L))

Check for
updates

J. Plasma Phys. (2025), vol. 91, E8§ ~ © The Author(s), 2025. 1
Published by Cambridge University Press

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

doi:10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS
with graphics processing units

Roman P. Lee “!, Jacob R. Pierce “!-7, Kyle G. Miller 2 Maria Almanza “!,

Adam Tableman', Viktor K. Decyk1 , Ricardo A. Fonseca “3:%, E. Paulo Alves'
and Warren B. Mori'»

'Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
2Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623-1299, USA
3GoLP/Instituto de Plasmas e Fusdo Nuclear, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
4ISCTE - Instituto Universitédrio de Lisboa, Av. Forcas Armadas, 1649-026 Lisboa, Portugal

SDepartment of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095,
USA

(Received 23 September 2024; revised 15 November 2024; accepted 18 November 2024)

Fully relativistic particle-in-cell (PIC) simulations are crucial for advancing our
knowledge of plasma physics. Modern supercomputers based on graphics processing
units (GPUs) offer the potential to perform PIC simulations of unprecedented scale,
but require robust and feature-rich codes that can fully leverage their computational
resources. In this work, this demand is addressed by adding GPU acceleration to the
PIC code OSIRIS. An overview of the algorithm, which features a CUDA extension
to the underlying Fortran architecture, is given. Detailed performance benchmarks for
thermal plasmas are presented, which demonstrate excellent weak scaling on NERSC’s
Perlmutter supercomputer and high levels of absolute performance. The robustness of the
code to model a variety of physical systems is demonstrated via simulations of Weibel
filamentation and laser-wakefield acceleration run with dynamic load balancing. Finally,
measurements and analysis of energy consumption are provided that indicate that the
GPU algorithm is up to ~14 times faster and ~7 times more energy efficient than the
optimized CPU algorithm on a node-to-node basis. The described development addresses
the PIC simulation community’s computational demands both by contributing a robust
and performant GPU-accelerated PIC code and by providing insight into efficient use of
GPU hardware.

Keywords: plasma simulation

1. Introduction

Since the early 2000s, graphics processing units (GPUs) have emerged as the
architecture of choice for scientific computing, owing to their increased computational
throughput, parallelism and energy efficiency relative to central processing units (CPUs)

T Email address for correspondence: jacobpierce @physics.ucla.edu

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6482-1735
https://orcid.org/0000-0003-1450-873X
https://orcid.org/0000-0003-4826-9001
https://orcid.org/0009-0007-7572-5072
https://orcid.org/0000-0001-6342-6226
mailto:jacobpierce@physics.ucla.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377824001569&domain=pdf
https://doi.org/10.1017/S0022377824001569

2 R.P. Lee and others

(Owens et al. 2008; Huang, Xiao & Feng 2009; Brodtkorb, Hagen & Satra 2013). Modern
supercomputers increasingly rely on GPUs for acceleration: at the time of writing, TOP500
rankings report that GPU hardware is used by 66 of the 100 fastest and 79 of the 100 most
energy-efficient supercomputers in the world (TOP500 2024).

In order to leverage these computational resources, scientists have been faced with
the challenge of rethinking the implementation of many simulation algorithms. Among
these are particle-mesh simulation algorithms. In particular, the particle-in-cell (PIC)
plasma simulation algorithm is the tool of choice for fully self-consistent simulation of
nonlinear plasma physics where kinetic physics is important (Birdsall & Langdon 2004;
Hockney & Eastwood 2021). PIC simulations have played an essential role in advancing
the understanding of laser—plasma interactions, plasma-based acceleration, space physics,
plasma astrophysics and basic kinetic plasma physics (Van Dijk, Kroesen & Bogaerts
2009; Arber et al. 2015; Nishikawa er al. 2021). In spite of the relative simplicity of
the PIC algorithm, its implementation on GPU hardware is complicated by the use of
particles, which result in irregular patterns of memory access and movement. Coupled
with evolving GPU capabilities and the growing number of available software paths to
GPU acceleration, many questions remain about best practices and paths toward GPU
acceleration of PIC codes.

The GPU acceleration of PIC codes is an ongoing effort by the plasma simulation
community. Early algorithms were constrained by limited device memory capacity and
the need to circumvent the relatively poor performance of global atomic writes during
current deposition on older hardware (Stantchev, Dorland & Gumerov 2008; Burau et al.
2010; Decyk & Singh 2011; Joseph et al. 2011; Kong et al. 2011; Bastrakov et al. 2012;
Chen, Chacon & Barnes 2012; Rossi et al. 2012; Decyk & Singh 2014). More recently,
feature-rich, user-oriented PIC codes targeting modern GPU architectures have begun
to emerge, including WarpX (Myers et al. 2021; Vay et al. 2021; Fedeli et al. 2022),
HiPACE++ (Diederichs et al. 2022), VPIC (Bird et al. 2021), PIConGPU (Zenker et al.
2016), Smilei (Derouillat et al. 2018) and OSIRIS 2.0 (Kong, Huang & Ren 2009) and
OSIRIS 3.0 (Tableman 2019).

In this paper, we discuss the approach we have taken to enable GPU acceleration
of the fully electromagnetic PIC code OSIRIS 4.0. OSIRIS (Fonseca et al. 2002) is
widely used by the plasma simulation community because of its maturity, speed and
parallel scalability, and extensive suite of simulation capabilities, including customized
field solvers for suppression of numerical dispersion (Li et al. 2017; Xu et al. 2020; Li
et al. 2021b), Cartesian and quasi-three-dimensional geometries (Davidson et al. 2015),
analytic pushers including radiation reaction (Li et al. 2021a), Monte Carlo modelling of
Coulomb collisions (Nanbu & Yonemura 1998), tile-based dynamic load balancing (Miller
et al. 2021a), particle damping for laser—solid interactions (Miller et al. 2021b), field
ionization (Deng et al. 2002), real-time subgrid radiation calculation (Pardal er al. 2023)
and semiclassical prescriptions for modelling effects of quantum electrodynamics (QED)
(Vranic et al. 2015). Graphics processing unit acceleration was implemented in previous
versions of OSIRIS, and was used in some physics studies. However, these versions were
stand-alone, and due to the new data structures in OSIRIS 4.0 and developments in
GPU hardware, a new algorithm was needed. Our new implementation, which improves
upon previous versions, provides robust and performant acceleration of the base code
via NVIDIA’s Compute Unified Device Architecture (CUDA) in all Cartesian geometries
(one, two, and three spatial dimensions). This is a step toward the larger software challenge
of incorporating all the features listed above.

The outline of this paper is as follows. In § 2, we discuss the details of our algorithm
and software implementation in CUDA. In § 3, we present simulations run on NERSC’s

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 3

Perlmutter system, which demonstrate (i) characterization of the absolute performance
and weak scaling of the code on thermal plasmas, (ii) capability of the code to
model more complex physics problems such as Weibel filamentation and laser-wakefield
acceleration and (iii) 7x improved energy efficiency relative to the CPU algorithm
on a node-to-node basis. Finally, in § 4, we conclude and offer perspectives on future
development.

