòerent copy) acts
as a commutative algebra of endomorphisms via mg(eh) = egh . _en each mg is
represented (with respect to the basis {eg}) as a size n permutation matrix (arising
from the regular representation of H), and we identify∑g qgmg with the matrix that
represents it, where qg ∈ A = R[x , x−1]. _e matrix representations of mg and mh
have disjoint supports (that is, for each coordinate, at most one of them has a 1 in that
position), and∑H mg is represented by the matrix all of whose entries are 1.
For M = ∑H qgmg , a matrix with entries from A, all of its entries lie in A+ if and

only if all qg belong to A+ (this comes from the disjointness of the supporting entries);
the collection of such will be denoted (AH)+, viewed as a subset of the n × n matrix
algebra over A.

We can write down explicitly the common eigenvectors for the elements of AH.
For each α in Ĥ (the dual group of H), deûne a vector vα in V ⊗C = CH via

vα =
1

∣H∣
∑
g∈H

α(g)eg

(the normalization is to ensure that ∥vα∥ = 1 in the appropriate l 1-like norm). We
check immediately that mgvα = α(g−1)vα , so that each vα is an eigenvector, they
are distinct (and can be separated by the mg), and form an orthonormal set, hence
constitute a basis for CH. For any M = ∑H qgmg in AH, its α-th eigenvalue, λα(M),
is in C[x , x−1], and is given by the eigenvalue corresponding to vα , that is,

λα(M) = ∑
g∈H

qgα(g−1
).

For each α, the assignment λα ∶ AH → C[x , x−1] is an A-algebra homomorphism
(that is, additive, multiplicative, and compatible with multiplication by elements of
A). A special choice occurs if α is the trivial character, denoted χ0, in which case we
denote the corresponding eigenvector by v0 = 1

∣H∣ ∑ eg , and let λ0(M) = ∑ qg .
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_is deûnes right eigenvectors; le� eigenvectors wα are deûned analogously, but
with complex conjugation. _e corresponding le� eigenvector is given by

wα = ∑ Egα(g−1
),

where we are using Eg to denote basis elements of AH viewed as a right AH module.
In particular, wα = ∣H∣vαT (note the complex conjugate); by construction, wαvα = 1,
and as an operator wα ∶ AH → A (via wα(eg) = α(g−1)), in the operator l 1-norm,
∥wα∥ = 1.

Examples (a) Circulant matrices. IfH = Zn , the cyclic group of size n, then AH
consists precisely of the circulant matrices of size n (with entries from A), where the
generator g = [1]maps to the cyclic permutationmatrixwhose ûrst row is (0 1 0 . . . 0).

(b) H = Z2 × Z2. In this case, n = 4, and AH consists of all matrices of the form

⎛
⎜
⎜
⎜
⎝

a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

⎞
⎟
⎟
⎟
⎠

= a0I + a1
⎛
⎜
⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟
⎟
⎟
⎠

+ a2

⎛
⎜
⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟
⎟
⎟
⎠

+ a3

⎛
⎜
⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟
⎟
⎟
⎠

,

where a i belong to A.

We call a matrix hemicirculant with respect to H (or H-hemicirculant) if it is of
the form M = ∑H qgmg . Suppose that (M j) is a sequence of hemicirculant non-
negative matrices (with respect to the same ûxed H), that is, in (AH)+, such that
λ0(M j)(1) = 1, so that the eigenvalue at v0, when evaluated at x = 1, is 1, i.e.,
∑ qg(1) = 1. We wish to study the dimension space arising out of the direct limit
limM j ∶ An → An , where we take the invariant functional arising from the le� eigen-
vector (1 1 ⋅ ⋅ ⋅ 1), followed by evaluation at x = 1.

We must ûrst check when this yields an ergodic dimension space. _is boils down
to weak ergodicity (in the context of matrices with real entries) of hemicirculant ma-
trices (this should be in the literature, but I was not able to ûnd any relevant references,
except when n is prime). Necessary and suõcient conditions are given in Lemma 2.1.

LetC j be hemicirculantmatrices with nonnegative real entries, and whose column
sums are all 1. Weak ergodicity of the sequence (C j) is equivalent to the limiting
dimension group limC j ∶ Rn → Rn having unique trace, and also to projective and
actual convergence of the products to a rank one matrix (this is the usual deûnition,
although in general, order matters; here, the matrices mutually commute), which in
this case must be v0w0.

Write C j = ∑g∈H cg jmg where 0 ≤ cg j and∑g∈H cg j = 1 for all j. It is easy to check
that if n is prime (so, in particular, theC j are circulantmatrices), thenweak ergodicity
is equivalent to ∑ j(1 −maxg{cg j}) = ∞. For other choices of H (even cyclic ones),
this criterion is merely necessary, but not suõcient (the mass may accumulate on a
proper subgroup of H). While the criterion becomes messier and messier depending
on how far H is from cyclic, it is still computable, and more importantly, it is used in
our subsequent AT results.
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Fix H, and let α and β be two unequal elements of Ĥ. Deûne SH ,α ,β (or Sα ,β if
there is no ambiguity about H) via

SH ,α ,β = {(g , h) ∈ H ×H ∣ α(g−1
)β(h−1

) ≠ α(h−1
)β(g−1

)} .

Since α(g−1) is just the complex conjugate of α(g), we could have just written the
deûning condition as α(gh−1) ≠ β(gh−1), or even αβ−1(gh−1) ≠ 1; in particular,
whether (g , h) belongs to Sα ,β depends only on gh−1 and αβ−1.

_e statement in the following criterion involves a centring (otherwise it becomes
even more awkward). _e condition that c0 j be maximal can be arranged by multi-
plying each term by a suitable element of H; this does not aòect weak ergodicity. _e
criteria in (iii) boil down to one computation for each prime divisor of n = ∣H∣ if H is
cyclic, but hordes of them in the noncyclic case, e.g., if H = (Zp)

k with prime p, then
the number of maximal subgroups is pk − 1 = n − 1. It may be possible to restrict the
maximal subgroups to a reasonable number.

Lemma 2.1 (Weak ergodicity criterion). Suppose for each j that C j = ∑g∈H cg jmg is
a real hemicirculant matrix with respect to H, where 0 ≤ cg j and∑g∈H cg j = 1 for all j.
Assume in addition that c0 j = maxg∈H{cg j} for all j. _e following are equivalent.
(i) _e limit dimension group limC j ∶ Rn → Rn is a simple dimension group with

unique trace;
(ii) for every α ≠ χ0, for all j0,∏ j≥ j0 λα(C j) = 0;
(iii) for every α ≠ χ0, for all j0,∑ j∑α(g)≠1 cg j = ∞;
(iv) for each maximal proper subgroup K of H,∑ j∑g/∈K cg j = ∞;
(v) for all α ≠ β in Ĥ,∑ j∑(g ,h)∈Sα ,β cg jch j = ∞.

Proof _e equivalence of (i)–(iii) is clear, and the equivalence of (iii) with (iv) stems
from every proper subgroup being contained in a maximal proper subgroup. Let n =

∣H∣.
We prove (iii) implies (v). Form the element γ = αβ−1 of Ĥ; this is not the triv-

ial character. For each j, we may ûnd g j not in the kernel of γ such that cg j j ≥

∑γ(g)≠1 cg j/n; this forces ∑ j cg j j = ∞, and since c0, j ≥ 1/n as a consequence of the
hypotheses, we have∑ j cg j jc0, j = ∞.

We note that (g , h) ∈ Sα ,β if gh−1 does not belong to the kernel of γ. Hence (g j , 1) ∈
Sα ,β , and thus∑ j∑g∈Sα ,β cg jch , j ≥ ∑ j cg j jc0, j , and the latter diverges.

Now (v) implies (iii). Let γ be a nontrivial element of Ĥ. With α = γ and β = χ0
(the trivial character), ûnd (g j , h j) ∈ Sα ,β such that cg j jch j j ≥ ∑Sα ,β cg jch j/n2 (this is
possible since the sum is over fewer than n2 elements). Since γ(gh−1) ≠ 1, at least one
of cg j or ch j is not in the kernel of γ. We are done, since ∑ j∑γ(g)≠1 cg j ≥ cg j or ch j ,
respectively.

For elements α and β of Ĥ, and elements g and h, set z = α(g−1)β(h−1) and
y = α(h−1)β(g−1). Let N denote the exponent of H (the smallest positive integer
exceeding 1 such that kN = 1 for all k in H), and set ξ = e2πi/N . _en the values of
all irreducible characters on elements of H lie in {ξ j}. Obviously, ∣z + y∣ ≤ 2, with
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equality occurring only if the arguments of z and of y are equal: in this case imply-
ing z = y (since both are just powers of ξ). On the other hand, if ∣z + y∣ < 2, then
∣z + y∣ < 2 cos π/N (not 2 cos 2π/N). In particular, either z = y or ∣z + y∣ ≤ 2 cos π/N ,
and so if (g , h) belongs to SH ,α ,β , then ∣α(g−1)β(h−1) + α(h−1)β(g−1)∣ ≤ 2 cos π/N .

When we write (M j) is an ergodic sequence of hemicirculant matrices (with re-
spect to some ûnite group H), we mean that M j ∈ (AH)+, the column sums on eval-
uation at x = 1 are all 1, and the sequence (C j = M j(1)) is weakly ergodic. In particu-
lar, the trace obtained from the constant eigenvector yields an ergodic measure. _e
eigenvalues of M j lie in C[x , x−1] = A ⊗ C; we impose the obvious l 1-norm on the
latter i.e., the sum of the absolute values of the coeõcients.

Lemma 2.2 Suppose that (M j = ∑g∈H qg jmg) is an ergodic sequence of n × n hemi-
circulant matrices with respect to the ûnite abelian group H. _en for all α ≠ β in Ĥ
and all j0 ≥ 1,

lim
d→∞

∥ λα(
j0+d
∏
j= j0

M j) λβ(
j0+d
∏
j= j0

M j)∥ = 0.

Proof Temporarily drop the subscript j. _en

λα(M) ⋅ λβ(M) = ∑
g∈H

qgα(g−1
) ⋅ ∑

h∈H
qhβ(h−1

)

=
1
2 ∑

(g ,h)∈Sα ,β
qgqh ⋅ (α(g−1

)β(h−1
)

+ α(h−1
)β(g−1

)) + ∑
(H×H)∖Sα ,β

qgqhα(g−1
)β(h−1

),

so

∥λα(M) ⋅ λβ(M)∥ ≤ cos π
N ∑

(g ,h)∈Sα ,β
qgqh(1) + ∑

(H×H)∖Sα ,β

qgqh(1)

= (∑
g

qg(1))
2
− ( 1 − cos π

N
) ∑

(g ,h)∈Sα ,β
qgqh(1)

= 1 − 2 sin2 π
N ∑

(g ,h)∈Sα ,β
qgqh(1).

Restoring the j, by the earlier lemma, with cg j = qg j(1), ergodicity implies that
∑ j∑Sα ,β qg jqh j(1) = ∞. _us ∏∥λα(M j)λβ(M j)∥ → 0 (in the strongest possible
sense). Since λα is multiplicative on hemicirculant matrices, the result follows.

_eorem 2.3 Suppose that (M j) is an ergodic sequence of n × n hemicirculant ma-
trices. Let f ∶ N → N be a function such that f ( j) ≥ 2 for all j. _en (M f ( j)

j ) is AT. In
particular, let 0 = n(1) < n(2) < ⋅ ⋅ ⋅ be an inûnite sequence of positive integers such that
for all α ≠ β ∈ Ĥ, ∑i ∥λα(M(i))λβ(M(i))∥ < ∞, where M(i) = ∏

n(i+1)−1
j=n(i) M j . Write

M(i)M(i+1) = ∑g∈H pg img .

(i) (M2
j ) is isomorphic to the AT sequence (tr(M(i)M(i+1)) = ∣H∣p0i).
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(ii) _e automorphism of the dimension space of (p0i) induced by mg (for g ∈ H) is
implemented by the map [ f , i] ↦ [pg−1 i f , i + 1] (for f ∈ A).

