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Abstract

Let p(z) = z f ′(z)/ f (z) for a function f (z) analytic on the unit disc | z |< 1 in the complex plane and
normalised by f (0) = 0, f ′(0) = 1. We provide lower and upper bounds for the best constants δ0 and
δ1 such that the conditions e−δ0/2 <| p(z) |< eδ0/2 and | p(w)/p(z) |< eδ1 for | z |, | w |< 1 respectively imply
univalence of f on the unit disc.
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1. Introduction

For a nonconstant analytic function f on the unit disc D = {z ∈ C : |z| < 1}, set

M( f ) = sup
z∈D
| f ′(z)| and m( f ) = inf

z∈D
| f ′(z)|.

Note that M( f ) is a positive number (possibly +∞) whereas m( f ) is a finite
nonnegative number. In 1969, John [7] proved the following result.

T A (John). There exists a number γ ∈ [π/2, log(97 + 56
√

3)] with the
following property: if a nonconstant analytic function f on D satisfies the condition
M( f ) ≤ eγm( f ), then f is univalent on D.

We remark that log(97 + 56
√

3) = 5.2678 . . . . The largest possible number γ with
the property in the theorem is called the (logarithmic) John constant and will be
denoted by γ1. (In the literature, the John constant refers to eγ1 . We adopt, however,
the logarithmic one for our convenience in this note.) Yamashita [12] improved
John’s result by showing that γ1 ≤ π. Gevirtz [3, 4] further proved that γ1 ≤ λπ
and conjectured that γ1 = λπ, where λ = 0.6278 . . . is the number determined by a
transcendental equation.
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424 Y. C. Kim and T. Sugawa [2]

We could consider a similar problem for z f ′(z)/ f (z) instead of f ′(z) for an analytic
function f on D with f (0) = 0, f ′(0) , 0. Let

L( f ) = sup
z∈D

∣∣∣∣∣z f ′(z)
f (z)

∣∣∣∣∣ and l( f ) = inf
z∈D

∣∣∣∣∣z f ′(z)
f (z)

∣∣∣∣∣
for such a function f . Here, the value of z f ′(z)/ f (z) at z = 0 will be understood as
limz→0 z f ′(z)/ f (z) = 1 as usual. Note that 0 ≤ l( f ) ≤ 1 ≤ L( f ) ≤ +∞. It is easy to see
that l( f ) = 1 (or L( f ) = 1) precisely when f (z) = az for a nonzero constant a. Since
z f ′(z)/ f (z) is unchanged under the dilation f 7→ a f for a nonzero constant a, we can
restrict our attention to analytic functions f (z) on D normalised by f (0) = 0, f ′(0) = 1.
Denote byA the class of those normalised analytic functions on D. Thus the problem
can be formulated as follows.

P 1.1. Find a number δ > 0 with the following property: if a function f ∈ A
satisfies the condition L( f ) ≤ eδl( f ) then f is univalent on D.

Since the value 1 plays a special role in the study of z f ′(z)/ f (z), it is also natural to
consider the following problem.

P 1.2. Find a number δ > 0 with the following property: if a function f ∈ A
satisfies the condition e−δ/2 < |z f ′(z)/ f (z)| < eδ/2 on D, then f is univalent on D.

Let δ1 and δ0 be the largest possible numbers δ in Problems 1.1 and 1.2, respectively
(if they exist).

The authors proved in [9] that π/6 = 0.523 . . . ≤ δ0 ≤ π = 3.14 . . . . Obviously, δ1 ≤

δ0 ≤ 2δ1. Therefore, we already have the estimates π/12 = 0.261 . . . ≤ δ1 ≤ π.
The purpose of the present note is to improve the estimates.

T 1.3. The constant δ0 satisfies

π

3
= 1.04719 . . . < δ0 <

5π
7

= 2.24399 . . . .

T 1.4. The constant δ1 satisfies

7π
25

= 0.87964 . . . < δ1 <
5π
7

= 2.24399 . . . .

We remark that the above results are not optimal. Indeed, more elaborate numerical
computations would yield slightly better bounds, as will be suggested at the end of
Section 2.

