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SOFTWARE IMPLEMENTATION OF FINITE FIELDS OF
CHARACTERISTIC THREE, FOR USE IN PAIRING-BASED

CRYPTOSYSTEMS

K. HARRISON, D. PAGE and N. P. SMART

Abstract

In this paper, the authors examine a number of ways of implementing
characteristic three arithmetic for use in cryptosystems based on the
Tate pairing. Three alternative representations of the field elements
are examined, and the resulting algorithms for the field addition, mul-
tiplication and cubing are compared. Issues related to the arithmetic
of supersingular elliptic curves over fields of characteristic three are
also examined. Details of how to compute the Tate pairing itself are
not covered, since these are well documented elsewhere.

1. Introduction

Much interest has recently been created by the use of the Weil/Tate pairings on supersingu-
lar elliptic curves to produce identity-based cryptographic schemes, such as the encryption
scheme of Boneh and Franklin [4]. As was pointed out by Galbraith [7], in terms of band-
width efficiency it is more efficient to use supersingular elliptic curves in characteristic three
for systems based on the Weil/Tate pairing. This is in contradiction to the standard advice
in elliptic curve cryptography, where one uses fields of either large prime characteristic or
characteristic two. Hence, very little work has been conducted into implementation issues
related to elliptic curves in characteristic three. In this paper we address this gap in the
literature, paying particular attention to parameters usable in cryptographic systems based
on the Weil pairing, such as the encryption algorithm of Boneh and Franklin mentioned
above. We do not concentrate on the actual implementation of the Weil/Tate pairings, since
that is covered fully in other papers such as [2] and [8].

Originally, the existence of the Tate and Weil pairings was thought to be a bad thing
in cryptography. For example, in [11] it was shown that the discrete logarithm problem in
supersingular curves was reducible to that in a finite field using the Weil pairing. This led
supersingular elliptic curves to be dropped from cryptographic use. The situation changed
with the work of Joux [9], who gave a simple tripartite Diffie–Hellman protocol based on the
Weil pairing on supersingular curves. Since Joux’s paper, a number of other applications
have arisen, including an identity-based encryption scheme [4] and a general signature
algorithm [5]. In [13], an ID-based public key signature algorithm is given, which uses
the Weil pairing. In addition, the extension to higher-genus curves has also recently been
fully explored in [7]. This new work has resulted in a rekindling of cryptographic interest
in supersingular elliptic curves. Although most of the literature discusses these schemes in
terms of the Weil pairing, in turns out that it is far more efficient to use the Tate pairing.
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Finite fields of characteristic three

Table 1: Parameters in chracteristic two and three

Field Curve ECDHP security MOV security

F397 y2 = x3 − x + 1 151 922

F2241 y2 + y = x3 + x + 1 241 964

We letG denote a prime-order subgroup of an elliptic curveE over the fieldFq , which
for the moment we assume is a general finite field of arbitrary characteristic. Let the order
of G be denoted byl, and defineα to be the smallest integer such that

l|qα − 1.

In pairing-based cryptosystems we requireα to be small (but not too small), and so we shall
usually takeE to be a supersingular curve overFq .

The security of pairing-based cryptosystems is based on two problems.

• The computational elliptic curve Diffie–Hellman problem(ECDHP) in G:
Here, the relevant security parameter is log2 l, and the currently adopted practice is
to choose log2 l ≈ 160.

• The finite field Diffie–Hellman problem inF∗
qα (usually called the MOV security):

Here, the relevant security parameter isα log2 q, and the currently adopted practice
is to chooseα log2 q ≈ 1024.

Note that the decision Diffie–Hellman problem on supersingular elliptic curves is easy, due
to the existence of the Weil and Tate pairings, as was first pointed out by Joux [9].

For supersingular elliptic curves, the value ofα is bounded by four in characteristic two,
by six in characteristic three, and by two for curves defined over large prime fields. As
Galbraith [7] pointed out, the bandwidth performance of the schemes based on the Weil
pairing usually grows with log2 q rather than withα · log2 q, and hence it is better to try to
minimizeq. This leads us to wish to consider fields of characteristic three, since this aids
us in minimizing the value ofq.

If we wish to deploy a system with security roughly equivalent to 1024-bit RSA or
160-bit ECC, then we are led to consider the parameters in characteristic two and three
shown in Table1. We shall consider these parameters when describing our implementation
of characteristic three arithmetic below, using the above field of characteristic two as a
benchmark.