Proof If M is a hemicirculant matrix such that ∥λα(M)λβ(M)∥ < є/p2 (as would
arise as a product of suitable M j , by the previous lemma), write

M = ∑
Ĥ

λα(M)vαwα = ∑
g

qgmg .

Deûne V = ∑ λα(M)vα andW = ∑ λα(M)wα . We note

∥M2
− VW∥ = ∥ λα(M)

2
∑ vαwα − (∑ λα(M)vα)(∑ λβ(M)vβ)∥

= ∥ ∑
α≠β

λα(M)λβ(M)vαvβ∥

<
(p2 − p)є

p2 < є.

From the displayed computation, ∥M2 −VW∥ < є. Now we show that both V and
W have entries in A+. SinceW = ∣H∣V T , it suõces to show this for V .

V = ∑ λα(M)vα =
1

∣H∣
∑
α
∑
g
egα(g)λα(M)

=
1

∣H∣
∑
α ,g ,h

egα(g)α(h−1
)qh =

1
∣H∣
∑
α ,g ,h

egqhα(gh−1
)

=
1

∣H∣
∑
g
eg∑

h
qh∑

α
α(gh−1

) = ∑
g
egqg ∈ (AH)

+ .

A similar computation yields W = ∑ qg eg−1 . Since (M j) is ergodic, for all j0, there
exists d such that maxα≠β ∥λα(∏ j0+d

j0 M j)λβ(∏ j0+d
j0 M j)∥ < є/p2, and it follows that

(M2
j ) is AT. For higher powers ( f ( j)), the argument is similar.
Now this process can be done for any telescoping {n(i)} such that

∑
i
∥λα(M(i)

)λβ(M(i)
)∥ < ∞,

i.e., M(i) = M. Such a telescoping exists by the previous lemma. _en deûne V (i)

and W(i) as above. _e approximate factorization yields an isomorphism between
the dimension spaces of (M2

j ) = ((M(i))2) and (W(i+1)V (i)), with maps given by
[z, i] ↦ [W(i)⋅z, i] (z ∈ An) and in the reverse direction via [ f , i] ↦ [ f V (i) , i+1] ( f ∈
A). We expandW(i+1)V (i) = 1

∣H∣ ∑ qg iqg−1 , i+1. _is is exactly 1
∣H∣ trM

(i)M(i+1) = p0i .
To determine the eòect of the automorphism induced by g in H, we begin with

the element [1, i] in the dimension space of (p0i). Under the map V (i), this is sent
to [V (i) , i + 1] (of the dimension space of (M2

j )). Now g acts on this directly by
multiplication, yielding the element [∑h∈H qhi ehg , i + 1], _en W(i+1) sends this to
[∑h∈H qhg−1 , iqh−1 , i+1 , i + 1], but this is just [pg−1 i , i + 1]. Since the map at the i-th
level is uniquely determined by its eòect on [1, i] (and the automorphism exists by
the isomorphism), the automorphism is induced as indicated.
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In particular, the diagonal entries of VW are respectively qg−1qg ; this is unsurpris-
ing, as trM2 = ∣H∣∑g qgqg−1 (this entails that ∣H∣qgqg−1 are close in l 1 as g varies).
_e (g , h) entry of VW is qgqh−1 , so VW is not generally itself a hemicirculant ma-
trix and M does not (usually) commute with VW ∼ M2. It does not even seem pos-
sible to perturb V to V ′ and W to W ′ (with error bounded by a ûxed multiple of
∑α≠β ∥λα(M)λβ(M)∥) so that V ′W ′ commutes with M.
As mentioned in [GH, p. 32], there is a weaker equivalence relation than what

we have called isomorphism (positive A-module isomorphism with positive inverse,
both of which are isometries). IfM andM′ are complete l 1(Z)-modules, we say they
are neutrally isomorphic if there is an A = l 1(Z)-module isometry with isometric
inverse from M to M′. In other words, positivity has been le� out of the deûnition.
Following [GH, p. 32], we say a dimension space (or its sequence of maps), M,

is WAT (weakly approximately transitive) if there exists a complete l 1(Z)-module
N given as the completion of the direct limit of the sequence of maps of the form
×p i ∶ l 1(Z) → l 1(Z) where p i are in l 1(Z) (and can be assumed to be polynomials).

IfM is given as the completion of the (order) direct limit, limM j ∶ An( j) → An( j+1)

(where n( j) are positive integers, m j are n( j + 1) × n( j) matrices with entries in A+
such that a�er evaluating all the polynomial entries at x = 1, the resulting realmatrices
are column stochastic), then necessary and suõcient for M to be WAT is that there
exist a telescoping t(1) < t(2) < ⋅ ⋅ ⋅ such that on deûning

M(i)
= Mt(i+1)−1 ⋅Mt(i+1)−2 ⋅ ⋅ ⋅Mt(i) ,

there exist for each i, a rowWi and a column Vi with entries in A, for which

∑
i
∥M(i)

− ViWi∥ < ∞.

In that statement, if we insist that the entries of Vi and Wi belong to A+, then
we have a characterization of AT. _ere is no requirement that WiVi belong to A+,
although this would be desirable.

Now we make a slight weakening of the deûnition to permit complex coeõcients.
We sayM isWATC (weakly approximately transitive over the complexes), if we permit
the entries of Vi andWi to be in A⊗ C = C[x±1] (equivalently, we deal with module
isomorphisms of M ⊗C).

Some invariants for dimension spaces intended for distinguishing isomorphism
classes actually turn out to be neutral isomorphism invariants: in particular, the mass
cancellation-type invariants in [H], under some circumstances, as we will see later.

We will show that if M is the dimension space arising from an ergodic sequence
of hemicirculant matrices, then M is WATC. If additionally, the matrix size is two,
then M is WAT. _is contrasts with the situation for AT, since an example is known
(size two) of an ergodic sequence of circulant matrices which is not AT. (In particular,
WAT does not imply AT.)

Lemma 2.4 Let n > 1 be an integer, and let 0 ≤ j0 < d be integers. Set T = [ j0 , d]∩Z,
and let Zk , l ((k, l) ∈ {0, 1, 2, . . . , n − 1} × {0, 1, 2, . . . , n − 1} and k ≠ l ) be pairwise
disjoint subsets of T. _en there exist subsets U0 ,U1 , . . . ,Un−1 of T such that for all
k ≠ l , Zk , l ⊆ Uk ∩U c

l .
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Proof In the unit disk, let C0 ,C1 , . . . ,Cp−1 be rays through the origin with angles
0, π/n, 2π/n, . . . , (p − 1)π/n, respectively. _is yields n open segments partitioning
the disk less the union of the rays. Let A0,+ be the open upper half-disk, and for each t
in {0, 1, 2, . . . , n−1}, deûneAt ,+ to beA0,+ rotated by tπ/n. _enCt is in the boundary
of At ,+. Similarly let At ,− be the complement of At ,+ lessCt . Map each Zk , l bijectively
into Ak ,+∩A l ,− (this is a nonempty sector). Obviously, we can do this so that the map
is bijective on the union of the Zk , l . Call the map f , and set Ut = f −1(At ,+).

Proposition 2.5 Suppose that (M j) is an ergodic sequence of hemicirculant matrices
with respect to the ûnite abelian group H. _en the corresponding dimension space is
WATC. If H = Zk

2 for some k, then the dimension space is WAT.

Proof Let n = ∣H∣ and Y = {0, 1, . . . , n − 1}. Let

F Ð→ H → Y and E ∶ (Y × Y) ∖ ∆ Ð→ {1, 2, . . . , n2
− n}

be bijections. Given є > 0, by ergodicity, there exist positive integers

j0 = d1 < d2 < ⋅ ⋅ ⋅ < dn2−n+1 = d

such that on setting (for unequal α and β in Ĥ),

ZF(α),F(β) = [dE(F(α),F(β)) , dE(F(α),F(β))+1) ∩ Z,

∥ ∏
j∈ZF(α),F(β)

λα(M j)λβ(M j)∥ <
є
n2 .

By the preceding lemma, there exist subsets UF(α) (α ranging over Ĥ) of [ j0 , d) ∩ Z
such that ZF(α),F(β) ⊆ UF(α) ∩U c

F(β).
We may write∏dj= j0 M j = ∑α∈Ĥ vαwα∏dj= j0 λα(M j). Set

V = ∑
Ĥ

vα ∏
j∈UF(α)

λα(M j), W = ∑
Ĥ

wα ∏
j∈U c

F(α)

λα(M j).

_en

VW = ∑
α∈Ĥ

vαwα
d

∏
j= j0

λα(M j) + ∑
α≠β

vαwβ ∏
j∈UF(α)

λα(M j) ∏
j∈U c

F(β)

λβ(M j)

=
d

∏
j= j0

M j + ∑
α≠β

vαwβ ∏
j∈UF(α)

λα(M j) ∏
j∈U c

F(β)

λβ(M j).

Since ∥λα(M j)∥ ≤ 1 in any event, we have

∥ ∏
j∈UF(α)

λα(M j) ∏
j∈U c

F(β)

λβ(M j)∥ ≤ ∥ ∏
j∈UF(α)∩U c

F(β)

λα(M j)λβ(M j)∥

≤ ∥ ∏
j∈ZF(α),F(β)

λα(M j)λβ(M j)∥ <
є
n2 .

Hence ∥VW −∏
d
j= j0 M j∥ < є∥∑ vαwα∥/n2 < є.

If H = Zk
2 , then all the entries of each term in the deûnitions of V and W are

real.
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As an aside, an easy computation yields WV = tr(∏M
j0 M j), which shows the for-

mer has coeõcients in A+. Unfortunately, this does not, by itself, force (A j) to be
neutrally isomorphic, even over C, to an AT sequence, because the corresponding
sequence is of the form W(s+1)V (s) (the superscripts indicating the iteration of the
process in the proof of the proposition), and there is no guarantee that these will have
positive (or real) coeõcients.

3 Hollowness of Some Circulant Sequences

A sequence (M j), of hemicirculant matrices with entries from A+ and for which the
row sums of all the coeõcients add to 1 is hollow if for all j0, and all α in Ĥ ∖ {χ0},
limd→∞ ∥λα(∏ j0+d

j0 M j)∥ = 0. Examples of hollow sequences are easy to construct, as
we will see. An obvious example arises when∏ j0+d

j= j0 ∥λα(M j)∥ → 0 for all α ≠ χ0, but
there are more interesting ones for which this stronger condition fails. For example,
if H = Zn with n ≥ 3, let P denote the standard cyclic permutation matrix of size n,
and set M j = ( 1

2 (I + x2i
P))2. _en ∥λα(M j)∥ = 1 for all α. However, if we telescope

in triples, we ûnd ∥λα(M3 jM3 j+1M3 j+2)∥ < 1 when α ≠ χ0, and it easily follows that
(M j) is hollow.

Lemma 3.1 If (M j) is a hollow sequence of hemicirculant matrices, then the corre-
sponding dimension space limM j ∶ An → An is AT. _ere is a telescoping

d(1) < d(2) < ⋅ ⋅ ⋅

so that

∑
l
∥

d(l+1)−1

∏
j=d(l)

M j − v0w0

d(l+1)−1

∏
j=d(l)

λ0(M j)∥ < ∞.

In particular, the dimension space of (M j) is isomorphic to that of the AT system,
(λ0(M j)).

Proof It suõces to show, given j′ and є > 0, that there exists d such that

∥

j′+d
∏
j= j′

M j − v0w0

j′+d
∏
j= j′

λ0(M j)∥ < є.

For each α ≠ χ0, there exists dα such that ∥∏
j′+d
j= j′ λα(M j)∥ < є/(n − 1). If d =

supĤ∖{χ0} dα , then

∥
j′+d
∏
j= j′

M j − v0w0

j′+d
∏
j= j′

λ0(M j)∥ ≤ ∥∑
Ĥ

λα(
j′+d
∏
j= j′

M j)vαwα − v0w0

j′+d
∏
j= j′

λ0(M j)∥

= ∥ ∑
Ĥ∖{χ0}

λα(
j′+d
∏
j= j′

M j)vαwα∥

≤ ∑
Ĥ∖{χ0}

є
n − 1

∥vαwα∥ = є.
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Now we show that hollowness applies to symmetric and other matrices, with ad-
ditional constraints. In the symmetric case, the criterion is rather primitive.