In order to obtain a lower bound, we need a univalence criterion due to Becker [1]
with numerical computations as we will explain in Section 2. On the other hand,
to give an upper bound, we should construct a nonunivalent function satisfying the
condition in Problems 1.1 or 1.2. The function Fa ∈ A determined by the differential
equation

zF′a(z)
Fa(z)

=

(
1 − iz
1 + iz

)ai

(1.1)
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is a candidate for an extremal one, where a is a positive constant and i is the imaginary
unit
√
−1. As will be seen later, L(Fa)/l(Fa) = eπa. We will give a detailed account

on this function and provide the upper bound in the above theorems in Section 3. The
proof involves matrices of large order. Therefore, we made use of Mathematica 8.0 to
carry out symbolic computations.

The most interesting problem is to determine the values of δ0 and δ1. However,
this seems to the authors very hard. We end this section with some open questions
which may be easier to solve. Let a∗ be the supremum of the numbers a such that Fa

is univalent on D. Likewise let a∗ be the infimum of the numbers a such that Fa is
not univalent on D. Obviously, δ0 ≤ πa∗ ≤ πa∗. In the proof of the above theorems, we
indeed show that a∗ < 5/7.

(1) Is it true that a∗ = a∗?
(2) Is it true that δ0 = πa∗?
(3) Is it true that δ0 = δ1?

2. Obtaining lower bounds: univalence criteria

We recall the basic hyperbolic geometry of the unit disc D. The hyperbolic distance
between two points z1, z2 in D is defined by

d(z1, z2) = inf
γ

∫
γ

|dz|
1 − |z|2

,

where the infimum is taken over all rectifiable paths γ joining z1 and z2 in D. The
Schwarz–Pick lemma asserts that

|ω′(z)|
1 − |ω(z)|2

≤
1

1 − |z|2
, z ∈ D, (2.1)

for any analytic map ω : D→ D. In particular, for an analytic automorphism T of
D, we have |T ′(z)|/(1 − |T (z)|2) = 1/(1 − |z|2) and therefore d(T (z1), T (z2)) = d(z1, z2)
for z1, z2 ∈ D. It is well known that the above infimum is attained by the circular arc
(possibly a line segment) joining z1 and z2 whose whole circle is perpendicular to the
unit circle. By using these facts, one can compute the hyperbolic distance: d(z1, z2) =

arctanh |(z1 − z2)/(1 − z̄1z2)|. Here, we recall that arctanh r = 1
2 log((1 + r)/(1 − r)).

The following is a useful univalence criterion due to Becker [1].

L 2.1. Let f be a nonconstant analytic function on D. If

(1 − |z|2)
∣∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣∣ ≤ 1, z ∈ D,

then f is univalent on D.

Sometimes, it is more convenient to consider the pre-Schwarzian norm

‖ f ‖ = sup
z∈D

(1 − |z|2)
∣∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣∣
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because it has several nice properties (see [8], for example). By Becker’s theorem
above, we see that the condition ‖ f ‖ ≤ 1 implies univalence of f on D. We used this
norm to deduce the estimate π/6 ≤ δ0. In this note, however, we do use the original
form (Lemma 2.1) of Becker’s theorem to improve the estimate.

For a nonnegative number c, we consider the quantity

Φ(c) = sup
0<r<1
{r + c(1 − r2) arctanh r} = c sup

0<r<1
{c−1r + (1 − r2) arctanh r}.

We see that Φ(c) is nondecreasing in c and that c−1Φ(c) is nonincreasing in c. In
terms of this function, we will prove the following technical lemma which yields lower
bounds for δ0 and δ1 as corollaries.

L 2.2. Let f ∈ A. If L( f )/l( f ) < +∞ and if the inequality

2
π

Φ(L( f )) log
L( f )
l( f )

≤ 1

holds, then f is univalent on D.

The lemma immediately yields the following results.

C 2.3. Let δ > 0 be given. If

2δ
π

Φ(eδ/2) ≤ 1, (2.2)

then δ ≤ δ0. If
2δ
π

Φ(eδ) ≤ 1, (2.3)

then δ ≤ δ1.

To show the corollary, we first assume (2.2) and consider a function f ∈ A satisfying
e−δ/2 < |z f ′(z)/ f (z)| < eδ/2. Then L( f ) ≤ eδ/2 and log L( f )/l( f ) ≤ δ so that

2
π

Φ(L( f )) log
L( f )
l( f )

≤
2δ
π

Φ(eδ/2) ≤ 1.

We now apply Lemma 2.2 to conclude univalence of f . Secondly, we assume (2.3) and
consider a function f ∈ A satisfying L( f ) ≤ eδl( f ). Then L( f ) ≤ eδ and the conclusion
follows similarly.