2. Methodology
2.1. Graphics processing unit programming framework

A variety of software approaches have been taken to implement the PIC algorithm on
GPUs, including those designed in CUDA (Stantchev et al. 2008; Burau et al. 2010;
Decyk & Singh 2011; Joseph et al. 2011; Kong et al. 2011; Chen et al. 2012; Rossi
et al. 2012; Decyk & Singh 2014; Decyk 2015; Myers et al. 2021), HIP (Myers et al.
2021; Burau et al. 2010), SYCL (Myers et al. 2021), OpenCL (Bastrakov et al. 2012),
Kokkos (Bird et al. 2021), AMRex (Myers et al. 2021; Diederichs et al. 2022), Alpaka
(Zenker et al. 2016), OpenACC (Hariri et al. 2016) and OpenMP (Derouillat et al.
2018). Also, RAJA is another approach that has, to our knowledge, not been used. These
frameworks have different levels of maturity and developer support, as well as differing
implications for performance, supported GPU architectures and implementation flexibility.
The choice of which software approach to take is a significant and non-trivial developer
decision that must consider these aspects of the available frameworks. For example,
CUDA is the most mature general-purpose GPU programming language, is generally
regarded to give the highest performance and provides the greatest control over the GPU
hardware. However, its greater level of control can come at the cost of greater quantity
and complexity of code. This is especially true if cross-platform portability is required,
since CUDA must be combined with other frameworks in order to support non-NVIDIA
GPUs.

At the other end of the spectrum, a high-level approach abstracts hardware details,
freeing application developers from the burden of supporting specialized, rapidly evolving
systems. For example, OpenMP and OpenACC provide cross-platform portability through
a set of compiler directives. While perhaps the simplest to implement, these approaches
offer the least amount of flexibility, hardware control and performance. High-level
abstraction layers, like Kokkos, are somewhere in between. These provide cross-platform
portability and some degree of control over device memory, but to a lesser extent than
CUDA.

Weighing the options led us to write our implementation in CUDA C through Fortran-C
interoperability. This was informed by our goal of obtaining maximal performance. The
low-level exposure of the code allowed us to optimize the particle-pushing kernels. The
natural access to raw device memory pointers was also helpful for parts of the code with
lower computational cost but greater algorithmic complexity, including particle sorting,
management of the memory pool (discussed in §2.3) and buffered data movements.
These aspects of the algorithm may have been significantly more difficult to implement
in a higher-level framework. As a production code supporting a large user community,
the stability and maturity of CUDA also weighed heavily in our decision. Restriction
to NVIDIA hardware is not a significant limitation because many supercomputers
in the modern supercomputing ecosystem use NVIDIA GPUs. Furthermore, we have
demonstrated with a preliminary HIP version of our code that translation from CUDA
is relatively straightforward. This provides a reasonable path to supporting AMD GPUs as
well, and thereby the vast majority of top supercomputers.

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

4 R.P. Lee and others

2.2. Tile-based domain decomposition

Most implementations of the PIC algorithm on GPUs have used some form of domain
decomposition with more subdomains than GPUs. The resulting subdomains have been
referred to in the literature as tiles, bins, clusters and supercells. Here, we refer to these
subdomains as tiles. Tiles provide increased memory localization. In particular, they
enable the use of shared memory as a developer-controlled cache by partitioning the
computational domain into subdomains whose field and current arrays fit into shared
memory. This gives higher performance for read, write and atomic operations in both the
field interpolation and current deposit. Shared-memory capacity determines the maximum
tile size.

Our GPU implementation is built on top of the existing tile data structure
in OSIRIS, which was originally implemented to enable tile-based dynamic load
balancing. The details of this implementation are discussed in Miller et al. (2021a).
In essence, different Message Passing Interface (MPI) ranks can freely exchange tiles
in order to ensure that the computational load is balanced. In addition to enabling
the benefits for GPU performance previously discussed, the GPU implementation
inherits the capacity for tile-based dynamic load balancing from the CPU code. This
enables the GPU algorithm, like the CPU algorithm, to potentially run faster or
with a lower memory footprint on load-imbalanced problems. The use of this tile
data structure as the foundation of the algorithm is one of the main differences
between this new implementation of GPU acceleration in OSIRIS and previous
implementations.

In our implementation, each MPI rank has access to one GPU, and as many
shared-memory CPU cores as available on the compute node on which the code is running.
For example, a Perlmutter GPU node has 64 CPU cores, and 4 GPUs. Therefore, a typical
configuration would be 1 GPU and 16 CPU cores per MPI rank.

The use of tiles makes it more difficult to efficiently transfer memory between CPU and
GPU. Naively calling CUDA memory copying operations within a loop over tiles results
in a bottleneck due to function launch overhead. We work around this issue through the
implementation of a memory transfer class which buffers unidirectional data movements
of both particle and field data. The size of the buffer (typically several gigabytes) is
specified by the user. The memory manager performs a data transfer only when the buffer
is full or the source code explicitly flushes the buffer.

2.3. PFarticle chunk pool

The use of tiles also introduces the problem of inter-tile memory management. Naively
allocating a fixed-size particle buffer for each tile leads to the possibility of buffer
overflow as load fluctuates. Allowing the size of each tile’s particle buffer to vary through
reallocation can overcome this issue. However, reallocation of device memory is not
possible within kernels, may not be possible if the GPU operates at full memory capacity
and can otherwise become a bottleneck.

We addressed these issues by using a memory pool of preallocated chunks of particle
data. A similar approach was used in Myers et al. (2021). The data structures are
shown in figure 1. Each MPI rank has its own chunk pool object, which allocates the
majority of device memory as particle chunks at the beginning of the simulation. Each
chunk contiguously stores the position, momentum and charge for a fixed number of
particles. The chunk pool stores pointers to these chunks in a circular buffer in device
memory. Chunk pointers can be retrieved from or returned to the circular buffer through
buffered device-to-device memory transfers. The memory for the chunks themselves is

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 5

CPU Species Object Chunk Pool
Particle buffers (CPU) Chunk pointers (GPU) Particle chunks (GPU)
1* | ey
Tile 1: | |
N*
« N — [B
i
- - T Transfer chunk
pointers
Tile M: Species Chunk Manager

I

Tile 1: | 1* 2% 5% 6* 7*
—_—

particle Tile M: | 3* 4%
transfer

Iim

—
o [IENG_
Buffered

FIGURE 1. Schematic of the CPU memory layout, chunk pool data structure and species chunk
manager. The CPU species object stores contiguous arrays of particle position relative to nearest
cell, momentum, charge and cell index (x, p, g and 1) for each tile. Note that, generally, particle
data are maintained only on the GPU. The figure depicts the state immediately after particles
have been copied from device to host for particle diagnostics. The species chunk manager, whose
state is maintained on both CPU and GPU, stores pointers to chunks of device memory for each
tile. Chunks contiguously store all four data fields for a fixed number of particles. Each species
chunk manager may transfer pointers to chunks to and from the chunk pool with nearly zero
overhead, enabling arbitrary load balancing between tiles with nearly zero overhead. Particle
transfer between the CPU species object and species chunk manager is achieved through an
object for buffered data movements, discussed in § 2.2.

preallocated, and never moved or deleted. The state of the circular buffer is maintained on
both the host and device so that chunk pointers can be retrieved from or returned to the
queue within either host functions or device kernels.