_e following generalizes [GH, Proposition 5.3]. It is reminiscent of Mineka’s cri-
terion (for triviality of boundaries).

If p and q are Laurent polynomials with real coeõcients, deûne their inûmum in
the obvious way, p ∧ q ∶= ∑min{(p, x i), (q, x i)}x i . Obviously, if p and q belong to
A+, then so does p ∧ q, and if p ∧ q = p, then (p, x i) ≤ (q, x i) for all i.

Lemma 3.2 Suppose that (M j = ∑g∈H qg jmg) is an ergodic sequence of hemicircu-
lant matrices with respect to H. Suõcient for (M j) to be hollow is that for all maximal
subgroups K of H,∑ j∑{(g ,h)∣gh−1/∈K}(qg j ∧ qh j)(1) = ∞.

Remark IfH = Zn is cyclic (so that the matrices are circulant) of order n, it follows
that suõcient (but not necessary, unless n is a power of a prime) is divergence of
∑ j∑i /≡i′ mod n(q i j ∧ q i′ j)(1).

Proof Let α be a nontrivial element of Ĥ, and let K be a maximal subgroup contan-
ing the kernel of α. Set a j = ∑{(g ,h)∣gh−1/∈K}(qg j ∧ qh j)(1). Since there are fewer than
n2 terms in the sum, there exists (g j , h j) such that g jh−1

j /∈ K and (qg j j ∧ qh j j)(1) ≥
a j/n2. Set f j = qg j j ∧ qh j j and expand:

λα(M j) = ∑
g∈H

qg jα(g−1
)

= (α(g−1
j ) + α(h−1

j )) f j + (g j − f j)α(g−1
j ) + (h j − f j)α(h−1

j )

+ ∑
g/∈{g j ,h j}

qg jα(g−1
),

since∑H qg j(1) = 1, and

∥λα(M j)∥ ≤ 1 − (2 − ∣α(g−1
j ) + α(h−1

j )∣) f j(1),

since g jh−1
j /∈ K, and thus

α(g jh−1
j ) ≠ 1, ≤ 1 − 2 sin π

N
⋅ f j(1) ≤ 1 − a j

2 sin π
N

n2 .

(Recall that N is the exponent of H; we could just as well have replaced it with n.)
Since∑ a j = ∞, we have∏ λα(M j) → 0, verifying hollowness.

_e matrix M = ∑g∈H qgmg is symmetric if and only if for all g, qg = qg−1 .

Proposition 3.3 Let (M j = ∑g∈H qg jmg) be an ergodic sequence of hemicirculant
matrices with respect to H. Suppose, in addition, that each M j is symmetric. _en
(M j) is hollow if for all maximal proper subgroups K of H,

(3.1) ∑
j

∑
{g∈H∣g2/∈K}

qg j(1) = ∞.

In particular, if ∣H∣ is odd and the M j are symmetric, then (M j) is hollow.
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Proof By symmetry, qg j ∧ qg−1 j = qq j and g(g−1)−1 = g2. _us

∑
j

∑
{g ,h∣gh−1/∈K}

(qg j ∧ gh j)(1) ≥ ∑
j
∑

{g∣g2/∈K}
qg j(1),

and the previous lemma applies.
Let f j in H be such that q f j j(1) is maximal among {qg j(1)}. _en

f jM j = ∑
g∈H

q f −1 gmg ,

and if f 2j = 1, then f jM j is still symmetric but now the maximal coeõcient in

f jM j(1) = ∑ q f j g(1)mg

occurs at the identity coeõcient. If f 2j ≠ 1 (as will be the case when ∣H∣ is odd and f j
is not the identity), then the coeõcients ofM j(1) have maxima at two distinct points.
_is together with ergodicity is more than enough to guarantee that the condition in
Lemma 2.1 (iv),

(3.2) ∑
j
∑
g/∈K

qg j(1) = ∞

for all maximal subgroups K (in place of the maximum coeõcient occurring at the
identity, which is assumed there).

Now suppose ∣H∣ is odd. _en H/K has odd order, so g2 ∈ K entails g ∈ K. _us
(3.1) is equivalent to (3.2) (for all maximal subgroups K), hence (M j) is hollow.

_e condition g2 /∈ K (as opposed to g /∈ K) really is signiûcant. _e standard
example of a non-AT but AT(2) ergodic action [GH] is given by size two (necessarily
symmetric) circulant matrices (over H = Z2): M j =

1
2(

1 x5
j

x5
j

1
) . _e sequence (M j)

is not hollow, as it is not even AT.
In many cases, (M2

j ) is hollow. _is occurs if, for example, H = Zn (cyclic) and
M j =

1
2 (1 + x2 j

m[1]) where [1] is the generating element of Zn (so m[1] is just the
usual cyclic permutation matrix of size n). Here (M j) is not hollow, as is easy to
check. Less easy to check is that ∥∏dj=0(1 + ξ l x2 j

)2∥ = ooo(4d) if l is not divisible by n
(in fact, convergence is faster than ooo(sd) for some number s < 4, possibly as low as
s = 2), so (M2

j ) is hollow. However, there exist sequences (M j) for which hollowness
of powers does not occur.
For example, suppose H = Zn again, let k be a positive even integer exceeding

2. Set M j =
1
2 (1 + xk j

m[1]). _en (M s
j) is not hollow for s < k, but is hollow for

s ≥ k. More drastically, if M j =
1
2 (1 + x j!m[1]) (this example has extravagantly large

gaps in the exponents), then (M s
j) is not hollow for any s. More drastically still, if

M = 1
2(

1+x2 x
x 1+x2 ) and M j = M(x3 j

), and f ∶ N → N is any function whatsoever,
then (M f ( j)

j ) is not hollow. (_is is easily deduced from the signs of the coeõcients
in the products λ1(∏M f ( j)

j ) = ∏
1
2 (1 − x3 j

) f ( j): the coeõcient of xk is (−1)k times
the coeõcient of xk in λ0(∏M f ( j)

j ) = ∏
1
2 (1 + x3 j

) f ( j).)
_e following is practically tautological.

394

https://doi.org/10.4153/CJM-2017-041-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-041-8


Nearly Approximate Transitivity (AT) for Circulant Matrices

Proposition 3.4 Let (M j) be an ergodic H-hemicirculant sequence. _e following
are equivalent.
(i) (M j) is hollow;
(ii) the kernel of the natural map from the dimension space of (M j) to that of

(λ0(M j)) is zero;
(iii) for all g in H, the automorphism of the dimension space (M j) given by [ f , k] ↦

[mg f , k], is the identity.

Suppose g ∶ N → N is a function, and set M j =
1
2(

1 x g( j)

x g( j) 1
) . For example, g( j)

could be the j-th Fibonacci number. Under some conditions (including this example),
the sequence (M j) is hollow. Under somewhat weaker conditions, (M j) is AT but not
necessarily hollow. _is requires several lemmas. First, we have a special case inwhich
the method used to show (M2

j ) is AT sometimes works to show (M j) is AT.

Lemma 3.5 Let (M j) be an ergodic sequence of H-hemicirculant matrices. Suppose
that for all є > 0, and all suõciently large integers k, there exists a positive integer
d ≡ d(є, k) together with a subset R ⊆ T ∶= {k, k + 1, . . . , k + d} such that for all α ≠ β
in Ĥ, ∥∏ j∈R λα(M j)∏ j∈T∖R λβ(M j)∥ < є. _en (M j) is AT.

Proof Set M = ∏T M j . Set

V = ∑
α∈Ĥ

vα ∏
j∈R

λα(M j), W = ∑
α∈Ĥ

wα ∏
j∈T∖R

λα(M j).

As in the argument of_eorem 2.3, the entries of both V andW are in A+ (explicitly,
V = ∑ qg eg , where∏R M j = ∑ qgmg andW = ∑ q′g eg , where∏T∖R M j = ∑ q′gmg).
Also as in that argument,

VW = ∑
α∈Ĥ

vαwαλα(M) + ∑
α≠β

vαwβ∏
j∈R

λα(M j) ∏
j∈T∖R

λβ(M j).

_us, ∥VW − M∥ ≤ ∣H∣(∣H∣ − 1)є. _is yields suitable approximate factorizations of
the products of the M j , so (M j) is AT.

Lemma 3.6 Let g ∶ N → N be a function satisfying the following conditions. _ere
exists S ⊆ N together with є i(s) ∈ {0,±1} (for s ∈ S), such that
(i) for all s ∈ S, we may write g(s) = ∑N−1

i=1 є i(s)g(s − i), where∑i є i(s) is even;
(ii) on setting b(s) = 1 +∑ ∣є i(s)∣, we have∑ 2−b(s) = ∞;
(iii) on deûning supp g(s) = {s} ∪ {s − i ∣ є i(s) ≠ 0}, we have s ≠ s′ ∈ S entails

supp g(s) ∩ supp g(s′) = ∅.
_en for all integers k,

lim
N→∞

∥
N+k

∏
j=k+1

1 − x g( j)

2
∥ = 0.

Proof Deûne Sk = {s ∣ supp g(s) ∩ {1, 2, 3, . . . , k} = ∅}. Obviously ∑s∈Sk 2−b(s) =
∞. For є > 0, there exists N ≡ N(є) suõciently large that if

AN = {s ∈ Sk ∣ supp g(s) ⊆ {k + 1, . . . ,N + k}},
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then ∏s∈AN ( 1 −
1

2b(s) ) < є. Deûne VN = ∏
N+k
k+1 {0, 1}. Say that v in VN runs through

supp g(s) if

v(i) =
⎧⎪⎪
⎨
⎪⎪⎩

1 є i(s) = 1,
0 є i(s) = −1.

Let S = {v ∈ VN ∣ v runs through at least one g(s) with s ∈ AN .} _en ∣VN ∖ S∣ <

є∣VN ∣ = 2Nє, so ∣S∣ ≥ 2N(1 − є).
Deûne ϕ ∶ S → VN as follows. For v ∈ S, ûnd the smallest s, denoted s0, such that

s ∈ AN and v runs through supp g(s). Deûne

ϕ(v)(i) =
⎧⎪⎪
⎨
⎪⎪⎩

1 − v(i) if i ∈ supp g(s0),
v(i) else.

_en ϕ is one-to-one, and
N+k

∑
k+1

ϕ(v)(i) ≡ 1 +∑ v(i) mod 2,
N+k

∑
k+1

ϕ(v)(i)g(i) = ∑ v(i)g(i).

Now

∥∏(1 − x g( j)
)∥ =

k+N

∑
j=k+1

∣ ∑
∑ v(i)g(i)= j

v∈AN

(−1)∑ v(i)
∣ .

If v ∈ S, then ϕ(v) and v have opposite parities, i.e., (−1)∑ v(i)+(−1)∑ ϕ(v)(i) = 0).
_is means that the contribution of such a v to the total mass is zero. Hence

∥∏(1 − x g( j)
)∥ ≤ ∣VN ∖ S∣ < 2Nє.

Part of the hypotheses above practically require g(n) = ooo(2n). Since we only use
the hypothesis g(s) = ∑i<s єs(i)g(i) for s ∈ S, there is no general requirement about
the growth of g on all ofN. However, in examples, it is easier to assume the recurrence
relations hold for all n. _is aspect cannot be much improved, since, for example, if
g(n) > ∑i<n g(i) for all n, e.g., g increasing and g(n) ≥ 2n , then no cancellation
occurs, and thus ∥∏(1 − x g(n))/2∥ = 1. Put another way, if m = ∑n η(n)g(n) where
η(n) ∈ {0, 1}, then η is uniquely determined by m.

_e parity hypothesis (condition (i) of Lemma 3.6) is crucial; for example, if each

g(n) = g(n − 1) + g(n − 2) + g(n − 3)

for n > 3 and each of g(1), g(2), g(3) is odd, then all g(n) are odd, hence for any
product of distinct terms of the form (1− x g( j))/2, the norm is 1 (evaluate at x = −1);
in particular, (M j) is not hollow in this case.