Let us prepare for the proof of Lemma 2.2. We note that the function arctan z =

(1/2i) log((1 + iz)/(1 − iz)) maps the unit disc D conformally onto the vertical parallel
strip |Re w| < π/4. Therefore, for a constant a > 0, the function

Qa(z) = exp(2a arctan z) =

(
1 − iz
1 + iz

)ai

(2.4)
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is the universal covering projection of D onto the annulus e−πa/2 < |w| < eπa/2. We note
that the function Qa satisfies Qa(0) = 1 and

Q′a(z)
Qa(z)

=
2a

1 + z2
.

P  L 2.2 Let p(z) = z f ′(z)/ f (z) for a function f ∈ A. If p is a constant,
then f is clearly univalent. We can thus assume that p is not a constant so that
l( f ) < 1 < L( f ). Let δ = log L( f )/l( f ) < +∞ and m =

√
L( f )l( f ). We consider the

universal covering map Q = mQa of D onto the annulus W = {w : l( f ) < |w| < L( f )} =
{w : me−δ/2 < |w| < meδ/2}, where Qa is given in (2.4) with a = δ/π. Note that p(D) ⊂W
by assumption. Since the real interval (−1, 1) is mapped onto (l( f ), L( f )) by Q, we can
choose an α ∈ (−1, 1) so that Q(α) = 1. Then, P = Q ◦ T is a universal covering map of
D onto W with P(0) = 1, where T (z) = (z + α)/(1 + αz). Since P : D→W is a covering
map, we can take a lift ω of p with respect to P so that ω(0) = 0 and p = P ◦ ω. We
write w = ω(z). Note here that the Schwarz lemma implies |w| ≤ |z|. We now have

z f ′′(z)
f ′(z)

=
zp′(z)
p(z)

+ p(z) − 1 =
zω′(z)P′(w)

P(w)
+ P(w) − 1.

Set τ = T (w) ∈ D. Since T is a hyperbolic isometry of D, one has the relation
(1 − |w|2)|T ′(w)| = 1 − |τ|2. Therefore, by using (2.1),

(1 − |z|2)
∣∣∣∣∣ω′(z)P′(w)

P(w)

∣∣∣∣∣ ≤ (1 − |w|2)
∣∣∣∣∣Q′(τ)T ′(w)

Q(τ)

∣∣∣∣∣
= (1 − |τ|2)

∣∣∣∣∣Q′(τ)
Q(τ)

∣∣∣∣∣
=

2a(1 − |τ|2)
|1 + τ2|

≤ 2a.

Let γ be the image of the line segment (0, w) under the Möbius mapping T . Then

P(w) − 1 =

∫ w

0
P′(t) dt =

∫ w

0
Q′(T (t))T ′(t) dt =

∫
γ

Q′(u) du =

∫
γ

2aQ(u)
1 + u2

du.

Since |Q(u)| ≤ L( f ),

|P(w) − 1| ≤ 2aL( f )
∫
γ

|du|
1 − |u|2

= 2aL( f )
∫ w

0

|du|
1 − |u|2

= 2aL( f )d(0, w) ≤ 2aL( f ) arctanh |z|.

Therefore,

(1 − |z|2)
∣∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣∣ ≤ 2a|z| + 2aL( f )(1 − |z|2) arctanh |z|. (2.5)
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Hence,

sup
z∈D

(1 − |z|2)
∣∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣∣ ≤ 2aΦ(L( f )) =
2δ
π

Φ(L( f )).

Lemma 2.1 now implies the required assertion. �

The above method also gives a norm estimate of the pre-Schwarzian derivative.
Though we do not use it in this note, we record it for possible future reference.

P 2.4. Suppose that L( f )/l( f ) < +∞ for a function f ∈ A. Then the pre-
Schwarzian norm of f is estimated as

‖ f ‖ ≤
2
π

(1 + L( f )) log
L( f )
l( f )

.

P. Let a = (1/π) log(L( f )/l( f )). By (2.5),

(1 − |z|2)
∣∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣∣ ≤ 2a + 2aL( f )(1 − r2)
arctanh r

r

for |z| = r < 1. Since (1 − r2) arctanh r/r is decreasing in 0 < r < 1, the inequality
(1 − r2) arctanh r/r ≤ 1 holds. Hence,

(1 − |z|2)
∣∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣∣ ≤ 2a + 2aL( f ),

completing the proof. �

To prove Theorems 1.3 and 1.4, the following technical result is helpful. To state it,
we introduce the auxiliary function

H(x, c) =
1 − c

2
x +

1 + c
2

x−1.