Each particle species has a species chunk manager object, which is responsible for
ensuring that there is an appropriate number of chunks to store the particles on each
tile. All species chunk managers on a given GPU share the same chunk pool and may
store a different number of chunks for each tile. During each timestep, the species chunk
managers transfer chunk pointers to and from the chunk pool so that each tile retains
a specified number of empty chunks prior to the particle push. The number of empty
chunks is chosen to be large enough to avoid overflow during the sort, but small enough
to avoid under-utilization of device memory. When particles are sent to and from the host
for communication or diagnostics, buffered particle transfers are used to move the data.
Each CPU species object for each tile stores particles in one contiguous buffer instead of
a memory pool. A CPU memory pool is not necessary because of the typically abundant
levels of CPU memory.

The overhead of using particle chunks compared with larger contiguous blocks of
memory is negligible. This was confirmed by tests with a large chunk size. Within kernels
that loop through particles, only a few additional variables and operations are required to
also loop through the chunks. Furthermore, memory accesses of chunks within a kernel
occur with the same performance as when accessing a larger contiguous block of memory.
This is because, by choosing the number of particles per chunk to be greater than or equal

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

6 R.P. Lee and others

to the warp size, each warp sees contiguous memory. For best performance, the chunk
size is chosen to be a multiple of the warp size. Outside of kernels, the overhead of the
species chunk managers exchanging chunks with the chunk pool is negligible because
only pointers to chunks are passed. Occasional reallocation of a species chunk manager’s
chunk buffer for a particular tile is not a problem; these buffers can be much larger than
necessary because they contain significantly less memory than the memory stored by the
chunks themselves.

The particle chunk pool enables load to fluctuate between tiles with little wasted
memory. When combined with dynamic load balancing for inter-GPU load imbalances,
which ensures that total memory load per GPU remains roughly fixed, this enables
simulations which nearly max out available system memory. This could be useful for
running as large a simulation as possible given limited device memory resources, as in
Tan et al. (2021).

2.4. PFarticle pushing and current deposition

Particle pushing and current deposition typically constitute the most computationally
expensive part of a PIC code. Thus, significant effort went into profiling and optimizing
this part of the code, which we break into two separate kernels. In the first kernel, which
we will refer to as update_velocity, electric and magnetic fields are interpolated
onto the particle positions, then particle momenta are updated. In the second kernel,
which we will refer to as advance_deposit, particles positions are advanced, and
a charge-conserving current deposition is performed.

While the update_velocity kernel is straightforward to parallelize — particles can
be processed individually in parallel — advance_deposit is not; a simple loop in
parallel over particles could result in a memory collision when depositing their current
onto the grid. To circumvent this we deposit current via atomic addition. On modern
architectures, atomic addition of both single and double precision floats is natively
supported and therefore fast enough that this is the typical solution (see Decyk & Singh
2014; Zenker et al. 2016; Bird et al. 2021; Myers et al. 2021; Vay et al. 2021; Fedeli et al.
2022).

Both kernels saw a significant speedup when fields were explicitly loaded into
shared memory. This includes both the electric and magnetic field arrays in
update_velocity, and the current array in advance_deposit. With fields
and currents instead simply stored in global memory, both kernels (in particular
advance_deposit) suffered from high latency due to an L2 cache bottleneck, which
was alleviated by using shared memory.

Best performance with shared memory came when using one CUDA thread block per
tile with a block size of 512. Using more than one block added additional overhead
related to shared memory without increasing occupancy. However, we anticipate situations
where this would not give best performance. For example, in problems with severe load
imbalance, one MPI rank can sometimes be responsible for a small number of tiles
(order 1), each with many more particles than average. With one block per tile, far
fewer warps would be launched than is sufficient to achieve high device occupancy. In
these situations, the benefits of minimizing data duplication could be outweighed by the
benefits of launching multiple blocks per tile. This is something we plan to explore in the
future.

In addition to using shared memory, kernels benefited from other optimizations. This
applies particularly to advance_deposi t, which has more complicated logic and flow
control. Memory transactions (both to global and shared) were minimized, arithmetic
was streamlined to minimize instructions executed and register usage was optimized to

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 7

ensure maximal warp occupancy. The NVIDIA profiling tool, Nsight Compute, played an
important role in this process.

We also explored the possibility of enhancing performance by optimizing the memory
layout of particle data. Based on the discussion of coalesced memory access in the CUDA
programming guide (NVIDIA 2024), one might expect that while an ‘array of structs’
(AoS) layout for particle data is best on CPU architectures, a ‘struct of arrays’ (SoA) is
best on GPUs. For example, for N particles, each with position (x;, y;), where i € [1, N] is
the particle index, optimal performance on a GPU would be obtained by storing particle
data as (x1, x2, ..., Xy, Y1, Y2, - - - » Yv), instead of (xy, y1, X2, ¥2, .. ., Xy, Yy). This layout is
used in Bird et al. (2021). We also store particle data in this manner, however, we found
that there was no measurable difference between SoA and AoS.

Finally, we make use of a distinct particle initialization scheme compared with
what is done for CPU simulations. Particles that are close together in simulation
space are staggered in memory upon initialization. This results in a speedup in
advance_deposit by reducing the likelihood of memory collisions in the current
deposition. This is particularly important for simulations with a cold plasma (e.g.
plasma-based acceleration) where particle position evolves slowly after initialization.
Benefit is also seen for warm plasmas over the first few 100 simulation iterations,
until particle positions become sufficiently scrambled. A small slowdown occurs in
update_velocity due to decreased data locality when interpolating fields onto
particles, but this is outweighed by the speedup in advance_deposit.

In aggregate, the optimizations above resulted in a roughly 5—-6x speedup relative to our
initial implementation. As we have stressed above, this level of optimization may not have
been possible had we taken a higher-level approach using a framework such as OpenMP,
OpenACC or Kokkos. Nevertheless, we expect these optimizations apply to other GPU
programming frameworks.

2.5. Particle sorting and boundary conditions

The literature refers to spatial grouping of particles as particle sorting. This includes
organizing particles by MPI rank, by tile or by any other grouping of cells. Formally
this is a bucket sort. The order of the particles within buckets typically does not matter,
and one can make the additional assumption that particles are mainly presorted — only a
fraction of the particles will move between buckets on any given timestep. Particle sorting
is required when any form of domain decomposition is used, or in special cases such as
particle—particle collisions (Takizuka & Abe 1977; Nanbu & Yonemura 1998; Alves, Mori
& Fiuza 2021).

Efficient particle sorting in PIC codes on the GPU is non-trivial. Particle arrays must be
compact; both in order to make efficient use of memory, and because a particle array with
holes scattered throughout would result in poor performance during particle push and
current deposition due to complicated control flow, warp divergence and non-coalesced
memory access. In general, sorting is achieved by making use of some combination
of atomic operations to resolve memory collisions, prefix scans and stream compaction
to obtain ordered arrays and temporary buffers to store moving particles and counting
integers. Many algorithms have been proposed by others (Stantchev et al. 2008; Joseph
etal. 2011; Kong et al. 2011; Mertmann et al. 2011; Decyk & Singh 2014; Hariri et al. 2016;
Jocksch et al. 2016; Myers et al. 2021). Differences between algorithms in the literature
arise because different codes face different constraints.