On the other hand, if g satisûes g( j) = g( j− 1)+ g( j−2) (or anything else with an
evennumber of terms), thenwe can take S to be 3N (to avoid overlaps in the supports),
and the hypotheses are all satisûed.

In the case that g( j) is the j-th Fibonacci number, this yields a proof that the
Z-action obtained from the sequence { 1

2(
1 x g(i)

x g(i) 1
)} is hollow. Additionally, (M j)

is isomorphic to the AT system ((1+ x g( j))/2). We now drop the parity condition on
∑i є i(s).
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Proposition 3.7 Let g ∶ N → N be a function such that there exists S ⊆ N together
with є i(s) ∈ {0,±1} (for s ∈ S), satisfying

● for all s ∈ S, we may write g(s) = ∑N−1
i=1 є i(s)g(s − i);

● on setting b(s) = 1 +∑ ∣є i(s)∣, we have∑ 2−b(s) = ∞;
● on deûning supp g(s) = {s} ∪ {s − i ∣ є i(s) ≠ 0}, we have s ≠ s′ ∈ S entails

supp g(s) ∩ supp g(s′) = ∅.
_en
(i) (M j ∶=

1
2 ( 1 x g(i)

x g(i) 1
)) is AT.

(ii) (M j) is hollow if additionally, ∑i є i(s) is even for all s ∈ S. In this case, the
dimension spaces corresponding to (M j) and to ((1 + x g( j))/2) are isomorphic.

Proof (i) Suppose s belongs to S. We have a relation of the form

g(s) + ∑
i∈E−(s)

g(s − i) = ∑
i∈E+(s)

g(s − i),

where E+(s) = {i ∈ N ∣ є i(s) = 1} and E−(s) = {i ∈ N ∣ є i(s) = −1}. Since є i(s) ≠ 0
entails i < s, each set is ûnite. Since g is positive-valued, E+(s) is nonempty.

_is equality yields that at least two terms cancel in each of

(1 + x g(s)
) ∏
E−(s)

(1 + x g(s−i)
) ∏
E+(s)

(1 − x g(s−i)
),

(1 − x g(s)
) ∏
E−(s)

(1 − x g(s−i)
) ∏
E+(s)

(1 + x g(s−i)
).

Hence

∥
(1 ± x g(s))

2 ∏
i∈E−(s)

(1 ± x g(s−i))

2 ∏
i∈E+(s)

(1 ∓ x g(s−i))

2
∥ ≤ 1 − 2

2b(s)
.

Since λ0(M j) = (1+x g( j))/2 and λ1(M j) = (1−x g( j))/2, we will verify the conditions
of Lemma 3.5 if we select d large enough that we can choose R inside T so that both R
and T∖R contain enough terms of S to guarantee that the two products are arbitrarily
small. _is is possible since∏(1 − 2−b(s)) = 0, as a consequence of∑ 2−b(s) = ∞.

(ii) Since the matrices are 2 × 2 and circulant, the only relevant eigenvalue of M j

is (1 − x g( j))/2. So hollowness follows from Lemma 3.6, and does not depend on the
argument in (i).

For example, if g( j) is the j-th Fibonacci or Lucas number, then (M j) is isomor-
phic to the AT system ((1+ x g( j))/2), since in either case, g( j) = g( j − 1) + g( j − 2),
and we can set S = 3N. On the other hand, if g( j) = g( j−1)+ g( j−2)+ g( j−3) for all
suõciently large j, set S = 4N. Proposition 3.7 (i) yields that the resulting sequence
(M j) is at least AT, but need not be hollow, as we observed above.

Roughly speaking, if g( j) is ooo(2 j) (and satisûes a recurrence relation as above),
then the resulting (M j =

1
2(

1 x g( j)

x g( j) 1
)) tends to be at least AT, and could be hollow.

A limiting case that is not covered by the hypotheses occurs with g( j) = 2 j , for which
AT-ness of the resulting sequence is due to [DQ]. It is known that if g( j) = 5 j , then
the sequence is not AT [GH].
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Proposition 3.8 If (M j) is an ergodic sequence of hemicirculant matrices, then
(λ0(M j)M j) = (λ0(M j)) ⊗ (M j)

is hollow, and thus (λ0(M j) ⋅M j) ≅ (λ0(M j)
2).

Proof Wenote for α in Ĥ, that λα(λ0(M j)M j) = λα(M j)λ0(M j). _uswith β = χ0
and α ≠ χ0, setting N j = λ0(M j)M j , we have

λα(
j0+d
∏
j0

N j) =

j0+d
∏
j0

λα(M j)λβ(M j),

which goes to zero as d →∞, by Lemma 2.2.

If instead, we ask about multiplication by suitable values of the trace, an extra con-
dition is required. For size two matrices, there is an analogous result even in the case
that the matrices in the sequences do not commute. From N2 = N trN − I detN , by
suitably telescoping, we can arrange that the determinant terms are as small (in norm)
as we like. As a consequence, if (N j) is an ergodic sequence of 2 × 2 matrices, then
there exists a telescoping so that ((N(i))2) ≅ (tr(N(i)) ⋅ N(i)). _is is not as useful
as it might appear: there is no assumption that the N j commute, so the isomorphism
class of ((N(i))2) might depend on the choice of telescoping.

Proposition 3.9 Suppose that (M j) is an ergodic sequence of hemicirculant matrices.
_en (M2

j ) is hollow if and only if there exists a telescoping 0 = n(1) < n(2) < ⋅ ⋅ ⋅ with
M(i) = ∏

n(i+1)−1
j=n(i) M j such that the sequence (Tr(M(i)) ⋅M(i)) is hollow.

Proof For α in Ĥ ∖ χ0 and J a ûnite subset of N, we observe that Tr(∏ j∈J M j) =

∑γ∈Ĥ∏J λγ(M j). _us

λα(Tr(∏
j∈J

M j) ⋅∏
j∈J

M j) = ∑
γ∈Ĥ
∏
J

λγ(M j)λα(M j)

=∏
J

λα(M2
j ) + ∑

α≠γ
∏
j∈J

λγ(M j)λα(M j).

Assume (M2
j ) is hollow. Given any j = j0 we can make the ûrst term on the right

side as small as we like by increasing the d in J = { j0 , j1 , . . . , j0 + d}; by Lemma
2.2, and similarly increasing the d (further if necessary), the second summand can be
made as small as we like, hence the desired telescoping exists.
Conversely, assume that (Tr(M(i)) ⋅ M(i)) is hollow. By a further telescop-

ing (which amounts to deleting some of the n(i)s and re-indexing), we may as-
sume that the second summand and the entire le� side are arbitrarily small for
J = {n(i), n(i) + 1, . . . , n(i + 1) − 1} (and suõciently large i). _us the ûrst sum-
mand must be small, which yields hollowness of (M2

j ).

4 Tensor Products

Let M and N be hemicirculant matrices with respect to the same group H. We may
form M ⊗ N , which is now hemicirculant with respect to H × H. If (M j) and (N j)
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are ergodic sequences of hemicirculant matrices, we may form (M j ⊗ N j), which
corresponds to the tensor product of the corresponding dimension spaces.

_ere are natural A-module maps in this situation. Deûne θ ∶ AH⊗AH → AH via
θ(eg ⊗ eh) = egh . _is is a positive, onto A-module map such that θ ○ (M ⊗ N) =

MN○θ (hereM andN areH-hemicirculantmatrices) requiring a routine veriûcation.
Wemay complexify AC = A⊗C = C[x , x−1] as usual, and extend θC ∶ ACH⊗ACH →
ACH. It is easy to verify from the deûnitions that for α and β in Ĥ,

θC(vα ⊗ vβ) =
⎧⎪⎪
⎨
⎪⎪⎩

vα if α = β,
0 if α ≠ β.

Since θC is actually deûned over the complexes, it easily follows (since {vα}α∈Ĥ is a
basis for CH), that ker θC is the free AC-module on {vα ⊗ vβ}α≠β .

_e following is a fragment of the commuting diagram obtained from the map
θ. _e splitting map ψ is given by ψ(eg) = 1

∣H∣ ∑h∈H eh ⊗ egh−1 (the corresponding
complexiûcation of ψ sends vα to vα ⊗ vα).

An2 M j−1⊗N j−1 //

θ
��

An2

θ
��

M j⊗N j // An2

θ
��

M j+1⊗N j+1 //

An

ψ

OO

M j−1N j−1 // An

ψ

OO

M jN j // An

ψ

OO

M j+1N j+1 //

Now θ induces an A-module map from the dimension space of (M j ⊗ N j) to that of
(M jN j), obviously of the form Θ[z, k] ↦ [θ(z), k]. _is deûnes Θ on the algebraic
direct limits; it clearly extends to the l 1 completions, that is, the dimension spaces
themselves. It is clearly of norm 1, positive, onto on positive cones, and sends the
unique invariant measure on the domain to that on the image; it also has a splitting,
which we will use shortly.

Under some circumstances, Θ will be an isomorphism. Suppose z in AH is sent
to zero by θ. We wish to determine whether for all k, and for all є > 0, there exists d
such that ∥∏k+d

j=k (M j ⊗ N j)z∥ < є. We can write z as an (AC-) linear combination of
terms of the form vα ⊗ vβ with α ≠ β. Next, we note that (∏k+d

j=k (M j ⊗N j))vα ⊗ vβ =
(∏

k+d
j=k λα(M j)λβ(N j))vα ⊗ vβ . Deûne the following property,

(4.1) For all α ≠ β ∈ Ĥ, for all k, lim
d→∞

k+d
∏
j=k

λα(M j)λβ(N j) = 0.

When (4.1) holds, it follows that the elements [z, k] in the dimension space of
(M j ⊗ N j) are all zero.

Now assume (1) and suppose [y, k] is such that ∥θy∥ < є. In ACH, we can write
y = z + x where y ↦ z is the projection of ACH onto ker θ (this has norm 1, but all
we need is that it has ûnite norm, which is trivial here), and there exists a constant K,
independent of y, such that ∥x∥ ≤ Kє. _en it easily follows that the image of [y, k]
in the dimension space of (M j ⊗ N j) has norm at most Kє. We can avoid this last
argument if we employ the splitting map, ψ ∶ AH → AH⊗AH. _en ψ induces a map
Ψ from the dimension space of (M jN j) to that of (M j⊗N j) and Θ○Ψ is the identity
on the dimension space of (M jN j). Hence using Lemma 2.2, we obtain the following.
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Lemma 4.1 Let (M j) and (N j) be ergodic sequences of H-hemicirculant matrices.
_emapΘ from the dimension space of (M j⊗N j) to that of (M jN j) is an isomorphism
of dimension spaces if (4.1) holds. In particular, this occurs if M j = N j , ı.e., (M2

j ) and
(M j ⊗M j) yield isomorphic dimension spaces, necessarily AT.

Another consequence of the arguments used before: if (4.1) holds, then (M jN j) is
AT (simply use the argument of Lemma 3.6, constructing Vj from M j and W from
N j). However, when M j and N j are quite diòerent from each other, it may be diõcult
to decide whether (4.1) holds. For example, in general it will fail ifN j = MT

j . _is does
not imply (M j ⊗ MT

j ) /≅ (M jMT
j ), simply that the method of proof fails. However,

a�er we remind the reader of an invariant developed in [H, §6], we will give a large
class of examples for which (M j ⊗MT

j ) /≅ (M jMT
j ).