2. Implementation of arithmetic inF3n

Let our finite field be given by

F3n = F3[x]/(f (x)),

wheref (x) is a suitably chosen irreducible polynomial inF3[x], of degreen.
To make reduction modulof (x) as simple as possible, we choose if possible an irre-

ducible trinomial
f (x) = xn + axk + b,

wherea, b ∈ {1,2}. The reduction algorithm works much like that used in implementations
of characteristic two arithmetic, so we shall not discuss it further.
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Finite fields of characteristic three

A simple search reveals that for most prime values ofn, such a trinomial exists. Of
particular interest for cryptography, given the possible supersingular elliptic curves in char-
acteristic three with nearly prime group order, are the following trinomials:

x79 + x21 + 2,

x97 + x12 + 2,

x163 + x80 + 2,

x167 + x97 + 2,

x173 + x166 + 2,

x193 + x12 + 2,

x239 + x24 + 2.

In the next two sections we look at two possible ways of implementing polynomial arithmetic
modulo 3, but first we examine how inverses are computed inF3n . The same algorithm was
used in all of our implementations, namely a form of ternary extended Euclidean algorithm.
This is a natural extension of the standard binary Euclidean algorithm [10], pseudo-code
for which we present inAppendix A.

3. Polynomial arithmetic modulo three: TypeI

3.1. Addition

A trivial first observation is that if we hold our integers modulo three as two bits in a
redundant way, by having two representatives for the zero residue class, testing whether a
reduction modulo 3 needs to be carried out after an addition is very simple. (We use standard
C syntax; in particular, the operator ‘>>’ denotes a right shift, so ‘c >>2’ evaluates to
true (a non-zero value) if and only ifc is greater than three.) Thus we denote:

c=a+b;
if (c>>2) { c-=3; }

as opposed to

c=a+b;
if (c>=3) { c-=3; }

as would be the case if we used a standard representation. This does not look like a great
performance increase at first sight, since comparisons and bit shifts are usually single
instructions on modern processors. Hence the increased complexity of having a redundant
representation does not seem to have bought us any performance increase.

However, if we now ‘pack’ more than one element ofF3 into a word, then we obtain
the ability to add elements ofF3 in parallel. Suppose that we use three bits to specify each
integer, of which the highest-order bit is always set to zero. This means that we can pack
ten elements ofF3 into a single 32-bit word. Parallel addition of ten elements ofF3 can
then be performed via the following C-code.

c=a+b;
r=(c>>2)&0x9249249;
c=c-3*r;

183https://doi.org/10.1112/S1461157000000747 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000747


Finite fields of characteristic three

So in five RISC machine instructions we can perform ten additions modulo three. Since we
are interested in multiplication as well as addition, it will be convenient to represent each
element ofF3 in eight bits, and hence in practice we shall pack only four elements ofF3
into each 32-bit word. The reasons for this choice are outlined in the next subsection.

3.2. Parallel multiplication

Suppose that we have a redundant representation as above, where each element ofF3 is
held as an element from the set{0, 1,2, 3}. When multiplying two such elements we shall
produce a value at most nine, and so a method needs to be developed to produce a result
back in our set of representatives. Luckily, Montgomery reduction [12] allows us to do this
with very simple operations. Recall that usually for arithmetic modulop one chooses a
value ofR = 2t which is a power of two and greater thanp. Then Montgomery reduction,
given a valuex < pR, will produce the value of

x · R−1 (mod p)

using the following operations:

u=(x*q)&(R-1);
x=x+p*u;
x=x>>t;
if (x>=p) { x=x-p; }

whereq = −1/p (modR). When we specialise this forp = 3 and chooseR = 4, then
we find thatq = 1, and asR ≡ 1 (mod 3), we find that Montgomery reduction is equal to
modular reduction in this case. Combining our redundant representation with Montgomery
reduction, we find that the following pseudo-code will multiply two elements ofF3 held in
two integer variablesa andb.

c=a*b;
u=c&3;
c=c+3*u;
c=c>>2;

A simple evaluation of all the possible cases implies that we do not need to perform a final
reduction as in the standard Montgomery algorithm, due to our redundant representation.
However, the above is only a simple multiplier, which does not work well with our parallel
addition technique given earlier. To see how to multiply in parallel, we need to consider
that we are not implementing a naive modulo three multiplier, but require multiplication of
polynomials overF3.