L 2.5. Let c > 1. If a number x1 ∈ (0, 1) satisfies the inequality x1arctanh x1 <
(1 + c)/2c, then Φ(c) < H(x1, c).

P. Let g(x) = x + c(1 − x2) arctanh x. Then g′(x) = 1 + c − 2cx arctanh x. Since
x arctanh x (strictly) increases from 0 to +∞ when x moves from 0 to 1, there exists
a unique zero x0 ∈ (0, 1) of g′(x) such that g′(x) > 0 in 0 < x < x0 and g′(x) < 0 in
x0 < x < 1. Note here that the assumption implies that 0 < x1 < x0. We see now that
g(x) takes its maximum at x = x0 and therefore

Φ(c) = g(x0) =
1 − c

2
x0 +

1 + c
2

x−1
0 = H(x0, c).

Since Hx(x, c) = (1 − c)/2 − (1 + c)/(2x2) < 0, the function H(x, c) is decreasing in
x > 0 for a fixed c > 1. Hence, x1 < x0 implies that H(x0, c) < H(x1, c), which proves
the assertion. �
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P  T 1.3. Let δ = π/3 and set c = eδ/2 = eπ/6. If we take x1 = 17/22, then

1 + c
2c
− x1 arctanh x1 =

1 + e−π/6

2
−

17
44

log
39
5

= 0.00255 . . . > 0.

Therefore, Lemma 2.5 yields

2δ
π

Φ(eδ/2) =
2
3

Φ(c) <
2
3

H(x1, c) =
773 + 195eπ/6

1122
= 0.982 . . . < 1.

We now apply Corollary 2.3 to obtain π/3 < δ0. �

P  T 1.4. We proceed along the same lines as above. Let δ = 7π/25 and
set c = eδ. Taking x1 = 20/27, we have

1 + c
2c
− x1 arctanh x1 =

1 + e−7π/25

2
−

10
27

log
47
7

= 0.00219 . . . > 0.

Lemma 2.5 now implies that

2δ
π

Φ(eδ) =
14
25

Φ(c) <
14
25

H(x1, c) =
7903 + 2303e7π/25

13 500
= 0.9965 . . . < 1.

We again apply Corollary 2.3 to obtain 7π/25 < δ1. �

R 2.6. We can slightly improve Theorems 1.3 and 1.4 by changing the choice
of δ and x1 in the above proofs. For instance, concerning Theorem 1.3, we can take

(δ, x1) =

(22π
65

,
17
22

)
,

(87π
257

,
2765
3578

)
,

to have lower bounds 22π/65 = 1.06330 . . . and 87π/257 = 1.06349 . . . , respectively,
for δ0. Numerical computations with Mathematica 8 suggest that the solution to the
equation (2δ/π)Φ(eδ/2) = 1 is about δ = 1.0635213. Therefore, it seems that we would
obtain at most this value as a lower bound for δ0 by the above method.

Similarly, concerning Theorem 1.4, we can take

(δ, x1) =

(25π
89

,
622
839

)
,

(127π
452

,
321
433

)
,

to have lower bounds 25π/89 = 0.882469 . . . and 127π/452 = 0.882704 . . . ,
respectively, for δ1.

We see that the numerical solution to the equation (2δ/π)Φ(eδ) = 1 is about δ =

0.8827139. Therefore, the above method seems to give only a lower bound for δ1 not
better than this value.
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3. Obtaining upper bounds: nonunivalence of a specific function

We will provide upper bounds for δ0 by checking nonunivalence of the function
Fa ∈ A defined by (1.1) for a suitably chosen positive constant a. Since Fa cannot
be expressed in a simple form, it is not easy to determine its univalence. In this
note, we will observe its Grunsky coefficients to examine univalence, whereas we
used Gronwall’s area theorem (or its refinement by Prawitz) in [9] to see that a ≤ 1 is
necessary for Fa to be univalent.

Let f ∈ A. The Grunsky coefficients c j,k of f are defined by the series expansion

log
f (z) − f (w)

z − w
= −

∞∑
j,k=0

c j,kz jwk (3.1)

in |z| < ε, |w| < ε for a small enough ε > 0. We remark here that the obvious
symmetry relation c j,k = ck, j holds. Note also that c j,0 ( j = 1, 2, . . . ) are the logarithmic
coefficients of f (z)/z, in other words, −log( f (z)/z) = c1,0z + c2,0z2 + · · · as we can see
by letting w = 0 in (3.1). Grunsky’s theorem was strengthened by Pommerenke as
follows (see [10, Theorem 3.1]).