Our aim was to design a sorting algorithm with robust fault tolerance to memory
overflow to handle the variety of physical systems modelled by the OSIRIS user
community. Memory overflow can occur in a particle sorting kernel due to buffering

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

8 R.P. Lee and others

of particles moving between tiles. We prevent this from occurring by using the chunk
pool, as discussed in § 2.3, and by minimizing the memory footprint of the sort algorithm
altogether. We tried to make the sort kernel as performant as possible given these
constraints. Ultimately, we were justified in the choice of prioritizing fault tolerance over
performance because performance was sufficient: kernel duration was dwarfed by CPU
MPI communications of the particle data. For this reason, we expect that, at this stage, the
only worthwhile way to improve the performance of the sort would be by taking advantage
of remote direct memory access via CUDA-aware MPI.

In the remaining paragraphs of this section our algorithm is described in detail. Our
algorithm takes place in three steps. First, a kernel is called where threads loop over
all particles on a given tile, identify those departing and buffer them according to their
destination. Particles whose destination tile is local (i.e. on the same MPI rank) are
appended to the destination tile’s particle buffer directly, which is made up of globally
accessible chunks. Particles crossing an MPI rank boundary or the simulation boundary
(e.g. absorbing wall) are buffered in a dedicated array of chunks also stored in global
memory. An additional buffer for each tile, i_hole, is required to store the array indices
of departing particles, which we refer to as ‘holes’. In the current implementation, this
buffer is of fixed size. But it could be implemented using chunks as well. Three integers
are required to count the number of particles: departing a given tile; being received by a
given tile locally; and crossing an MPI rank or simulation boundary. These are stored in
global memory and are incremented atomically.

Second, particles crossing an MPI rank or simulation boundary are copied from device
to host. The host handles processing of particle boundary conditions (e.g. thermal-bath,
open or reflecting particle boundaries), as well as exchange of particles with other MPI
ranks. Then, the new set of particles is copied from host back to device.

Finally, a kernel is called to compact the buffers for each tile: holes left by particles
that have departed are filled so that particles are stored contiguously. Mainly, this kernel is
embarrassingly parallel. Threads loop over particles (that previously were either received
locally from other tiles, or copied from the host) and move them into holes specified by
i_hole. However, special care must be taken for the case where the new number of
particles on a given tile, n_p_new, is less than its old number of particles, n_p_old.
This is because, in this case, some of the holes specified by i__holeare ‘invalid’, i.e. they
have index greater than n_p new. Since the holes in i__hole are in no particular order,
we require an initial step where i__hole is compacted into a smaller array containing only
valid holes. This process is known as stream compaction and relies on parallel prefix scans
(Blelloch 1990). A similar compaction step is required when moving particles with index
between n_p new and n_p_old into holes, since that part of the array contains the
invalid holes that must be filtered out. No atomic operations are necessary in this kernel.

3. Results

In this section, we present examples of simulations run on NERSC’s Perlmutter system.
Each Perlmutter GPU node has four NVIDIA A100 GPUs with 40 GB of device memory
and a single AMD EPYC 7763 CPU. Each CPU node has two AMD EPYC 7763 CPUs.
Each AMD EPYC 7763 CPU has 64 cores.

In all of our results, we define the absolute throughput as the total number of particle
pushes divided by the total simulation time minus the time required to initialize the
simulation. This metric is the average number of particles pushed per unit time when
including the additional costs of particle communication, grid communication and field
evolution. No additional normalization is used if more than one GPU is used.

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 9

(a) (b) (©
— 104 _20 _ 10! - 3D CPU
@ d) == 3D GPU
= =3 a
) 215 S 100
= = =
a103 21.0 a,
'ga 'gn — 216 ‘E, 107!
= 3 —— 18 2
2 go0s5 5 £
E 10 = T g0
0.0
% ‘2 5 Y70, 0, % % e Ok o 1 2 3
7 o % (e i
Number of GPUs Particles per cell ¥ Futerneiakon Craer

FIGURE 2. Comprehensive thermal plasma benchmarks run on Perlmutter. (a) Weak scaling
tests for the cases described in the text, showing near-perfect scaling up to 4096 GPUs on
Perlmutter. (b) Parameter scan showing dependence of throughput on particles per cell and
grid sizes. (¢) Comparison of absolute performance on one GPU and one core of one CPU
for different interpolation orders. All simulations are run in three dimensions with quadratic
interpolation and 512 particles per cell unless otherwise specified.

3.1. Thermal plasma benchmarks

Figure 2 shows several performance tests from simulations of thermal plasmas. We begin
by considering weak scaling, shown in figure 2(a). To understand the effect of different
configuration settings on performance, we derive all of our simulations from a single base
case, which serves as a control. We ran weak scaling tests of the following computational
problems, which can be extrapolated to understand a variety of use cases:

(i) Base: three-dimensional simulation of a uniform plasma using our GPU algorithm
run on 64 GPUs. The plasma is warm (the thermal momentum in all directions
is uy, = 0.1m,c where m, is the electron mass and c is the speed of light) and is
represented by 512 particles per cell. Quadratic particle shapes are used. Single
precision is used for both field and particle data. We note that particle positions
are referenced with respect to cells, as depicted in figure 1, so that the use of single
precision does not limit accuracy for large position values. The box is fully periodic
with no moving window. The grid dimensions are 512 x 512 x 256 cells. The tile
dimensions are 8 x 8 x & cells. The resolution is k,A, = 0.1 in all directions and
w,At = 0.05, where w, is the plasma frequency and k, = w,/c is the plasma
wavenumber. The simulation is run for 1000 timesteps. One MPI rank is used per
GPU and one CUDA thread block per tile with 512 threads.

(i) Cold: same as base with uy, = 0. Particle communication vanishes aside from pings
between neighbouring ranks.

(iii) Drift: same as cold but with a moving window in the X; direction. Particles
are stationary but move relative to MPI partitions. This problem has the most
particle communication and approximates the data movement for simulations of
plasma-based acceleration.

(iv) Two-dimensional: a two-dimensional version of base. The number of particles per
cell and thermal velocity are the same. The grid size of 8192 x 8192 cells gives the
same number of total grid points and total number of particles. The tile dimensions
are 32 x 32 cells.

Figure 2(a) shows weak scaling tests for the four test problems. In each test, the grid
dimensions are scaled proportionately to the number of MPI ranks used to decompose the
problem. For ideal scaling, depicted by solid grey lines, the total throughput is proportional

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

10 R.P. Lee and others

to the number of MPI ranks. In each case, weak scaling is nearly perfect up to 4096 GPUs,
the highest power of two below the full system size of 6144. The drift case is slower
than cold because of increased communication cost. It exhibits jitter due to variation in
communication cost. Cold is faster than base due to the use of the staggered initialization
discussed in § 2.4 and reduced communication costs. Without the staggered initialization,
cold is several times slower than base.

Figure 2(b) shows the dependence of the absolute throughput on the number of
gridpoints and particles per cell. All simulations are run on one GPU with the same
parameters as the three-dimensional base simulation other than the number of gridpoints
and particles per cell. The tile size is decreased for smaller grid sizes to maintain a
sufficient number of blocks to saturate performance.