5 Isomorphism and Non-isomorphism

Let (M j = ∑g∈H qg jmg) be an (ergodic) sequence of H-hemicirculant matrices, with
v0 = (∣H∣)−1(1 1 ⋅ ⋅ ⋅ 1)T and w0 = ∣H∣vT

0 as usual. _e row w0 induces (a�er a rela-
belling) the map ρ ∶ AH → A sending ∑g∈H qgmg to ∑ qg . _en we obtain a com-
muting diagram (not just approximately commuting)

(5.1) An

ρ
��

M j−1 // An

ρ
��

M j // An

ρ
��

M j+1 //

A

σ

OO

×λ0(M j−1) // A

σ

OO

×λ0(M j) // A

σ

OO

×λ0(M j+1) //

where the horizontal maps on the second row are multiplications by the indicated
elements of A+, in this case, the large eigenvalue of the M j , λ0(M j) = ∑ qg j . _en ρ
extends to P (capital ρ), a positive A-module map from the dimension space of (M j)

to the AT dimension space of (λ0(M j)). With the same elementary techniques as
those of the earlier tensor product constructions, it follows that P is an isomorphism
if and only if (M j) is hollow. _is is made easier by the presence of the splitting map
for P, induced by σ ∶ A→ AH given by σ(c) = 1

∣H∣ c∑g∈H eg .
When (M j) is hollow, it is also immediate that for all j0 ≥ 0,

lim
d→∞

∥ tr(
j0+d
∏
j= j0

M j) − λ0(
j0+d
∏
j= j0

M j)∥= 0.

(_e norm is the usual l 1 norm, i.e., the total variation norm, on the coeõcients.)
Since λ0 is multiplicative on H-hemicirculant matrices, this yields that the dimen-
sion space associated with (M j) is isomorphic (in all senses) to that of a telescoped
sequence (tr(∏n(i+1)−1

j=n(i) M j))i , where n(i) is a suitable strictly increasing sequence of
positive integers.

We can ask, if (M j) is not hollow, then can it be isomorphic to the AT system
(λo(M j))? In many cases (and possibly all), it is relatively easy to give a negative an-
swer. _is uses an invariant (actually, a class of invariants), introduced in [H], related
to mass cancellation.
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In [H], it was intended to be used to distinguish pairs of AT systems, but in fact,
can be extended to any dimension space. Let N j ∶ An( j) → An( j+1) be a sequence of
matrices with entries from A+ such that all column sums of N j(1) are 1. Let {p i}i∈I
(in examples, I = N, but could be any inûnite set) be a collection of elements of AC =
C[x , x−1] (not A+) each with norm 1. Associate with the sequences {p i}, (N j) a real
number s ≡ s({p i}, (N j)) in [0, 1] as follows.
Fix positive integers l and d, and p ∈ {p i}, and deûne the operator l 1 norm on the

products pN l+d ⋅N l+d−1 ⋅ ⋅ ⋅N l (using the norm inherited from the limiting-dimension
space). Deûne s l ,p = limd→∞ ∣∣∣pN l+d ⋅ N l+d−1 ⋅ ⋅ ⋅N l ∣∣∣. Since each N j has norm 1, it
easily follows that the limit exists and is a number in the unit interval. Now set s l =
inf p∈{p i} s l ,p . As l ↦ s l is increasing, s({p i}, (N j))) ∶= liml→∞ s l is well deûned and
in the unit interval. _e invariant is s({p i}, ⋅ ). We must check that it is an invariant.
In fact, it is even an invariant for neutral isomorphisms (see Section 2) as well.
First, we note that it is invariant under telescoping and deletion of a ûnite set of

N j . Now suppose we have an approximately commuting diagram in (1.1) (here theM j
need not be hemicirculant, or even square), meaning, with respect to the l 1 norms
induced by the invariant linear functionals, we have

∑∣∣∣S jR j −M j ∣∣∣ < ∞ and ∑∣∣∣R j+1S j − N j ∣∣∣ < ∞.

(By repeatedly telescoping, wemay arrange this out of any approximately commuting
isomorphism.)

Given є > 0, there exists l such that both sums

∑
j≥l

∣∣∣S jR j −M j ∣∣∣ and ∑
j≥l

∣∣∣R j+1S j − N j ∣∣∣

are less than є (the norms are on diòerent spaces, but the notation would become
cumbersome if we distinguished them). _en to within є, for any polynomial p,

pM l+dM l+d−1 ⋅ ⋅ ⋅Md ∼ pS l+dN l+d−1 ⋅ ⋅ ⋅N lR l .

Since we can assume R j and S j have respective norms at most 1, it follows that

s l ,p({M j}) ≤ є + s l ,p({N j}).

Hence the corresponding result holds dropping the l and taking inûma over all the
elements p of {p i}, and, of course, then we interchange the roles of M j and N j .
As an aside, we almost always need an inûnite choice of {p i}. For example, the

AT system given by ( 1
2 (1 + x2 j

)) represents the dyadic odometer. If {p i} is just the
singleton {(1 − x)/2}, then s0 = 0 (almost complete mass cancellation) but s l = 1 (no
mass cancellation) for l ≥ 1, hence s = 1, which in this case is uninformative. On the
other hand, if p i = (1−x2i−1

)/2, then s l = 0 for all l and thus s = 0, which is frequently
useful.
For example, it allows us to distinguish the sequence (M j =

1
2 (I + x2 j

P)) (where
P is the cyclic permutation matrix of size n, corresponding to H = Zn) from the
dyadic odometer. We note that λ0(M j) =

1
2 (1 + x2 j

), so the sequence in the bottom
line of (5.1) is that of the dyadic odometer. As above, let p i = (1 − x2i−1

)/2, so that
s({ 1

2 (1 − x2 j
)}, (λ0(M j)) = 0. On the other hand, a simple computation reveals that

the (1, 1) entry of∏d0 M j is 2−d ∑η(a)≡0 mod n xa where a varies over the integers from
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1 to 2d+1, and η(a) is the number of 1 in the binary expansion of a. It easily follows
that ∥((1− x)/2)∏d0 M j∥ is at least 1− 1/n − 2−d (it can be computed exactly), so that
s0 of the sequence is at least 1 − 1/n. However, M j = M0(x2 j

), so s0 = s j (since the
sequence {p i} is invariant under x ↦ x2), so the s value of (M j) is at least 1− 1/n. In
particular, (M j) is not isomorphic to the dyadic (or any) odometer.

In fact, we obtain diòerent s values for diòerent values of n (this requires more
precise, but elementary computations), so distinct choices of n yield nonisomorphic
systems.

Conjecture 5.1 If (M j) is ergodic, hemicirculant, and not hollow, then (M j) /≅

(λ0(M j)).

We can almost prove this. A slightly stronger assumption, that (M2
j ) be not hollow,

is suõcient. _ere are examples where non-isomorphism occurs (so that (M j) is not
hollow), but with (M2

j ) hollow.

Lemma 5.2 Suppose that (M j) is an ergodic sequence of hemicirculant matrices such
that (M2

j ) is not hollow. _en (M j) /≅ (λ0(M j)). More generally, if (Mk+1
j ) is not

hollow, then (Mk
j ) /≅ (λ0(Mk

j )).

Proof If k = 1, (M2
j ) is not hollow and there thus exists α ∈ Ĥ ∖ {χ0} such that for

some positive integer N0, liml→∞ ∥∏
N0+l
j=N0

λα(M j)
2∥ > 0. It follows that given є > 0,

there exists N ≡ N(є) such that liml→∞ ∥∏
N+l
j=N λα(M j)

2∥ > 1 − є.
Set p′i = ∏

N+i
j=N λα(M j) (in AC = C[x , x−1]), so that 1 ≥ ∥p′i∥ > 1− є, and deûne the

normalized versions p i = p′i/∥p′i∥ ∈ AC. _en for each i and all k,

∥ p i
N+k
∏
j=N

λα(M j)∥ > 1 − є.

_us s({p i}, (M j)) ≥ s({p i}, (λα(M j))) ≥ 1 − є, so that s({p i}, (M j)) ≥ 1 − є
(because the choice of {p i} depended on є, we cannot obtain 1 exactly).

One the other hand, for N ′ ≥ N ,

p i

N ′+k

∏
j=N ′

λα(M j) =
N+i

∏
i=N

λ0(M j)
N ′+k

∏
j=N ′

λα(M j).

If we choose i large enough that N+ i > N ′+k, then Lemma 2.2 applies, so the normof
the product can be made arbitrarily small. _us s({p i}, (λ0(M j)) = 0, and therefore
nonisomorphism occurs.

If k > 1, we ûndN such that for all i, ∥∏N+i
j=N λα(M j)

k+1∥ > 1−є, set p i = ∏ λα(M j),
and proceed as above.

_ere do exist non-hollow (M j) with (M2
j ) hollow, such that the same noniso-

morphism holds, so the question remains whether the additional hypothesis really is
necessary.
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Suppose M j =
1
2(

1 x2 j

x2 j
1
) . Radu Monteanu has shown (unpublished) that this

represents the Morse–_ue transformation. It was shown by Dooley and Quas [DQ]
to be AT. It is easy to verify that (M2

j ) is hollow: ∥∏N+k−1
j=N (1− x2 j

)2∥ = ooo(4k) (in fact,
it is ooo(βk) for β substantially less than 4). However, (M j) /≅ ( 1

2 (1+ x
2 j
)) = (λ0(M j))

as the Morse is not an odometer; we can use p i =
1
2 (1 − x2 j

)).
_e map AH → AH given by eg ↦ eg−1 induces an isomorphism between the

dimension spaces of (M j) and of (MT
j ). _is allows us to show that not only is the

map in Lemma 4.1 not generally an isomorphism between (M j ⊗MT
j ) and (M jMT

j )

(which we already knew), but in fact, the two dimension spaces are not generally
isomorphic.

Corollary 5.3 Suppose that ∣H∣ is odd and (M j) is an ergodic hemicirculant sequence
such that (M2

j ) is not hollow. _en (M j ⊗MT
j ) /≅ (M jMT

j ).

Proof First, (MT
j ) ≅ (M j). Next, (M jMT

j ) is symmetric and of odd size, hence is
hollow (Proposition 3.3). If (M j⊗MT

j ) ≅ (M jMT
j ), thenwewould have the following

chain of isomorphisms,

(M2
j ) ≅ (M j ⊗M j) ≅ (M j ⊗MT

j ) ≅ (M jMT
j ) ≅ (λ0(M jMT

j )) = (λ0(M2
j )).

_is contradicts (M2
j ) /≅ (λ0(M2

j )).

Example Another computation. Let H = Zn be the cyclic group of order n, let
P be the corresponding cyclic permutation matrix of size n (corresponding to the
generator, [1], of Zn), and for j = 0, 1, 2, . . . , set M j =

1
2 (I + x3 j

P). _en (M j) and
(M2

j ) are ergodic but not hollow, while (M3
j ) is hollow. It is reasonable to conjecture

that (M j) is not AT, or even not AT(2); but by _eorem 2.3 (i), (M2
j ) is AT. We wish

to determine the corresponding sequence of polynomials (Q j) (each Q j ∈ A+ and
Q j(1) = 1) that is obtained by the argument therein such that (M2

j ) ≅ (Q j).
Indexing Ĥ by 0, 1, 2, . . . , n − 1 (instead of α), we see immediately that λk(M j) =

1
2 (1 + x3 j

ξk), where ξ = exp(2πi/k), for k = 0, 1, . . . , n − 1. For k ≠ l (corresponding
to α ≠ β), we calculate the norm of λk(M j)λ l(M j). In all cases, we see that the
maximum of the norm over all pairs is some number γ ≡ γ(n) < 1. As a sample
computation γ(3) = 3

4 comes from

(1 + ξx)(1 + ξ2x) = 1 − x + x2
(1 + ξx)(1 + x) = 1 − ξ2x + ξx2

(because M j = M0(x3 j
), the dimension space is stable under x ↦ x3 and we need

only consider the case that j = 0; also, when n = 3, 1 + ξ + ξ2 = 0).
Now we ûnd a telescoping 0 = n(1) < n(2) < n(3) < ⋅ ⋅ ⋅ so that for each k ≠ l ,

∥ λk(
n(t+1)−1

∏
n(t)

M j) λ l(
n(t+1)−1

∏
n(t)

M j)∥ < ∞;

suõcient for this is simply ∑ γn(i+1)−n(i) < ∞. We can set n(i + 1) = i(i + 1)/2, so
that n(i + 1) − n(i) = i. (_is is a lot bigger than necessary.) Now deûne M(i) =
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∏
n(i+1)−1
n(i) M j . We ûnd the coeõcients in the expansion of M(i) = ∑u∈H cumu , as a

circulant matrix.
For an integer t, let t = ∑ η i(t)3i be its ternary representation (η i(t) ∈ {0, 1, 2}).