Recall that we said that we would pack four elements ofF3 into a word; we place each
element on a byte boundary. We now treat this word as representing a polynomial of degree
three:

a = a3X
3 + a2X

2 + a1X + a0,

wherea0 is the least significant byte anda3 is the most significant byte. Given another such
polynomial

b = b3X
3 + b2X

2 + b1X + b0,

whereai, bi ∈ {0, 1,2, 3}, we find that (as polynomials)

a · b = a3b3X
6 + (a3b2 + a2b3)X

5 + (a3b1 + a2b2 + a1b3)X
4

+ (a3b0 + a2b1 + a1b2 + a0b3)X
3 + (a2b0 + a1b1 + a0b2)X

2

+ (a1b0 + a0b1)X + a0b0.
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Hence the polynomial multiplication ofa andb, as integer polynomials, corresponds to the
integer multiplication of the two wordsa andb as 32-bit integers, producing a 64-bit result.
This is because the above equation will hold if we replaceX by 28, since each coefficient
in the multiplication of the polynomials over the integers will be at most

4 · 3 · 3 = 36,

since eachai or bi is at most three. So whilst this allows the parallel implementation of
multiplication of integer polynomials of degree three, we are still left with the problem of
how to perform reduction modulo three on the resulting degree-six polynomial.

We adopt our Montgomery trick as above, but this time using a value ofR equal to 16.
This means that Montgomery reduction will take a valuex less thanp · R = 48, which is
larger than 36, and will produce the valuex · R−1 = x (mod 3). But asR = 1 (mod 3)

this produces exactly the required modular reduction. The pseudo-code to do this is given
below.

u=(5*x)&0x0F;
x=x+3*u;
x=x>>4;
t=x>>2;
x=x-3*t;

We see that the above code on input of a value ofx less than 37 produces no intermediate
value greater than 255. Hence the above code can be used in parallel on our 32-bit words
resulting from the integer multiply instruction. This requires the following pseudo-code.

u=(5*x)&(0x0F0F0F0F);
t=x+3*u;
x=t>>4;
h=(x>>2)&(0x01010101);
x=x-h*3;

The above code for Montgomery reduction of a 32-bit word holding four possible values
takes around nine machine instructions, and we need to perform two of these, plus one
integer multiply instruction to produce the initial degree-six polynomial. Hence we require
around 19 machine instructions to perform the multiplication of two polynomials of degree
three overF3.

Multiplication of arbitrary-degree polynomials can now be built up from this atomic
operation, using school-book arithmetic, although it is often more efficient to use Karatsuba
multiplication in a standard way.

Cubing in characteristic three is particularly efficient. Just as with squaring in character-
istic two [3], one can ‘thin out’ the coefficients when cubing. The four coefficients held in
one word are expanded into three words in the following manner.

[ a3, a2, a1, a0 ]

[ 0, 0, a3, 0 ] [ 0, a2, 0, 0 ] [ a1, 0, 0, a0 ]

�
�

�	 ?

@
@

@R

This is done for all words representing the field element; a reduction operation is then
performed modulo the polynomialf (x).
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4. Polynomial arithmetic modulo three: TypeII

As a second representation of polynomial arithmetic modulo three, we consider the
following idea. Each set of 32 polynomial coefficients is held in two 32-bit words, which
we shall denote byw1 andw2. A given bit inw1 is set if the corresponding coefficient of
the polynomial is equal to one, whilst if the given bit inw2 is set, then the coefficient of the
polynomial is equal to two. If both bits are clear, then the coefficient is zero, whilst the case
of both bits set is considered invalid.

4.1. Addition

Addition of polynomials is done on a word-by-word basis, using the following seven
machine instructions, which add the degree-31 polynomial represented by the words(a1, a2)

to the degree-31 polynomial represented by the words(b1, b2), to produce the result(c1, c2).

t = (a1 | b2) ˆ (a2 | b1);
c1 = (a2 | b2) ˆ t;
c2 = (a1 | b1) ˆ t;

One should note, however, that the order in which the seven instructions are used produces a
big impact on efficiency, especially for processors such as the Pentium, which have a small
number of internal registers. Notice that negation in this representation is particularly easy,
since −(a1, a2) = (a2, a1).