For a fixed total grid size, performance increases with particles per cell for two reasons.
First, particle pushing contributes a greater fraction of the total simulation cost relative to
the field solver and grid communication, and particle communication. Second, similarly,
the kernels update velocity and advance deposit are both more efficient
since they also have fixed costs, and particle pushing contributes a greater fraction of
total kernel time when more particles per cell are used. The update_velocity kernel
has the fixed cost of loading fields into shared-memory arrays. It also likely benefits from
caching of field values. The advance_deposit kernel has the fixed cost of zeroing
the shared-memory current array, and adding that array back to global memory after
deposition. On the other hand, for a fixed number of particles per cell, performance
decreases with decreasing grid size. This is because the relative cost of pushing to
communication scales as the ratio of volume to surface area of the grid and because kernels
are less efficient with smaller grid size.

While performance decreases with decreasing either particles per cell or gridpoints per
GPU, the performance is still within a factor of two of the maximum with 218 or more
gridpoints and ~16 or more particles per cell. Note that the performance does not depend
only on the total number of particles (i.e. particles per cell times grid points). For example,
the cases with 2!¢ gridpoints and 128 particles per cell has the same number of particles
as the case with 2?° gridpoints and 8 particles per cell, but has approximately double the
performance.

Finally, we compare the GPU code with the CPU code. There are three natural ways
in which these can be compared: 1 GPU node vs 1 CPU node; 1 GPU vs 1 (many-core)
CPU; and 1 GPU vs 1 core of 1 CPU. Each comparison is relevant and informative. In
this test, in order to control for the confounding effect of communication, we compare
performance on a single GPU with performance on a single core (instead of all 64 cores)
of one CPU. Both CPU and GPU tests are run with one MPI rank. Figure 2(c) shows the
absolute performances for different particle interpolation orders on a version of the base
GPU case scaled to fit one GPU. The CPU code uses an optimized single instruction,
multiple data (SIMD) pusher (Fonseca et al. 2013). The orders 1, 2 and 3 are linear,
quadratic and cubic interpolations. For these three cases, the GPU algorithm on one
GPU is approximately 300 times faster than the CPU algorithm on one core of one CPU.
In table 1, the three-dimensional (3-D) timings from figure 2(c) are tabulated along with
2-D timings. We note that the 2-D CPU algorithm shares the same cost for 2nd- and
3rd-order interpolations because of specific memory alignment requirements for the SIMD
pusher.

3.2. Simulations of more complex plasma systems

Here, we demonstrate the ability of our code to simulate commonly studied plasma
systems with higher degrees of spatial inhomogeneity and more complex particle

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 11

Interpolation Order

1 2 3
2-D GPU 9.6 5.8 33
3-D GPU 5.1 2.0 0.55

Performance (Gps™) 5 nepy 0019 0011 0.010

3-DCPU 0.011 0.0054 0.0036

Speedup 2-D 500 530 330
3-D 460 370 140

TABLE 1. Absolute throughput in gigaparticles per second and speedup for the GPU and

CPU algorithms on one GPU and one core of one CPU on Perlmutter with different

interpolation orders. The benchmarks are measured on a thermal plasma. The 3-D CPU and

GPU performances are plotted in figure 2(c).

movement patterns. The level of robustness of the code required to handle these problems
is significantly higher than that required to simulate the thermal plasma cases shown in
§ 3.1. Anecdotally, many bugs concerning edge cases outside particle-pushing kernels
were exposed in these cases which did not manifest for thermal problems. Furthermore,
these problems stress the performance of the code because they depart from several
factors which led to best performance in thermal plasma tests from figure 2. Namely, they
have fewer particles per cell, higher communication levels and greater degrees of spatial
inhomogeneity.

Figure 3 shows two examples. Figure 3(a) shows tangling of magnetic filaments
generated in a 3-D simulation of the Weibel instability (Weibel 1959; Fonseca et al. 2003;
Silva et al. 2003). The simulation features two pairs of relativistically counterstreaming
electron—positron plasmas with ug, = 0.1, ug = 0.75 and 32 particles per cell per
species with quadratic interpolation. The grid dimensions are 2048 x 2048 x 1024. The
resolution is k, A, = 0.1. The simulation was run on 4096 GPUs on Perlmutter up to w,t =
50. The turbulence, relativistic streaming and moving plasma structures with densities
varying from O to 8n stress the code more than the thermal plasmas in § 3.1. The code is
robust to these stresses and the performance is 0.4 Gps~', slightly less than 2 times lower
than for an analogous thermal case (with 32 particles per cell, 2% gridpoints per GPU, on
4096 GPUs) based on extrapolation from figure 2(a,b).

Shown in figure 3(b) is a 2-D simulation with dynamic load balancing of a LWFA with
a frequency ratio of wy/w, = 80, corresponding to an 800 nm laser pulse incident on a
plasma of density 2.7 x 10" cm™>. The laser and plasma are matched according to the
scaling in Lu et al. (2007) with ay =4 and k,wy = 4. The simulation dimensions are
(6400 x 9600) with k,A, = 0.0025 in all directions and w, A, = 0.0015. The simulation
uses a moving window in the X; direction and 64 particles per cell with quadratic
interpolation for the plasma. The simulation was run on Perlmutter on 256 GPUs. The
electron charge density is shown in colour. The black lines outline the domain boundaries
processed by different GPUs. The domains are formed by free exchange of tiles between
different MPI ranks, as described in § 2.2, to ensure load balance of simulation particles.
Due to the particle communication associated with the moving window, this problem
stresses the code similarly to the Weibel problem, but with a greater particle imbalance
among GPUs. In this case, the performance is 0.2 Gps~!, roughly 8 times lower than for
an analogous 2-D thermal case (with 64 particles per cell, 2'® gridpoints per GPU, on

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

12 R.P. Lee and others
(@) ()

=N W ok O

0
FIGURE 3. Examples of spatially inhomogeneous plasma simulations run on Perlmutter. (a)
Three-dimensional simulation of the Weibel instability on 4096 GPUs, demonstrating the
tangling of magnetic field lines. (b) Charge density from a 2-D simulation of a laser-wakefield
accelerator (LWFA) in the nonlinear regime with dynamic load balancing. The black lines
indicate the computational boundaries of different MPI ranks.

256 GPUs) based on extrapolation from figure 2(a,b), and table 1. The discrepancy may
be attributable to the fact that communication in this simulation is significantly higher
relative to particle pushing (4 times higher) than in the thermal plasma benchmarks from
figure 2(a,b), limiting the accuracy of the extrapolation.

This example illustrates the functionality of dynamic load balancing in OSIRIS. Despite
the existence of a particle load imbalance, the performance is roughly identical with
and without dynamic load balancing. This is because the simulation is dominated by
communication; load balancing can only lead to a speedup when the simulation is
dominated by particle pushing. Nevertheless, we anticipate that this feature could provide
a significant speedup on other problems, other systems or as the code and hardware evolves
(e.g. with the incorporation of CUDA-aware MPI, which could lower communication
costs). Load balancing also ensures efficient use of limited device memory, which could
enable running very large problems as discussed in § 2.3.

3.3. Energy efficiency

A major motivation for the transition of supercomputers from CPU to GPU hardware is the
higher energy efficiency of GPUs. However, the energy efficiency of specific applications
may vary because of different patterns of computation and data movement. Here, we
measure the energy efficiency of CPU and GPU implementations of OSIRIS. To our
knowledge, these are the first published measurements of energy consumption of the PIC
algorithm.