L 3.1. Let f ∈ A and {c j,k} be its Grunsky coefficients. If f is univalent on |z| < 1
then

∞∑
m=1

m

∣∣∣∣∣∣∣
n∑

k=1

cm,ktk

∣∣∣∣∣∣∣
2

≤

n∑
m=1

|tm|2

m

holds for arbitrary n ≥ 1 and t1, . . . , tn ∈ C.

We remark that the Grunsky coefficients are usually defined for the function g(ζ) =

1/ f (1/ζ). This change affects only the coefficients c j,0 = c0, j, which do not involve the
Grunsky inequalities. See [5] for more information.

From Lemma 3.1, the inequality

n∑
m=1

m

∣∣∣∣∣∣∣
n∑

k=1

cm,ktk

∣∣∣∣∣∣∣
2

≤

n∑
m=1

|tm|2

m
(3.2)

follows for every n and t1, . . . , tn ∈ C. This implies that the Hermitian matrix
G f (n) = (γ(n)

j,k ) of order n is positive semidefinite; in other words, tG f (n)t∗ ≥ 0 for any
t = (t1, . . . , tn) ∈ Cn, where

γ(n)
j,k =

δ j,k

j
−

n∑
m=1

mcm, jcm,k (1 ≤ j, k ≤ n),

δ j,k means Kronecker’s delta and t∗ is the conjugate transpose of t as a matrix.
Letting tk = δ j,k in (3.2), we have

∑n
m=1 m|cm, j|

2 ≤ 1/ j for j ≤ n, which implies that
|cm, j| ≤ 1/

√
m j ≤ 1 for m, j ≥ 1. This guarantees that the series expansion in (3.1) is

convergent in |z| < 1, |w| < 1, and therefore, that f is univalent on D. We shall call
G f (n) the Grunsky matrix of order n. We have observed the following assertion.
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C 3.2. A function f ∈ A is univalent on D if and only if its Grunsky matrix
G f (n) of order n is positive semidefinite for every n ≥ 1.

In order to compute the Grunsky coefficients of Fa(z), it is convenient to have
recursion formulas for relevant coefficients. The following elementary lemma gives
a recursion formula for exponentiation.

L 3.3. Let g(z) = b1z + b2z2 + · · · be a given function analytic around z = 0 and
let h(z) = eg(z) = c0 + c1z + c2z2 + · · · . Then cn can be computed recursively by c0 = 1
and

cn =
1
n

n−1∑
k=0

(n − k)bn−kck (n ≥ 1).

P. Compare the coefficients of the power series expansions of both sides of
h′(z) = g′(z)h(z). �

We turn to the function Fa(z) for a fixed a > 0. In view of (2.4), we see that the
relation (1.1) can also be expressed by zF′a(z)/Fa(z) = Qa(z) = exp(2a arctan z). In
particular, the range of the function zF′a(z)/Fa(z) is the annulus e−πa/2 < |w| < eπa/2 and,
in particular, l(Fa) = e−πa/2, L(Fa) = eπa/2 and L(Fa)/l(Fa) = eπa, as already stated in
the Introduction. Using the formula

arctan z =

∞∑
n=0

(−1)n

2n + 1
z2n+1

together with Lemma 3.3, we can compute the Taylor coefficients bn of Qa(z)
recursively. (See also [11] for additional information about the coefficients.) In this
way,

zF′a(z)
Fa(z)

= Qa(z) =

∞∑
n=0

bnzn

= 1 + 2az + 2a2z2 +
2
3

a(2a2 − 1)z3 +
2
3

a2(a2 − 2)z4 + · · · .

Dividing by z and integrating with respect to z,

log
Fa(z)

z
=

∞∑
n=1

bn

n
zn = 2az + a2z2 +

2
9

a(2a2 − 1)z3 +
1
6

a2(a2 − 2)z4 + · · · .

We again use Lemma 3.3 to compute the Taylor coefficients of Fa(z)/z recursively and
finally arrive at the representation

Fa(z) = z exp

 ∞∑
n=1

bn

n
zn


= z + 2az2 + 3a2z3 +

2
9

a(17a2 − 1)z4 +
1
9

a2(38a2 − 7)z5 + · · · .
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In order to compute the Grunsky coefficients, we use the following formulas. These
formulas are essentially known; see [6] and [2, formula (2.13)], for example. However,
since we could not find exactly the same formula in the literature, we state it as a lemma
and give a proof.