4.2. Multiplication

The natural way to multiply elements in this representation is in a bit-serial manner.
In this method, we take two operands and perform a multiply by repeatedly shifting the
multiplier down by one bit position and shifting the multiplicand up by one bit position. The
multiplicand is then added or subtracted from the output value, on each iteration, depending
on whether the least significant bit of the first or second word of the multiplier is set to one.

There are then three ways of building up multiplication forF3p . In the first two, we use a
bit-serial multiplier to multiply two degree-31 polynomials together, and then use Karatsuba
or school-book multiplication to perform the full multiply. After a full multiplication has
been computed, we can then reduce the result modulof (x). In the third way of producing
a full multiplier, we apply the bit-serial method to allp bits at once, taking care to reduce
the multiplicand byf (x) on each iteration.

The advantage of this full bit-serial technique is that it requires less intermediate storage,
and is more suited to a hardware implementation, a topic that we shall return to in a later
paper. However, a major disadvantage of the full bit-serial multiplier is that an analogous
cubing operation is only as fast as a general multiply. With the other two methods, which
reduce to 32-bit bit-serial multiplications, one can produce a more efficient cubing operation
than a general multiply. If memory usage is not a concern, then the use of look-up tables to
implement the cubing operation is the most efficient method.

5. Implementation of arithmetic inF36p

In performing the calculations in cryptosystems based on the Tate pairing for super-
singular elliptic curves in characteristic three, we are not only required to perform some
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Table 2: Timings in micro-seconds for field operations

Field Addition Multiplication Cubing Squaring Inversion

F397-N 2.70 830 37 419 1200

F397-K 2.70 415 37 309 1200

F397-I-N 1.10 84 4 49 680

F397-I-K 1.10 45 4 44 680

F397-II-N 0.20 23 10 or 1.5 16 240

F397-II-K 0 .20 15 10 or 1.5 16 240

F397-II-BS 0.20 27 29 32 300

F2241 0.01 13 14 0.4 ≈ 0

operations inF3p , but we also need to compute in the extensionF36p . Since, in applications,
p is a prime greater than 5, we can use the following representation of the finite fieldF36p :

F36p = F3p [θ ]/(θ6 + θ + 2).

This provides an efficient reduction operation for the multiplication operations. The mul-
tiplication operation itself is performed using a variant of the Karatsuba method, where
we first divide the degree-five polynomial into two, as in the standard Karatsuba method.
Then the products of the degree-two polynomials are computed, using a variant of Karat-
suba where one divides the polynomials into three. This is exactly the same as the method
described in [1] for optimal extension fields of degree six.

Once again, cubing can be performed efficiently; this time, we not only need to thin out
the coefficients, but we also need to cube the thinned-out coefficients inF3p .

6. Timing of field operations

We obtained the timings (in micro-seconds) given in Table2on a Sparc Ultra 10 computer.
We also give the timings in characteristic two for fields that would result in Tate-pairing-
based systems with a similar security. In the table, the fields are denoted as follows.

• F397-N corresponds to an implementation using the standard technique of representing
each element in 397 as an array of 97 integers, where arithmetic is performed using
a naive multiplication algorithm;F397 − K corresponds to a similar implementation,
where arithmetic is performed using a Karatsuba multiplication algorithm.

• F397-I-N corresponds to an implementation using Type I arithmetic and a naive mul-
tiplication algorithm, andF397-I-K corresponds to an implementation using Type I
arithmetic and a Karatsuba multiplication algorithm.

• F397-II-N, F397-II-K and F397-II-BS refer to our Type II arithmetic. The notation
F397-II-N refers to a word-based implementation with school-book multiplication,
whilst F397-II-BS refers to a full bit-serial multiplier. The notationF397-II-K refers
to a word-based implementation with Karatsuba multiplication. Where we give two
timings for cubing, these are based on an implementation of cubing using either
reduction to a 32-bit bit serial cubing operation, or reduction to lookup tables.
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One can see that if memory is a concern and lookup tables cannot be used, then the Type I
arithmetic has a much faster cubing operation than the Type II arithmetic. This is important
for cryptosystems based on the Weil and Tate pairings in characteristic three, which make
use of a large number of cubing operations. If memory is not a concern, then clearly the
Type II arithmetic is more efficient.