A node-to-node comparison was run for a thermal plasma. The codes were used to
simulate a thermal plasma just as in the base weak scaling test scaled to one GPU node.
The CPU code was run with 128 MPI ranks and 128 cores on a Perlmutter CPU node,
while the GPU code was run with 4 MPI ranks and 4 GPUs on a Perlmutter GPU node.
Both the CPU and the GPU simulation were allowed to progress indefinitely and were
terminated after 4 h.

For both simulations, the total energy was measured using the Slurm sacct command,
which reports energy consumption as measured by Cray’s Power Management System.
The estimate provides a comprehensive measurement of energy consumption for the
entire node. This includes power required for data movement, floating point operations
and baseline power needed to keep the node running. For GPU nodes, the measurement

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 13

—
()}
o
o

—
o
o
o

500

Energy per push [n]]

0_

GPU CPU

FIGURE 4. Energy consumption per particle push for the GPU algorithm and for the CPU
algorithm. The comparison is between a simulation for 4h on a Perlmutter GPU node with
4 GPUs and a Perlmutter CPU node with 128 CPU cores. The GPU node is ~14 times faster than
the CPU node and uses ~2 times more energy, leading to an overall energy efficiency ~7 times
higher. Further detail of what is being measured is in the text.

includes the energy consumption of the CPUs and the GPUs. Zhao et al. (2023) provides
more information on power consumption measurements on Perlmutter.

Performance on the GPU node was higher on a node-to-node basis: over the 4 h, a factor
of 13.7 times more simulation iterations were performed, higher than the value of 11.3
expected from extrapolating single-GPU and single-CPU benchmarks. The GPU node also
consumed 1.9 times the energy of the CPU node. Dividing these numbers, we find that the
simulation was 7.2 times more energy efficient when run on the GPU node. The results
are shown in absolute units of nanoJoules per push in figure 4.

This simple test does not account for heating costs from inter-node communication
or the potentially differing energy costs for creation and maintenance of CPU and
GPU devices. Results may also vary significantly on different systems and hardware,
or on different physics problems where the GPU is less performant (e.g. with
fewer particles per cell). Nonetheless, the test suggests that GPU architectures may
be the more environmentally sustainable choice for PIC simulations. Alternatively,
increased efficiency could result in greater demand, resulting in increased overall energy
consumption due to the Jevons paradox.

4. Conclusion

In this paper, we have described the new implementation of GPU acceleration in the PIC
code OSIRIS. The code, written in CUDA, is built upon a tile-based domain decomposition
in order to enable shared-memory storage of grid quantities, enhance memory localization
and enable tile-based dynamic load balancing. For efficient memory usage when using
tiles, we have implemented a memory pool for particle data. We have described aspects of
the optimization of the particle push in detail, along with details about the implementation
of the particle sort. We have discussed the pros and cons of using CUDA.

We have presented a comprehensive picture of the performance, capabilities and energy
efficiency of the code through several tests. A variety of thermal plasma simulations
demonstrate strong absolute performance (e.g. 5.0 gigaparticles per second in three
dimensions with linear interpolation) and excellent weak scaling up to 4096 GPUs on

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

14 R.P. Lee and others

Perlmutter. Simulations of Weibel filamentation and laser-wakefield acceleration illustrate
the capacity of the code to run on more complex physical systems. Finally, node-to-node
energy consumption measurements indicated that, on a node-to-node basis on Perlmutter,
the GPU code is up to ~14 times faster and ~7 times more energy efficient than the heavily
optimized CPU code on a thermal plasma problem. These numbers may be lower on other
problems where the GPU code is less performant.

Within our implementation, several areas of improvement remain. The degraded
performance when running with few particles per cell (<16) is likely caused by bottlenecks
which could be identified by NSight Systems and subsequently alleviated. CUDA-aware
MPI could also be used for particle and field communication, which is currently a
bottleneck in cases such as the drifting plasma in figure 2.

Fault tolerance in the particle sort could also be improved. In the current
implementation, fixed-size temporary buffers are allocated for to store the array indices of
departing particles (i__hole). Overflowing these buffers causes a crash, and reallocation
is not possible within the sort kernel. These buffers could be replaced by spare particle
chunks from the memory pool. This would remove the need for preallocation of the
fixed-size buffers and would make any overflow impossible during the sort as long as
the chunk pool does not become empty.

The final major area of improvement is GPU acceleration of other OSIRIS simulation
modes, such as quasi-three-dimensional geometry, QED and general relativity. Our current
implementation, which accelerates the base Cartesian simulation modes in, one, two, and
three spatial dimensions, is the first step in accelerating the entire codebase.

In conclusion, our GPU implementation of OSIRIS provides excellent performance,
supports a variety of use cases and provides backward compatibility with existing
CPU code. This poses OSIRIS to continue to serve the PIC simulation community’s
computational demands. The details of our implementation may also be fruitful for the
development of other feature-rich GPU-accelerated PIC codes.

Acknowledgements

The authors graciously thank B. Cook, J. Blaschke and E. Palmer for their insight at
NERSC GPU hackathons, H. Wen for his insights on particle sorting in PIC codes on
GPUgs, both reviewers for their helpful suggestions, and NERSC employees R. Gayatri, S.
Bhalachandra and C. Lively for estimates of power consumption for our simulations on
Perlmutter.

Editor V. Malka thanks the referees for their advice in evaluating this article.

Funding

This work was supported in parts by the US Department of Energy National
Nuclear Security Administration (grant numbers DE-NA0004147, DE-NA0003842,
DE-NAO0004131, DE-NA0004144), Office of Science [grant number DE-SC001006],
and Scientific Discovery through Advanced Computing Program [Lawrence Berkeley
National Laboratory subcontract 7350365:1]; the Laboratory for Laser Energetics
(subcontract number SUB00000211/GR531765); US National Science Foundation (grant
number 2108970); Fundacdo para a Ciéncia e Tecnologia, Portugal (grant number
PTDC-FIS-PLA-2940-2014); and European Research Council (ERC-2015-AdG, grant
number 695008). The code was developed and tested on NERSC’s Perlmutter system
(accounts mp113 and m1157). The code was also developed and tested in part on the
ALCF’s Polaris system through an INCITE allocation. This work was completed in part at
the NERSC Open Hackathon, part of the Open Hackathons program. The authors would

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 15

like to acknowledge OpenACC-Standard.org for their support as well as the use resources
at the National Energy Research Scientific Computing Center (NERSC). NERSC is a
U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley
National Laboratory, operated under Contract No. DE-AC02-05CH11231.

Declaration of interests
The authors report no conflict of interest.

REFERENCES

ALVES, E.P., MORI, W.B. & FiuzA, F. 2021 Numerical heating in particle-in-cell simulations with Monte
Carlo binary collisions. Phys. Rev. E 103 (1), 013306.

ARBER, T.D., BENNETT, K., BRADY, C.S., LAWRENCE-DOUGLAS, A., RAMSAY, M.G., SIRCOMBE,
N.J., GILLIES, P., EvaNs, R.G., ScHmITZ, H., BELL, A.R., ef al. 2015 Contemporary
particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57 (11), 113001.

BASTRAKOV, S., DONCHENKO, R., GONOSKOV, A., EFIMENKO, E., MALYSHEV, A., MEYEROV, I. &
SURMIN, I. 2012 Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput.
Sci. 3 (6), 474-479.