L 3.4. The Grunsky coefficients c j,k of a function f (z) = z + a2z2 + · · · in A
satisfy the recursion formula

c j,k =

k−1∑
l=1

l
k

ak−lc j+1,l −

j∑
m=1

am+1c j−m,k −
a j+k+1

k
(3.3)

for j ≥ 0 and k ≥ 1.

P. Differentiating both sides of (3.1) with respect to w, we obtain the relation

w f ′(w) − w
f (z) − f (w)

z − w
= ( f (z) − f (w))

∞∑
j,k=0

kc j,kz jwk.

Letting a1 = 1, we compute first the left-hand side of the relation:

(LHS) =

∞∑
n=1

an(nwn − w(zn−1 + · · · + zwn−2 + wn−1))

=

∞∑
n=1

an((n − 1)wn − zn−1w − · · · − zwn−1).

The right-hand side is

(RHS) =

∞∑
n=1

∞∑
j,k=0

kanc j,k(z j+nwk − z jwk+n)

=

∞∑
l,m=0

 l∑
n=1

mancl−n,m −

m∑
n=1

(m − n)ancl,m−n

 zlwm.

Comparing the coefficients of the term zlwm,

−al+m = mcl−1,m +

l∑
n=2

mancl−n,m −

m∑
n=1

(m − n)ancl,m−n

for l ≥ 1 and m ≥ 1. We now let ( j, k) = (l − 1, m) to obtain the required relation. �

We can now compute c j,k recursively. Indeed, first we apply (3.3) with k = 1 to
compute c j,1 recursively in j ≥ 0 :

c j,1 = −

j∑
m=1

am+1c j−m,1 − a j+2, j ≥ 0.
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If we determine cl,m for all l ≥ 0 and 1 ≤ m < k, then we use (3.3) to give c j,k recursively
in j ≥ 0. In practice, to determine c j,k, it is enough to start with cl,1 for 0 ≤ l ≤ j + k − 1,
which determine cl,2 for 0 ≤ l ≤ j + k − 2, and so on. In this way, we can compute the
Grunsky matrix G(n) = GFa (n). For instance, G(1) = [1 − a4] and

G(2) =
1
81

[
81 − 8a2 − 97a4 − 8a6 −14a3(1 + a2)2

−14a3(1 + a2)2 81/2 − 4a2 − 10a4 + 10a6 − 49a8/2

]
.

We are now ready to give the upper bound in Theorems 1.3 and 1.4.

Computer-assisted proof of δ0 < 5π/7. We consider the Grunsky matrix Aa = G(18)
of order 18 for the function f = Fa. We computed Aa symbolically with the help of
Mathematica 8 but we will not give a list of the elements of Aa due to limitations of
space. Let a0 = 5/7. We will show that Fa is not univalent for a close enough to a0.

We see that Aa0 is a square matrix of order 18 with rational elements. Mathematica
8 can compute its eigenvalues and corresponding eigenvectors numerically. In this
way, we found that one eigenvalue of Aa0 was apparently negative. Since numerical
computations might not be reliable enough, we will make this observation rigorous.
By approximating an eigenvector corresponding to the negative eigenvalue, we find
that the rational vector

v =
(
− 1

3 , −
1
6 ,

3
10 ,

3
10 , −

1
6 , −

1
3 , 0, 1

3 ,
1
6 , −

1
5 , −

1
5 ,

1
10 ,

1
5 ,

1
10 , −

1
5 , −

1
6 ,

1
5 ,

1
6

)
satisfies

vAa0 v∗ = −
37 · 61 · 102353087 · 29977321169 · N

349 · 516 · 792 · 1112 · 134 · 173 · 194 · 234 · 292 · 314
< 0.

Here, N = 76346348854682571404146112285557118341692971860401383400032
365610149904921555392748616477613599662190674795168801824208283713 is
an integer with 125 digits, which cannot be factorised by Mathematica 8. Therefore,
Aa0 is not positive semidefinite. Since vAav∗ < 0 still holds for a close enough to a0,
we have a∗ < a0 by Corollary 3.2, where a∗ is the number defined in the Introduction.
We have thus seen that δ1 ≤ δ0 ≤ πa∗ < πa0 = 5π/7. �
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