We turn now to the timings of the extension field arithmetic. The timings for our target
field, and the corresponding field of characteristic two of similar security parameters, are
given in Table3. The timings, in micro-seconds, for the Type II field arithmetic assume the
use of lookup tables for the cubing operation.

Table 3: Timings in micro-seconds for extension field arithmetic

Field Base field Addition Multiplication Cubing Squaring Inversion

F36·97 Type K 17 7772 281 5674 117000

F36·97 Type I-K 7 904 49 868 18000

F36·97 Type II-K 1 319 24 327 6000

F24·241 – 0.3 126 130 2 1000

7. Implementation of the curve operations

Due to the high relative cost of inversion compared to multiplication in fields of charac-
teristic three, we implemented a projective addition law on the elliptic curve; however, we
shall see that using an affine representation is also efficient. Hence we shall compare and
describe both representations.

Since cubing an element inF3n is more efficient than squaring or multiplying two el-
ements, we expressed the group law in such a way as to maximise the number of cubing
operations. This also led us to examine the equations for tripling (as well as doubling and
adding) a point, since that is also an efficient operation in characteristic three for supersin-
gular curves.

Recall that in this paper we have restricted ourselves to considering only supersingular
elliptic curves, in which case it turns out that the most efficient projective coordinates are
given by(x, y) = (X/Z2, Y/Z3). Hence the projective representation that we consider is
of the form

Y 2 = X3 − XZ4 ± Z6,

which is the supersingular elliptic curve with the most interesting properties (in terms of
the MOV parameter) in characteristic three.

7.1. Point addition

The affine addition of two points(x1, y1) and(x2, y2) on the curve can then be expressed
in the following manner, where we keep track of the number of multiplications, cubings
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and inversions in the field:

λ1 = x2 − x1

λ2 = y2 − y1

λ3 = λ−1
2 1I

λ4 = λ1 · λ3 1M

λ5 = λ2
4 1M

x3 = λ5 − x1 − x2

y3 = λ4 · (x1 − x3) − y1 1M.

Hence we require three multiplications and one inversion to implement a point addition in
affine coordinates.

The projective addition of two points,(x1, y1, z1) and (x2, y2, z2), on the curve can
then be expressed in the following manner, where we now keep track of the number of
multiplications and cubings in the field:

λ1 = x1 · z2
2 2M

λ2 = x2 · z2
1 2M

λ3 = λ1 − λ2

λ4 = y1 · z3
2 1M 1C

λ5 = y2 · z3
1 1M 1C

λ6 = λ4 − λ5

λ7 = λ1 + λ2

λ8 = λ4 + λ5

z3 = z1 · z2 · λ3 2M

x3 = λ2
6 − λ7 · λ2

3 3M

y3 = (λ8 · λ3
3 − λ3

6) 1M 2C.

Hence we require twelve multiplications and four cubings to implement a point addition,
as opposed to the sixteen multiplications usually required for fields of characteristic greater
than two, or the fifteen multiplications and five squarings required in fields of characteristic
two [3].

7.2. Point doubling

Doubling of a point(x1, y1) in affine coordinates is implemented using the following
formulae:

λ1 = y−1
1 1I

λ2 = λ2
1 1M

x3 = λ2 + x1

y3 = λ4 · (x1 − x3) − y1 1M.

Hence we require two multiplications, one inversion and no cubings to double a point in
affine coordinates.
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Doubling of a point(x1, y1, z1) in projective coordinates is implemented using the fol-
lowing formulae:

λ1 = −z4
1 1M 1C

z3 = −y1 · z1 1M

λ2 = x1 · y2
1 2M

x3 = λ2
1 + λ2 1M

λ3 = −y4
1 1M 1C

y3 = λ1 · (λ2 − x3) − λ3 1M.

Hence this requires seven multiplications and two cubings. One should compare this to the
ten multiplications usually required in a field of characteristic greater than three, and the
five multiplications and five squarings required in fields of characteristic two.

7.3. Point tripling
As we pointed out earlier, tripling a point can also be performed efficiently in character-

istic three for supersingular elliptic curves. In affine coordinates we obtain

λ1 = y3
1 1C

λ2 = x3
1 1C

λ3 = λ3
2 1C

y3 = −λ3
1 1C

x3 = λ3 ∓ 1.