BIRD, R., TAN, N., LUEDTKE, S.V., HARRELL, S.L., TAUFER, M. & ALBRIGHT, B. 2021 VPIC 2.0:
next generation particle-in-cell simulations. /[EEE Trans. Parallel Distrib. Syst. 33 (4), 952-963.

BIRDSALL, C.K. & LANGDON, A.B. 2004 Plasma Physics Via Computer Simulation. CRC Press.

BLELLOCH, G.E. 1990 Prefix sums and their applications. Tech. Rep. CMU-CS-90-190. School of
Computer Science, Carnegie Mellon University Pittsburgh, PA, USA.

BRODTKORB, A.R., HAGEN, T.R. & SEATRA, M.L. 2013 Graphics processing unit (GPU) programming
strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73 (1), 4-13.

BURAU, H., WIDERA, R., HONIG, W., JUCKELAND, G., DEBUS, A., KLUGE, T., SCHRAMM,
U., CowaN, T.E., SAUERBREY, R. & BUSSMANN, M. 2010 PIConGPU: a fully relativistic
particle-in-cell code for a GPU cluster. I[EEE Trans. Plasma Sci. 38 (10), 2831-2839.

CHEN, G., CHACON, L. & BARNES, D.C. 2012 An efficient mixed-precision, hybrid CPU-GPU
implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm. J. Comput.
Phys. 231 (16), 5374-5388.

DAVIDSON, A., TABLEMAN, A., AN, W., TSUNG, F.S., LU, W., VIEIRA, J., FONSECA, R.A., SILVA,
L.O. & MoRrl, W.B. 2015 Implementation of a hybrid particle code with a PIC description in r—z
and a gridless description in ¢ into OSIRIS. J. Comput. Phys. 281, 1063—-1077.

DECYK, V.K. 2015 Skeleton particle-in-cell codes on emerging computer architectures. Comput. Sci.
Engng 17 (2), 47-52.

DECYK, V.K. & SINGH, T.V. 2011 Adaptable particle-in-cell algorithms for graphical processing units.
Comput. Phys. Commun. 182 (3), 641-648.

DECYK, V.K. & SINGH, T.V. 2014 Particle-in-cell algorithms for emerging computer architectures.
Comput. Phys. Commun. 185 (3), 708-719.

DENG, S., TSUNG, F., LEE, S., Lu, W., MoORrI, W.B., KATSOULEAS, T., MUGGLI, P., BLUE, B.E.,
CLAYTON, C.E., O CONNELL, C., et al. 2002 Modeling of ionization physics with the PIC code
OSIRIS. In AIP Conference Proceedings Vol. 647 (eds. C. Clayton & P. Muggli), pp. 219-223. IOP
Institute of Physics Publishing Ltd.

DEROUILLAT, J., BECK, A., PEREZ, F., VINCI, T., CHIARAMELLO, M., GRASSI, A., FLE, M.,
BOUCHARD, G., PLOTNIKOV, 1., AUNAIL, N., et al. 2018 Smilei: a collaborative, open-source,
multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351-373.

DIEDERICHS, S., BENEDETTI, C., HUEBL, A., LEHE, R., MYERS, A., SINN, A., VAY, J.-L., ZHANG,
W. & THEVENET, M. 2022 HiPACE++: a portable, 3D quasi-static particle-in-cell code. Comput.
Phys. Commun. 278, 108421.

FEDELI, L., HUEBL, A., BOILLOD-CERNEUX, F., CLARK, T., GOTT, K., HILLAIRET, C., JAURE,
S., LEBLANC, A., LEHE, R., MYERS, A., et al. 2022 Pushing the frontier in the design of
laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell simulations on

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://OpenACC-Standard.org
https://doi.org/10.1017/S0022377824001569

16 R.P. Lee and others

exascale-class supercomputers. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 25-36. IEEE Computer Society.

FONSECA, R.A., SiLvA, L.O., TONGE, J.W., MORI, W.B. & DAWSON, J.M. 2003 Three-dimensional
Weibel instability in astrophysical scenarios. Phys. Plasmas 10 (5), 1979-1984.

FONSECA, R.A., SILVA, L.O., TSUNG, E.S., DECYK, V.K., LU, W., REN, C., MORI, W.B., DENG,
S., LEE, S., KATSOULEAS, T. & ADAM, J.C. 2002 OSIRIS: a three-dimensional, fully relativistic
particle in cell code for modeling plasma based accelerators. In Computational Science — ICCS
2002: International Conference Amsterdam, The Netherlands, April 21-24, 2002 Proceedings, Part
111 (ed. PM.A. Sloot, A.G. Hoekstra, C.J. Kenneth Tan & J.J. Dongarra), pp. 342-351. Springer.

FONSECA, R.A., VIEIRA, J., F1UzZA, F., DAVIDSON, A., TSUNG, F.S., MORI, W.B. & SIiLvA, L.O.
2013 Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield
accelerators. Plasma Phys. Control. Fusion 55 (12), 124011.

HARIRI, F., TRAN, T.-M., JOCKSCH, A., LANTI, E., PROGSCH, J., MESSMER, P., BRUNNER, S.,
GHELLER, C. & VILLARD, L. 2016 A portable platform for accelerated PIC codes and its
application to GPUs using OpenACC. Comput. Phys. Commun. 207, 69-82.

HOCKNEY, R.W. & EASTWOOD, J.W. 2021 Computer Simulation using Particles. CRC Press.

HUANG, S., X1A0, S. & FENG, W.-C. 2009 On the energy efficiency of graphics processing units for
scientific computing. In 2009 IEEE International Symposium on Parallel & Distributed Processing,
pp- 1-8. IEEE.

JOCKSCH, A., HARIRI, F., TRAN, T.-M., BRUNNER, S., GHELLER, C. & VILLARD, L. 2016 A bucket
sort algorithm for the particle-in-cell method on manycore architectures. In Parallel Processing and
Applied Mathematics: 11th International Conference, PPAM 2015, Krakow, Poland, September 69,
2015. Revised Selected Papers, Part I 11, pp. 43-52. Springer.

JOSEPH, R.G., RAVUNNIKUTTY, G., RANKA, S., D’AZEVEDO, E. & KLASKY, S. 2011 Efficient GPU
implementation for particle in cell algorithm. In 2011 IEEE International Parallel & Distributed
Processing Symposium, pp. 395-406. IEEE.

KONG, X., HUANG, M.C. & REN, C. 2009 Preliminary results on GPU acceleration of the PIC simulation
code OSIRIS using CUDA. In APS Division of Plasma Physics Meeting Abstracts, vol. 51, pp.
JP8-138.

KoNG, X., HUANG, M.C., REN, C. & DEecYK, V.K. 2011 Particle-in-cell simulations with
charge-conserving current deposition on graphic processing units. J. Comput. Phys. 230 (4),
1676-1685.

L1, F., DECYK, V.K., MILLER, K.G., TABLEMAN, A., TSUNG, F.S., VRANIC, M., FONSECA, R.A. &
MOoORI, W.B. 2021a Accurately simulating nine-dimensional phase space of relativistic particles in
strong fields. J. Comput. Phys. 438, 110367.

L1, F., MILLER, K.G., XU, X., TSUNG, E.S., DECYK, V.K., AN, W., FONSECA, R.A. & MORI,
W.B. 20215 A new field solver for modeling of relativistic particle-laser interactions using the
particle-in-cell algorithm. Comput. Phys. Commun. 258, 107580.