Let Vm = {t < 3m+1 ∣ η i(t) ∈ {0, 1} for all i}, and for t in Vm , deûne η(t) = ∑i η i(t),
i.e., the number of 1s in the ternary expansion of t. For j ∈ Ĥ and 0 < a < b, deûne

Pj,a ,b ∶= ∑
{t∈Vb−a ∣η(t)≡ j mod n}

x t3a .

_en a simple induction argument yields that with cui = Pu ,n(i),n(i+1), we haveM(i) =

∑u∈H cuiPu/2i , using n(i + 1) − n(i) = i (this can also be obtained by noting that
λu(M(i)) = ∏(1 + ξuxu3n(i)

)/2i and applying the ûnite Fourier transform).
By the method of _eorem 2.3, we have an approximate factorization (M(i))2 ∼

V (i)W(i), where V (i) = 1
n ∑ eucui and W(i) = ∑ eucn−u , i . _is yields an isomor-

phism between (M2
j ) and (p i ∶=W(i+1)V (i)). _e earlier computation yields

p i = ∑
u∈Zn

Pu ,n(i),n(i+1)Pn−u ,n(i+1),n(i+2))),

and this equals P0,n(i),n(i+2). _us (p i = P0,n(i),n(i+2)). It is very likely that

((
1

∣H∣
tr(M(i)

))
2
)

is not isomorphic to (p i), but at the moment, there are technical diõculties in show-
ing this. (_e idea is to use the mass cancellation invariants discussed above.)

In this example, all of the automorphisms on (M2
j ) given byH are nontrivial. _is

is one way of constructing ûnite order automorphisms of AT actions that induce non-
trivial automorphisms of the dimension space. Of course, this realizes the dual action
of the original approximately inner action of H on the underlying ITPFI given by
(λ0(M2

j )).

Example An example of a hemicirculant ergodic sequence (M j) such that
(M j ⊗MT

j ) is not isomorphic to (M jMT
j ). _is is a modiûcation of the previous

example. Let H = Zn where n ≥ 5 and is odd. Select k ≥ 4, and set M j =
1
2 (I + Pxk j

).
Since k ≥ 4, (M3

j ) is not hollow, and the result follows from Corollary 5.3.

If (M j) is hollow, there exists a telescoping n(i) < n(i + 1) so that if M(i) ∶=

Mn(i+1)−1 ⋅ Mn(i+1)−2 ⋅ ⋅ ⋅Mn(i), then (M j) ≅ (tr(M(i))). However, we noted that
for some sequences of hemicirculant matrices of the form (M2

j ), the isomorphism
is only obtained with overlapping sequences; that is (M2

j ) ≅ (tr(M(i+1)M(i))) (and
generally not isomorphic to (tr((M(i))2))). _is overlapping is essential (and one
might view it as natural, since (M jM j−1) ≅ (M2

j )), and extends to the most general
case.

Suppose (N i ∶ Am(i) → Am(i+1)) is a sequence of matrices with entries from A+
such that the column sums, when evaluated at x = 1, are all 1. Suppose it is known that
(N j) (or more accurately, its associated dimension space) is AT. _en, a�er a possible

404

https://doi.org/10.4153/CJM-2017-041-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-041-8


Nearly Approximate Transitivity (AT) for Circulant Matrices

telescoping (which we incorporate into the notation, to avoid unnecessarily compli-
cating an already complicated situation), there exist columnsVi (in (Am(i+1)×1)+) and
columns Wi (in (A1×m(i))+) such that∑∣∣∣N i − ViWi ∣∣∣ < ∞. _en (N i) ≅ (Wi+1Vi),
the latter, of course, being a sequence of normalized elements of A+ (we can slightly
perturb the sequence so that the values at x = 1 are all exactly one, rather than close).

Now take any telescoping of the already telescoped (N j), say corresponding to
0 = n(1) < n(2) < ⋅ ⋅ ⋅ , and this time, take the products including both ends of the
intervals, that is, deûneN(i) = Nn(i+1) ⋅Nn(i+1)−1 ⋅ ⋅ ⋅Nn(i) (themore usual telescoping
would not include Nn(i+1)). Set Pj =Wj+1Vj (an element of A+). _en

N(i) ∼ Vn(i+1)Wn(i+1)Vn(i+1)−1Wn(i+1)−1 . . .Vn(i)Wn(i)

= Vn(i+1)Wn(i)(Wn(i+1)Vn(i+1)−1 ⋅ ⋅ ⋅Wn(i)+1Vn(i))

= (Vn(i+1)Wn(i)) ⋅ Pn(i+1)−1 ⋅ Pn(i+1)−2 ⋅ ⋅ ⋅ Pn(i)

= (Vn(i+1)Wn(i))
n(i+1)−1

∏
j=n(i)

Pj .

_us, if N j were square matrices,

trN(i) ∼ (Wn(i)Vn(i+1))
n(i+1)−1

∏
j=n(i)

Pj .

Since (N j) ≅ (Pj), we obtain the isomorphism of AT systems, (trN(i)) ≅ (N j) ⊗

(Wn(i)Vn(i+1))). _is is true for every telescoping of the originally telescoped se-
quence (N j) (although in principal, the isomorphism class of (trN(i)) may depend
on the choice of telescoping, n(i)). We note in particular, the overlapping phenome-
non N(i) and N(i−1) which both contain the term Nn(i) (in the former, at the extreme
right of the product, in the latter, at the extreme le�), although no such overlapping
occurs with the Pj .

Onemight expect that if the telescoping were suõciently sparse (if i ↦ n(i) grows
really quickly), the extra polynomials Wn(i)Vn(i+1) should not play much of a role,
that is, it is possible that (trN(i)) ≅ (N j) for suõciently fast growing n(i).

_e overlapping has signiûcance for actual computations. For example, when N j
is hemicirculant, it is o�en straightforward to calculate the (1, 1) entry of N(i) (this
is the trace divided by n). However, it is not so straightforward to calculate even
trN(i)N(i−1) (and computing the traces of products of larger numbers of matrices is
still more tedious), precisely because of the overlap.

It alsomeans that a theorem such as, if (N j) is AT, then there is a telescoping so that
tr(Nn(i)Nn(i−1)) is almost trNn(i) trNn(i−1) (that is, the trace is almostmultiplicative
a�er suitably telescoping), is probably not true. Had this been true, it would have been
really useful for showing that many sequences are not AT.

6 Perspective

In terms of the type III vonNeumann algebras that are classiûed by dimension spaces,
families of hemicirculant matrices have a particularly elementary interpretation. Be-
gin with a product type W*-algebra (and corresponding AT action and dimension
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space), let H be a (ûnite abelian) group of product type automorphisms (necessar-
ily approximately inner), assume the action is ergodic, and form the crossed prod-
uct, another W*-algebra. Its dimension space is given by an ergodic sequence of
H-hemicirculant matrices, and the inclusion of the original in the crossed product
translates in the dimension space setting to the diagram (5.1).

_e original action ofH, being approximately inner, is not otherwise visible on the
underlying AT dimension space. However, its dual action on the crossed product is
represented by the action of H in its regular representation as permutation matrices;
these commute the (M j). Of course, the dual action may also turn out to be approxi-
mately inner, in which case these permutation matrices act trivially on the dimension
space level. _is occurs precisely when the sequence (M j) is hollow, as is easy to
verify.

In terms of Z-actions, i.e., ergodic transformations, sequences of hemicirculant
matrices correspond to a class of H-actions on an AT dynamical system (presum-
ably, there are non-product type actions inequivalent to any product action, even for
H = Z2, hence not all H-actions are determined by hemicirculant matrices), resulting
in an almost everywhere ûnite-to-one (at most ∣H∣ to one) map between the spaces.
A particular consequence is that the resulting systems have entropy zero, but AT(n)
implies entropy zero anyway [M]. Hollow sequences yield one-to-one maps, that is,
isomorphisms.

We can also relate this to corresponding ideas from topological (rather than mea-
sure-theoretic) classiûcation, in this case of actions of compact groups on AF
C*-algebras (in particular). From an AF algebra, given as a direct limit of ûnite-di-
mensional algebras, limAk dense in C, let G be any compact group (not necessarily
abelian), and suppose for each k, there is a unitary representation πk ∶ G → Ak com-
patible with the maps Ak → Ak+1. _is yields an action of G on A called locally
representable.

It was shown in [HR,_eorem III.1], that K0(C ×G) (viewed as an ordered mod-
ule over the representation ring) together with some additional data is a complete
invariant (up to unitary group actions on C*-algebras) for the action. Moreover, all
such actions can be obtained by considering all possible Bratteli diagrams that rep-
resent C, and for each one, replacing the integer entry (describing the multiplicity)
by a character (not necessarily irreducible) of G whose dimension equals the multi-
plicity, that is, if χ is a character, the arrow with multiplicity d can be weighted by χ
if χ(1) = d. _is yields Bratteli diagrams with weights from the positive cone of the
representation ring.

If we begin with a Bratteli diagram that is initially weighted with polynomials (in
one variable) with positive integer coeõcients (necessarily not adding to one), we
obtain an action of the circle on the underlying AF algebra. For example, a product
type action would correspond to a sequence of polynomials in one variable. We can
further elaborate on this diagram by now permitting characters of T ×H, where H is
a ûnite abelian group, yielding an H-action on the crossed product by T . We can then
convert this into a product type action in the measure theoretic setting selecting an
extreme trace on the underlying AF algebra and then dividing by suitable rationals so
that things add to one.
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Going in reverse, we merely must approximate suõciently well any real numbers
that appear in the coeõcients in the matrix entries by rational numbers (since the
measure-theoretic classiûcation is immune to tiny perturbations), and then multi-
ply each matrix entry by a suitable positive integer to remove the denominators. Of
course, measure-theoretic classiûcation is much coarser than topological, and topo-
logical classiûcation is sensitive to the approximation and choice of integer.

7 Powers of Transformations

Let (X , µ, T) be a dynamical system, with T ergodic and µ quasi-invariant with re-
spect to T . _e Poisson boundary can be represented via the dimension space of a
suitable sequence of maps N j ∶ Am( j) → Am( j+1) together with a trace-induced factor-
ing through an extremal trace on the direct limit of N j(1)∶ Rm( j) → Rm( j+1) where
evaluation at 1 means evaluation x ↦ 1 to each coordinate, creating a real column
stochastic matrix.

Suppose we want to consider the square or a higher power of T , that is, the dynam-
ical system (X , µ, Tn), for some n > 0. A ûrst problem is that this need not be ergodic
(the use of dimension spaces is more or less conûned to ergodic transformations that
are insensitive to suõciently small perturbations, whereas in the non-ergodic case,
arbitrarily small perturbations can add or delete atoms). However, in general there is
a process for obtaining a dimension space for Tn (where convenient, we abbreviate
the triple (S , µ, X) to its ûrst component) out of the original one for T .

We can read oò from the construction whether Tn is ergodic, and if so, the result-
ing dimension space corresponds to a special Zn action. In particular, if T is AT, then
the dimension space for Tn comes from a commuting sequence of n×n matrices that
are very close to being circulant, and allow us to read oò properties. For example, if
T is AT(k) and Tn is ergodic, then Tn is AT(kn) (but it frequently happens that it is
AT).We give examples wherein T is AT, T2 is ergodic, but T2 is not AT. It also follows
from earlier results that if Tn is ergodic and T is AT, then Tn ⊗ Tn is AT.
First we give the construction. Let X = xn , and form B = R[X , X−1] sitting inside

A = R[x±1], each equipped with the usual ordering. _en A, viewed as a B-module,
is free on the set {1, x , . . . , xn−1}. Write A = ⊕A i (as B-modules) where A i = x iB.
Now let p be a polynomial in Awith no negative coeõcients. Let Q be the companion
matrix of the polynomial (in Z), Zn − xn = Zn − X,

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 X
1 0 0 . . . 0 0
0 1 0 . . . 0 0

⋱

0 0 0 . . . 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

_en Q belongs toMnB+; letB(p) ∶= p(Q). _en p(Q) has entries in B+, its column
sums when evaluated at x = 1 (and at X = 1!) equal p(1) = 1, and if we form the diago-
nal matrix (with entries from A+), ∆ = diag (xn−1 , xn−2 , . . . , 1), we have ∆Q∆−1 = xP,
where P is the cyclic permutation matrix. In particular, ∆B(p)∆−1 = p(xP), a circu-
lant matrix. Of course, this is not implementable over B, so we cannot simply transfer
everything in what follows to circulant matrices.
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Now the map ×x ∶ A → A, where we identify A with the free B module, A =

⊕
n−1
i=0 x iB, has Q as its matrix representation with respect to the basis {x i}. _ere

is a natural map φ ∶ Bn → A sending (b0 , b2 , . . . , bn−1)
T ↦ ∑ x ib i (which eòectively

is the identity on A a�er identiûcations).
Now let N j be an m( j + 1) × m( j) matrix with entries from A+ such that all

the column sums of N j(1) (evaluation at x = 1) are 1. Form a matrix B(N j) of
size m( j + 1)n × m( j)n by replacing each entry (N j)lm of N j by the n × n matrix
B((N j)lm) = (N j)lm(Q). _e resulting matrix has entries in B+, and its column
sums, when evaluated at X = 1, are all 1. _e claim is now that the dimension space
(now viewed as a B-module, equivalently as a module over l 1(nZ)) corresponding to
(B(N j)) implements Tn .