Hence we can triple a point, using no inversions and four cubings in affine coordinates.
In projective coordinates, we obtain

λ1 = y3
1 1C

λ2 = z3
1 1C

λ3 = x3
1 1C

z3 = λ3
2 1C

y3 = −λ3
1 1C

λ4 = z2
3 1M

λ5 = λ3
3 1C

x3 = λ5 ∓ λ4.

Hence, tripling requires one multiplication and six cubings.

7.4. Timings

Given the doubling and tripling formulae, we can give binary, ternary and nonary mul-
tiplication algorithms. The advantage of the ternary and nonary algorithms is that not only
do they use the point-tripling formulae, which is more efficient than the point-doubling
formulae, but the ternary and nonary expansions of the multiplicand are shorter than the
binary expansion of the same multiplicand.

We then obtain the timings shown in Table4, where we compare with a curve of similar
security in characteristic two, all given in milli-seconds.
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Table 4: Timings in milli-seconds for curve operations

Operation F397-K F397-I-K F397−II-K F2241

Affine coordinates:

Point addition 2.04 0.91 0.29 0.23

Point doubling 1.60 0.84 0.27 0.23

Point tripling 0.17 0.06 0.01 0.46

Point multiplication (binary) 395 197 62 65

Point multiplication (ternary) 145 65 19 100

Point multiplication (nonary) 116 51 15 80

Projective coordinates:

Point addition 4.63 0.64 0.21 0.18

Point doubling 2.74 0.37 0.12 0.06

Point tripling 0.52 0.13 0.03 0.24

Point multiplication (binary) 749 104 33 23

Point multiplication (ternary) 343 53 16 55

Point multiplication (nonary) 277 44 12 48

Table 5: Timings in milli-seconds for the Tate pairing

Operation F397-II-K F2241

Tate pairing 63 61

The projective multiplications also use a mixed coordinate system, as is standard practice
[6]. Signed window analogues, see [3], of both the ternary and nonary methods can be
implemented to give an improvement in performance, although not as great an improvement
as for the binary method. It is interesting to note that for the naive implementation ofF397

arithmetic we see that affine coordinates are more efficient for general curve arithmetic, but
for the other implementations projective coordinates are more efficient. It should be noted
that cryptosystems based on Tate pairings also require general curve operations, as well as
pairing computations, and hence general point-multiplication times are important.

We do not discuss how to implement the Tate pairing, since this is explained fully in [2]
and [8]. We do, however, obtain the timings (in milli-seconds) shown in Table5, where we
give a comparable timing for a system based on characteristic two arithmetic. We give a
timing only for the field implementation that we have denotedF397-II-K.

8. Conclusion

We have shown how the novel use of 32-bit integer arithmetic can result in an imple-
mentation of characteristic three arithmetic suitable for use in cryptosystems based on the
Tate pairing. The use of characteristic three with the Tate pairing is preferred, due to the
improved bandwidth considerations implied by the security parameters. We have seen that
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one of our implementation techniques provides a fast cubing operation without the use of
lookup tables, whilst the other provides an efficient multiplication routine but a less effi-
cient cubing operation unless one is prepared to use lookup tables. Both implementation
techniques offer a considerable improvement over the standard techniques based on using
an array of integers to hold the coefficients of the field elements.

Appendix A. Ternary Euclidean algorithm

The following analogue of the binary extended Euclidean algorithm will find the inverse
D of the polynomialb with respect to the defining polynomialf ; that is,

D = b−1 (mod f ),

whereD, b, f ∈ F3[x].
a=f;
B=0;
D=1;
while (a!=0)

{ while (tc(a)==0)
{ if (tc(B)!=0)

{ if (tc(B)==tc(f)) { B=B-f; }
else { B=B+f; }

}
a=a/x; B=B/x;

}
while (tc(b)==0)

{ if (tc(D)!=0)
{ if (tc(D)==tc(f)) { D=D-f; }

else { D=D+f; }
}

b=b/x; D=D/x;
}

if (deg(a)>=deg(b))
{ if (tc(a)==tc(b))

{ a=a-b; B=B-D; }
else

{ a=a+b; B=B+D; }
}

else
{ if (tc(a)==tc(b))

{ b=b-a; D=D-B; }
else

{ b=b+a; D=D+B; }
}

}
if (b!=1) { D=-D; }

In the above pseudo-code we assume thattc(f) refers to the trailing coefficient off ,
namely the coefficient ofx0.
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