LL F., YU, P, XU, X., Fiuza, F., DECYK, V.K., DALICHAOUCH, T., DAVIDSON, A., TABLEMAN, A.,
AN, W., TSUNG, FE.S., et al. 2017 Controlling the numerical Cerenkov instability in PIC simulations
using a customized finite difference Maxwell solver and a local FFT based current correction.
Comput. Phys. Commun. 214, 6-17.

Lu, W., TZOUFRAS, M., JosHI, C., TSUNG, E.S., MORI, W.B., VIEIRA, J., FONSECA, R.A. & SILVA,
L.O. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration
in a 3D nonlinear regime. Phys. Rev. Spec. Top. 10 (6), 061301.

MERTMANN, P., EREMIN, D., MUSSENBROCK, T., BRINKMANN, R.P. & AwAKOowIcz, P. 2011
Fine-sorting one-dimensional particle-in-cell algorithm with Monte-Carlo collisions on a graphics
processing unit. Comput. Phys. Commun. 182 (10), 2161-2167.

MILLER, K.G., LEE, R.P., TABLEMAN, A., HELM, A., FONSECA, R.A., DECYK, V.K. & MORI, W.B.
2021a Dynamic load balancing with enhanced shared-memory parallelism for particle-in-cell codes.
Comput. Phys. Commun. 259, 107633.

MILLER, K.G., MAY, J., Fiuza, F. & MoRI, W.B. 20215 Extended particle absorber for efficient
modeling of intense laser—solid interactions. Phys. Plasmas 28 (11), 112702.

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001569

Acceleration of the particle-in-cell code OSIRIS 17

MYERS, A., ALMGREN, A., AMORIM, L.D., BELL, J., FEDELI, L., GE, L., GOTT, K., GROTE, D.P.,
HOGAN, M., HUEBL, A., et al. 2021 Porting WarpX to GPU-accelerated platforms. Parallel
Comput. 108, 102833.

NANBU, K. & YONEMURA, S. 1998 Weighted particles in coulomb collision simulations based on the
theory of a cumulative scattering angle. J. Comput. Phys. 145 (2), 639—654.

NISHIKAWA, K., DUTAN, 1., KOHN, C. & MI1zZUNO, Y. 2021 PIC methods in astrophysics: simulations
of relativistic jets and kinetic physics in astrophysical systems. Living Rev. Comput. Astrophys.
7(), 1.

NVIDIA 2024 CUDA C++ programming guide, release 12.6. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/, accessed: 2024-11-06.

OWENS, J.D., HOUSTON, M., LUEBKE, D., GREEN, S., STONE, J.E. & PHILLIPS, J.C. 2008 GPU
computing. Proc. IEEE 96 (5), 879-899.

PARDAL, M., SAINTE-MARIE, A., REBOUL-SALZE, A., FONSECA, R.A. & VIEIRA, J. 2023 Radio:
an efficient spatiotemporal radiation diagnostic for particle-in-cell codes. Comput. Phys. Commun.
285, 108634.

RossI, F., LONDRILLO, P., SGATTONI, A., SINIGARDI, S. & TURCHETTI, G. 2012 Towards robust
algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code. In AIP
Conference Proceedings, vol. 1507, pp. 184-192. American Institute of Physics.

SILVA, L.O., FONSECA, R.A., TONGE, J.W., DAWSON, J.M., MORI, W.B. & MEDVEDEV, M.V. 2003
Interpenetrating plasma shells: near-equipartition magnetic field generation and nonthermal particle
acceleration. Astrophys. J. 596 (1), L121.

STANTCHEV, G., DORLAND, W. & GUMEROV, N. 2008 Fast parallel particle-to-grid interpolation for
plasma PIC simulations on the GPU. J. Parallel Distrib. Comput. 68 (10), 1339-1349.

TABLEMAN, A.R. 2019 Kinetic Plasma Simulation: Meeting the Demands of Increased Complexity.
University of California.

TAKIZUKA, T. & ABE, H. 1977 A binary collision model for plasma simulation with a particle code.
J. Comput. Phys. 25 (3), 205-219.

TAN, N., BIRD, R., CHEN, G. & TAUFER, M. 2021 Optimize memory usage in vector particle-in-cell
(VPIC) to break the 10 trillion particle barrier in plasma simulations. In Computational
Science—ICCS 2021: 2lst International Conference, Krakow, Poland, June 16-18, 202I,
Proceedings, Part Il 21, pp. 452—465. Springer.

TOPS500 2024 Top500 June 2024 list. https://top500.0rg/lists/top500/2024/06/, accessed: 2024-06-17.

VAN DUK, J., KROESEN, G.M.W. & BOGAERTS, A. 2009 Plasma modelling and numerical simulation.
J. Phys. D: Appl. Phys. 42 (19), 190301.

VAY, J.-L., HUEBL, A., ALMGREN, A., AMORIM, L.D., BELL, J., FEDELI, L., GE, L., GoTT, K.,
GROTE, D.P., HOGAN, M., ef al. 2021 Modeling of a chain of three plasma accelerator stages with
the WarpX electromagnetic PIC code on GPUs. Phys. Plasmas 28 (2), 023105.

VRANIC, M., GRISMAYER, T., MARTINS, J.L., FONSECA, R.A. & SILvA, L.O. 2015 Particle merging
algorithm for PIC codes. Comput. Phys. Commun. 191, 65-73.

WEIBEL, E.S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity
distribution. Phys. Rev. Lett. 2 (3), 83.

Xu, X., L1, F., TSUNG, F.S., DALICHAOUCH, T.N., AN, W., WEN, H., DECYK, V.K., FONSECA, R.A.,
HoOGAN, M.J. & MORI, W.B. 2020 On numerical errors to the fields surrounding a relativistically
moving particle in PIC codes. J. Comput. Phys 413, 109451.

ZENKER, E., WIDERA, R., HUEBL, A., JUCKELAND, G., KNUPFER, A., NAGEL, W.E. & BUSSMANN,
M. 2016 Performance-portable many-core plasma simulations: Porting picongpu to openpower and
beyond. In High Performance Computing: ISC High Performance 2016 International Workshops,
ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, INOPH, PEE 3MA, VHPC, WOPSSS, Frankfurt,
Germany, June 19-23, 2016, Revised Selected Papers 31, pp. 293-301. Springer.

ZHAO, Z., RRAPAJ, E., BHALACHANDRA, S., AUSTIN, B., NAM, H.A. & WRIGHT, N. 2023 Power
analysis of nersc production workloads. In Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis, pp. 1279-1287.
Published by Association for Computing Machinery.

https://doi.org/10.1017/50022377824001569 Published online by Cambridge University Press

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://top500.org/lists/top500/2024/06/
https://doi.org/10.1017/S0022377824001569

	1 Introduction
	2 Methodology
	2.1 Graphics processing unit programming framework
	2.2 Tile-based domain decomposition
	2.3 Particle chunk pool
	2.4 Particle pushing and current deposition
	2.5 Particle sorting and boundary conditions

	3 Results
	3.1 Thermal plasma benchmarks
	3.2 Simulations of more complex plasma systems
	3.3 Energy efficiency

	4 Conclusion
	References