_is is practically a tautology. _enaturalmap φ ∶ Bn → A extends to (Bn)m → Am

in the obvious way, and the diagram

(Bn)m( j) B(N j) //

φ
��

(Bn)m( j+1) B(N j+1) //

φ
��

(Bn)m( j+2) B(N j+2) //

φ
��

⋅ ⋅ ⋅

Am( j) N j // AM( j+1) N( j+1) // AM( j+2) N( j+2) // ⋅ ⋅ ⋅

commutes and the vertical maps are isomorphisms of ordered B-modules. Under
this, multiplication by X in the terms of the top row translates to multiplication by
xn on the bottom row. Hence Tn is represented by the B-dimension space arising
from (B(N j)). An obvious consequence is that if T is AT(k) and Tn is ergodic, then
Tn is AT(nk) (the deûnition of AT(m) does not require ergodicity. With ergodicity,
AT(m) is equivalent to the sequence ofmatrices being atmostm×m, whereaswithout
ergodicity, only the reverse implication applies).
At this stage, we may be tempted to use ∆ to change this to matrices blown up by

circulant matrices. If we can choosem( j) = 1 for all j, that is, if T is AT, a�er applying
∆, we would obtain a sequence of circulant matrices, and so use all the results of the
preceding section. Unfortunately, this is not permissible, since we are restricted to
B- (or l 1(nZ)-) maps between dimension spaces. Fortunately, we can o�en deduce
results from the circulant case.

_e test for ergodicity, however, is identical, since a�er evaluation at X = 1, the
resulting B(p j)(1) is circulant. For example, if (p j = (1 + x2 j−1

)/2), then T is the
dyadic odometer. Obviously T2 and thus T2n are not ergodic: T2 is the disjoint union
of two copies of the odometer. We can also see this from

B(p j) =
1
2
diag (1 + X2 j−1

, 1 + X2 j−1
),

so the limiting dimension group is just a direct sum of two copies the original odome-
ter sequence (with X playing the role of x).

On the other hand, if n is odd, Tn is ergodic and B(p j) is (I + Q2 j−1
)/2, which,

when evaluated at X = 1, yields the sequence of matrices 1
2 (I + P2 j−1

). Since n is odd,
there exist inûnitely many k such that 2k ≡ 1 mod n, and it easily follows that the
matrix products converge to the standard rank one matrix. In fact, for odometers,
there is a much stronger result available. As _ierry Giordano observed, any ergodic
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power of this type of odometer is conjugate to the original, as follows from the (L1)
pure point spectrum property

It can also be derived directly from the dynamical origins, at least in the case that
the supernatural number is of the form n∞ for some n, and likely more generally.
Let Y = ∏N Zn with the product topology (a Cantor set); the odometer views Y as
Z(n) (the n-adic completion of the integers; the elements of the sequence space can
be viewed as power series), and simply adds 1. Assume (k, n) = 1; the k-th power
of the odometer adds k. However, since k is relatively prime to n, k is invertible in
Z(n) and thus ×k (multiplication by k) is also a self-homeomorphism of Y , using the
multiplicative (rather than the additive) structure of Z(n), call it p. _en we have the
commuting diagram

Y +1 //

×k
��

Y

×k
��

Y +k // Y
_e top row is the odometer, the bottom row is its k-th power, and the vertical maps
are invertible maps (exploiting the multiplicative structure) which conjugate the odo-
meter to its k-th power, i.e., Tp = pT k . (It is not clear how to extend this elementary
argument tomore general odometers for which there is no underlyingmultiplication,
e.g., if the supernatural number has no inûnite multiplicities.) _is approach has the
advantage that it yields a continuous conjugacy between (Y , T k) and (Y , T) as con-
tinuous self-homeomorphisms on the Cantor set Y .

Unexpected isomorphisms. We would expect that the following is either false, or it
is true but easy to prove. It is true, but currently is not easy to prove.

Proposition 7.1 Suppose (M i) is an ergodic sequence of matrices over B+.
(i) Suppose that (M′

i) is an ergodic sequence of matrices over B+ such that there exists
an A+-module isomorphism between the corresponding dimension modules. _en
they are isomorphic as B+-modules, that is, (M i)B ≅ (M′

i)B .
(ii) If there is an A+-module isomorphism (M i) ≅ (N i) where (N i) is an AT(n)

ergodic sequence with entries from A, then (M i) is AT(n) with respect to B.

In particular, if viewed as an ergodic sequence of matrices with entries from A+,
and (M i)A is AT, then (M i)B is AT. Moreover, if (M i)A ≅ (p i)A where p i ∈ B+ and
p i(1) = 1, then (M i)B ≅ (p i)B . _is justiûes, in some cases, using the conjugation
argument available over A, but not over B, to determine isomorphism over B.
Elementary properties of A = R[x±1], B = R[x±k] equipped with the l 1 norms. Write

a = ∑i∈Zk x
ia(i) in terms of the standard basis of B as an A-module, {1, x , . . . , xk−1}.

_en we have the following.
● ∥a∥ = ∑∥a(i)∥.
● dist(a, B) = ∑i∈Zk∖{0} ∥a

(i)∥ and is achieved at b = a(0).
● If a ∈ A+, then ∥a∥ = a(1) and all a(i) ∈ B+.
● If a ∈ A+, then dist(a, B) = dist(a, B+).
● If a j ∈ A+, then dist(∑ a j , B) = ∑dist(a j , B).
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Lemma 7.2 Suppose a, c are in A+ and there exists b in B+ such that ∥ac − b∥ <

єa(1)c(1). Provided (k2 − k)є < 1/2, there exists j in {0, 1, 2, . . . , k − 1} together with
a′ and c′ in B+ such that ∥x ja′ − a∥ < (k2 − k)єa(1) and ∥x− jc′ − c∥ < (k2 − k)єc(1).

Proof Write a = ∑k−1
i=0 a ix i and c = ∑k−1

i=0 c ix i where a i , c i ∈ B+. For some real num-
ber r > 0, suppose that at least two of a i have norm at least ra(1). Select l such that
c l(1) ≥ c(1)/k. Because all the terms have coeõcients that are in B+, the norm is just
evaluation at x = 1 or X = 1. Of the, at least, two choices for i such that a i(1) > ra(1), at
least one of them, say i′, is not congruentmodulo k to−l . Hence in the product ac, the
term x i′+l a i′ c l appears, and again, as all the coeõcients are positive polynomials and
i′+l /≡ 0 mod k, it follows that a i′(1)c l(1) < єa(1)c(1). So ra(1)c l(a)/k < єa(1)c(1).
_is entails r < єk.

If we select r = єk, we obtain a contradiction. Hence at most one of a i , say a j ,
has norm at least єka(1), so that the rest of the terms have norm strictly less. _en
∥a − x ja j∥ < (k − 1)kєa(1). Similarly, with c, we obtain j′ such that ∥c − x j′ c j′∥ <

k(k−1)єc(1). If j+ j ≠ k, 0, we see that a j(1)c j′(1) contributes completely to the error
(as previously), so єa(1)c(1) > a j(1)c j′(1) > a(1)(1 − k(k − 1)є)c(1)(1 − k(k − 1)є).
_is will lead to a contradiction if є < (1 − (k2 − k)є)2. _en є < 1/2(k2 − k) is
suõcient. Hence j + j′ = 0 or k, and we are done.

In the following, all the inequalities boil down to optimization on intervals or rect-
angles, and it always turns out that theminima are achieved on the boundary. Because
the functions being minimized are at worst quadratic, the arithmetic is quite simple.

Lemma 7.3 Suppose a, a′ ∈ A+, with max{a(i)(1)} = ηa(1) and max{a′(i)(1)} =

µa′(1). If µ, η > 1/2, then dist(aa′ , B+)/aa′(1) ≥ η + µ − 2ηµ > max{1 − µ, 1 − η};
otherwise, dist(aa′ , B+) > 1/2.

Proof Write a = ∑ x ia(i) and a′ = ∑ x ia′(i), so that with j ≠ 0, (aa′)(0) =

∑ a(i)a′(−i) and (aa′)( j) = ∑ a(i)a′( j−i). Hence

dist(aa′ , B) = ∑
j≠0
∑
i
a(i)(1)a′( j−i)

(1) = a(1)a′(1) −∑ a(i)(1)a′(−i)
(1)

We may assume that a(1) = a′(1) = 1 (dividing by the appropriate scalars). Fix 0 ≤

η, µ < 1, and consider the following problem.
Minimize 1 −∑k−1

i=0 X iYi subject to X i ,Yi ≥ 0,∑X i = ∑Yi = 1, and X j ≤ η, Yj ≤ µ
for all j.
[Set X i = a(i)(1) and Yi = a′(−i)(1).] In the interior of the domain, the only

critical point (a�er replacing X0 and Y0 by 1−∑i≠0 X i and 1−∑i≠0 Yi , respectively)—
X i = Yj = 1/k—yields the maximum. So the minimum must occur on the boundary.

Now assume η, µ > 1/2. It easily follows that the minimum occurs only when for
some i, X i = η and Yi = µ (the same i), and then only when there exist some other
j ≠ i such that X j = 1−η andYj = 1−µ. So theminimumvalue is 1−ηµ−(1−η)(1−µ) =
η + µ − 2ηµ.

410

https://doi.org/10.4153/CJM-2017-041-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-041-8


Nearly Approximate Transitivity (AT) for Circulant Matrices

Drop the condition µ, η > 1/2 and write 1 = rη + ψ and 1 = sµ + ϕ, where r, s
are positive integers, 0 ≤ ψ < η, and 0 ≤ ϕ < µ; the minimum occurs when (up to
relabelling), X1 = η, X2 = η, . . . , Xr = η, Xr+1 = ψ, Y1 = µ = ⋅ ⋅ ⋅ = Ys , and Ys+1 = ϕ.

Hence if r = s, the minimum value is

1 − rηµ − (1 − rη)(1 − rµ) = r(η + µ) − (r2 + r)ηµ.

If r ≥ 2, then the minimum value (obtained by minimizing with the constraints
1/(r + 1) < µ, η ≤ 1/r) is larger than 1 − 1/r, which exceeds 1/2.

If we assume 1/2 < η, µ ≤ 1, then η + µ − 2ηµ > max{1 − η, 1 − µ}.
If r < s, the minimum value is 1− rηµ > 1− r/(r+ 1)(s+ 1) > 1/2. Similarly, if s > r,

the minimum value is at least 1/2.

Next we deal with sums of products and elimination of small terms. Suppose a
has two components, a(0) and a( j) such that each has mass at least some number
a(1)δ. We obtain an estimate for dist(aa′ , B+) when a′ , a ∈ A+. _e coeõcient of x t

in aa′ is ∑ a(i)a′(t− j). Suppose t ≠ 0. _en, summing over all t ≠ 0, the error is at
least a(0)(1)∑ a′(t)(1)+ a( j)(1)∑u≠− j a′(u)(1). In particular, a′(0)(1) appears in the
second summand. Hence dist(aa′ , B+) ≥ δa(1)a′(1). _us we have the following.

Lemma 7.4 Suppose a, a′ ∈ A+, and there exists δ > 0 such that at least two compo-
nents of a have mass at least δa(1). _en dist(aa′ , B+) ≥ δaa′(1).

Proof of Proposition 7.1 For a ∈ A+, deûne η(a) = (a(1) −maxi{a(i)}(1))/a(1).
If η(a) < 1/2, then the i0 for which a(i0)(1) is maximal is unique, and thus we can
deûne π(a) to be x i0a(i0). It is helpful to keep track of the index i0, so we deûne the
aõliated map Π(a) = (a(i0) , i0) with values in B+ × Zk . _e error resulting from
replacing a by π(a) is η(a)a(1).

If the second largest of {a(i)} occurs at i1 ≠ i0, and a(i1) = δ, then the previous
result yields dist(aa′ , B+) ≥ δaa′(1). However, the second largest is at least as large
as (1 − η(a))/(k − 1). Hence we deduce that in general,

d(aa′ , B+) ≥ (1 − η(a))aa′(1)/(k − 1).

Fix a column of V , and pick one of its entries a such that (1 − η(a)) > (k − 1)
√
є.

Suppose that a is the i-th entry. Let ct vary over the entries of the j-th column ofW .
_en the sum ∑ ac j appears as part of the sum of the entries of the i-th column of
W . Now sum this over all the possible a in the i-th column (with the same condition
on η), obtaining e ∶= ∑ asc j , where as varies over the entries in the i-th column of V
such that (1 − η(as)) > (k − 1)

√
є. _en dist(e , B+) ≥

√
єe(1)∑ c j(1).

If we knew that ∑ c j(1) = 1 for all j, we would deduce e(1) <
√
є. Now do this

simultaneously for all the columns of V . Since the norm is the maximum column
sum, we deduce that simultaneously replacing all the entries satisfying the condition
on their η by zero increases the norm of V by at most

√
є.

Hence at a cost of increasing є to
√
є+є, wemay suppose that all the nonzero entries

of V satisfy (1 − η(a)) ≤ (k − 1)
√
є. _e next stage is to replace each entry by π(a),

the projection onto the X0-component (out of the X0 , . . . , Xk−1 components). _e
error along each column is just the sum of a i(1)(1− η(a i)), which is bounded above
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by (k − 1)
√
є, since the column sum of a i(1) is 1. Hence at a cost of an additional

(k − 1)
√
є, we can assume that the entries of V are all of the form x f (i , j)b i j where

f ∶ N ×N→ {0, 1, 2, . . . , k − 1}. (_e cumulative error on V is now k
√
є + є.)

Since WV is close to a matrix N with entries in B+, we can, of course, do the
same thing to W . _is allows us to assume that the cumulative error resulting from
replacing V andW by their primes is at most k

√
є + є). Let

κ = max{∥V ′W ′
−M∥, ∥W ′V ′ ,N∥},

so that κ < 2k
√
є + 2є. Write the entries of V (generically denoted a), as

v i j = x f (i , j)b i j , w j l = x g( j, l)
)b′j l ,

where the b all lie in B+ and the ranges of f and g are in {0, 1, 2, . . . , k − 1}.
Now assume that Wi and Vi are deûned, with appropriate summable errors

∥WiVi −M i∥ = є(i), etc., and we may assume (by remarks above) that ∑
√
є(i) <

∞. By the previous construction, we can assume the entries of Wi are all of the
form (Wi) j l = x g i( j, l)b i j l and (v i) j l = x f i( j, l)b′i j l where f i , g i have ranges in
{0, 1, 2, . . . , k − 1}. We may replace the f i by f ′i where the range of each f ′i is in
{0,−1,−2, . . . ,−(k − 1)}.
At this stage, we have a trick. Replace all the entries of all the Vi andWi by remov-

ing the x f i( j, l) and x g i( j, l) terms, so the entries of the newWi andVi are, respectively,
b i j l and b′i j l . Now it is almost trivial that the resulting errors in approximating M i ,
respectively, N i , by products M i −W ′

i V ′
i and N i −V ′

i+1W ′
i do not increase! _e one-

sided version (where we do not assume the existence of the N i , but merely deûne
N i ∶= V ′

i+1W ′
i ) of this of course applies, and this will yield part (ii).

To see this, we look at an individual term in an individual entry: if f i( j, l) +
g i(l ,m) ≠ 0 (because of our assumption on the values for f i and g j , we cannot obtain
f i( j, l)+ g i(l ,m) = ±k), then the corresponding term yields an error (in the original
factorization) of b i j lb lm(1) to that term (since it is part of the distance to B). Hence
when we remove f i and g, the error will be at most that, and since the errors in the
distance to B are additive, we ûnd that the error resulting from this contribution will
be at most that from the original. On the other hand, if f i( j, l) + g i( j, l) = 0, the
corresponding term will be exactly the same as that in the original factorization. So
the outcome is that ∥WiVi −W ′

i V ′
i ∥ < 2k(

√
є(i) + 2є(i) and similarly (if necessary)

for ∥ViWi+1 − V ′
i W ′

i+1∥.

Remark In other words, if two B- (or l 1(kZ)-) dimension spaces become isomor-
phic on tensoring over B with A (or l 1(Z)), then they were isomorphic to begin with.

As a sample computation (the basis for the general odometer result), with an extra
point, consider the sequence of matrices generated by T2, where T is the 3-odometer.
Here T is represented by the sequence of polynomials (p j ∶= (1+x3 j

+x2⋅3 j
)/3). _en

B(p j) =
1
3(

1+X3 j
X(3

j+1)/2

X(3
j−1)/2 1+X3 j ) . Products of these matrices can be calculated directly,

but instead, let us consider the corresponding matrices over A (instead of B).
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Replacing X by x2, and applying conjugation with ∆, we obtain a sequence

(M j =
1
3
(
1 + (x3 j

)2 x3 j

x3 j
1 + (x3 j

)2)) .

_is is an ergodic circulant sequence, and the eigenvalues ofM j are (1±x3 j
+x2⋅3 j

)/3. It
easily follows that (M j) is not hollow (this is always true when the sequence is derived
from ergodic T2 in this fashion). We can see that (M j) is AT (without referring to
B(p j)) by observing that∏N−1

j=0 M j = 3−N( P0 P1
P1 P0

) , where P0 = ∑even i<3N x i and P1 =

∑odd i<3N x i , and since ∥x±1P1 − P0∥ = 2, we can conclude that (M j) is AT. Now the
obvious approximate factorization yields that (M j) ≅ ((1 + x2⋅3 j

+ x4⋅3 j
)/3), exactly

as we would have obtained from (B(p j)) ≅ ((1 + X3 j
+ X2⋅3 j

)/3) by replacing X by
x2.

Note however, that (M j) is not isomorphic to the 3-odometer (we can apply mass
cancellation invariants). Its dimension group corresponds to the odometer with su-
pernatural number 2 ⋅ 3∞, which although Kakutani equivalent to the 3-odometer, is
not conjugate to it. (We must remember that isomorphisms of (B(p j)) are imple-
mented over B = R[X±1], while isomorphisms of (M j) are implemented over A.)
As a slightly diòerent example, consider what happens when T is represented by

(p j = (1 + x g( j))/2) as in Proposition 3.7. _en

B(p j) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2 ((1 + X g( j)/2)I ) if g( j) is even,
1
2 (I + X(g( j)−1)/2( 0 X

1 0 )) if g( j) is odd.

It follows that T2 is ergodic if and only if inûnitely many g( j) are odd.
If, for example, all the g( j) are odd, then ∆B(p j)∆−1 = M j =

1
2(

1 x g( j)

x g( j) 1
) , so

that if we assume the conditions on g( j) of Proposition 3.7, then (M( j)) is AT, and
thus so is (B(p j)), the latter by Proposition 7.1.

If instead g( j) is the j-th Fibonacci number (counting 2 as the third one), then
g(3 j) is even. When we telescope in threes, we obtain

(M3 jM3 j+1M3 j+2 =
1
8
(1 + x g(3 j)

)( 1 x g(3 j+1)

x g(3 j+1) 1
)( 1 x g(3 j+2)

x g(3 j+2) 1
)) .

_is is not hollow (in contrast to the corresponding sequence considered in Lem-
ma 3.6), but is AT (this is true much more generally). _erefore T2 is AT.

We can ask whether T and T2 are conjugate (when the latter is ergodic), that is,
whether their corresponding dimension spaces are isomorphic. _is is trickier, espe-
cially since it happens to be true for odometers, andwe expect it will not be for generic
AT (and other) actions.

If in the preceding example, we set g( j) = 5 j (so none of the previous results apply),
then the corresponding (M j =

1
2(

1 x5
j

x5
j

1
)) is obviously ergodic, but is known [GH]

not to be AT. _erefore, by Proposition 7.1, T2 is not AT, but is ergodic.
Now we have a simple but useful result on non-hollowness of sequences of the

form (p i(xP)) that arise from conjugation of (B(p i)) by ∆.
If S and T are ergodic transformations represented, respectively, by (M j) and

(N j), thenwe deûne the transformation S⊗T to be the transformation determined by
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the dimension space obtained from (M j⊗N j). Whenwe assume (aswe have through-
out) that there is a unique invariant measure for each of S and T , then it easily follows
that the corresponding trace on the dimension space of (M j ⊗N j) is ergodic; hence,
at least when there is an invariant measure for each, S ⊗ T is ergodic. Unfortunately,
there does not seem to be a dynamical characterization of S ⊗ T , even when S = T .
In the situation of topological dynamics, at least for Vershik’s adic transformations,
S ⊗ T has been given a dynamical meaning [BeH, Appendix A], but it is not entirely
satisfactory.

Lemma 7.5 Suppose that the AT transformation T is represented by the sequence of
polynomials (p i), and suppose that T k is ergodic. Let P denote the standard cyclic per-
mutation matrix of size k. _en for all positive integers l , the ergodic circulant sequence
(of size k matrices) ((p i(xP))l) is not hollow.

Proof Since T k is ergodic, the sequence (B(p i)) of matrices over B+ is ergodic.
Conjugating each of the terms B(p i) = p i(Q) with ∆ and replacing X by xk , we
obtain a new sequence ofmatrices fromAgiven by (p i(xP)). Ergodicity of the former
sequence implies that of the latter (since the criteria for ergodicity just depend on the
real matrices obtained by assigning x and X to 1).

With H = Zn , the dual group runs over the k characters, χ j , sending the generator
to ξ j where ξ = exp 2π

√
−1/k; index the corresponding eigenvalue functions λ j , j ∈

Zk . Now λ j(p(xP)) = p(xξ j), and thus λ j(∏ p i(xP)) = p(xξ j) where p = ∏ p i .
If we write p = ∑ ctx t with ∑ ct = 1 and ct ≥ 0, then p(xξ j) = ∑ ct ξt jx t , so that
∥p(xξ j)∥ = ∑ ∣ct ξt j ∣ = ∑ ct = 1. _us λ j(p(xP)) = ∏ λ j(p i(xP)) has norm one.
Hence (p i(xP)) is not hollow.

Now T k ⊗ T k ⊗ ⋅ ⋅ ⋅ ⊗ T k (with l factors) is ergodic (tensor products of ergodic
transformations are ergodic, unlike the situation for cartesian products), and is the
k-th power of T ⊗ T ⊗ ⋅ ⋅ ⋅ ⊗ T , which in turn is represented by (pl

i). Hence the result
of the previous paragraph applies to (pl

i(xP) = (p i(xP))l).

Combined with earlier results, this says that (p i(xP)) arising in this construction
is not isomorphic to the original sequence (p i) (although it can be isomorphic to
(p i(xk)), as occurs for odometers).

_e following is an easy consequence of earlier results. However, its signiûcance is
reduced by the fact that we really do not know what T ⊗ T is dynamically.

Proposition 7.6 Suppose T is AT and for a positive integer k, T k is ergodic. _en
T k ⊗ T k is AT.
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