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Norm of a Bethe vector and the Hessian
of the master function

Evgeny Mukhin and Alexander Varchenko

ABSTRACT

We show that the norm of a Bethe vector in the sl,; 1 Gaudin model is equal to the Hessian
of the corresponding master function at the corresponding critical point. In particular
the Bethe vectors corresponding to non-degenerate critical points are non-zero vectors.
This result is a byproduct of functorial properties of Bethe vectors studied in this paper.
As another byproduct of functoriality we show that the Bethe vectors form a basis in the
tensor product of several copies of first and last fundamental s, 1-modules.

1. Introduction

The Bethe ansatz is a large collection of methods in the theory of quantum integrable models to
calculate the spectrum and eigenvectors for a certain commutative sub-algebra of observables for
an integrable model. Elements of the sub-algebra are called hamiltonians, or integrals of motion, or
conservation laws of the model. The bibliography on the Bethe ansatz method is enormous; see for
example [BIK93, Fad90, FT79).

In the theory of the Bethe ansatz one assigns the Bethe ansatz equations to an integrable model.
Then a solution of the Bethe ansatz equations gives an eigenvector of commuting hamiltonians of
the model. The general conjecture is that the constructed vectors form a basis in the space of states
of the model.

The simplest and most interesting example is the Gaudin model associated with a complex
simple Lie algebra g; see [Bab93, BF94, Fre95, Fre04, FFR94, Gau76, MV00, RV95, SV03, Var95].

One considers highest weight g-modules V},, ..., Vj, and their tensor product VA. One fixes a point
z=(z1,...,2n) € C" with distinct coordinates and defines linear operators Ki(z),..., K,(z) on Va
by the formula
Qi)
Ki(z) = i=1,...,n.
Z( ) Z 2 — Zj7 ’ )

J#i
Here Q07) is the Casimir operator acting in the ith and jth factors of the tensor product.
The operators are called the Gaudin hamiltonians of the Gaudin model associated with Vj.
The hamiltonians commute.

The common eigenvectors of the Gaudin hamiltonians are constructed by the Bethe ansatz
method. Namely, one assigns to the model a scalar function ®(¢, z) of new auxiliary variables ¢ and
a Va-valued function w(t, z) such that w(t’, z) is an eigenvector of the hamiltonians if t° is a critical
point of ®. The functions ® and w were introduced in [SV91] to construct hypergeometric solutions
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NORM OF A BETHE VECTOR AND THE HESSIAN

of the Knizhnik-Zamolodchikov (KZ) equations. The function @ is called the master function and
the function w is called the universal weight function.

The first question is if the Bethe eigenvector w(t?, z) is non-zero. In this paper we show that for
the sl,; Gaudin model the Bethe vector is non-zero if t° is a non-degenerate critical point of the
master function ®. To show that, we prove the following identity:

S(w(t?, 2),w(t?, 2)) = Hess; log ®(t%, 2). (1)

Here S is the tensor Shapovalov form on the tensor product Vj and the right-hand side of the
formula is the Hessian at t° of the function log ®. This formula for sl Gaudin models was proved
in [Var95]; see also [Kor82, Res86, RV95, TV96, MV00].

In this paper we prove the Bethe ansatz conjecture for tensor products of several copies of first
and last fundamental s/,i-modules. Namely, we assume that Vy,,..., Vs, are sl,41-modules, each
of which is either the first or last fundamental sl,.;1-module; then we show that for generic z the
Bethe vectors form an eigenbasis of the Gaudin hamiltonians in the tensor product V. Note that
sls has only two fundamental modules: the first and last.

We also prove the Bethe ansatz conjecture for tensor products of several copies of arbitrary
fundamental representations of sl4.

The Bethe ansatz conjecture for sl.y1 is related to the question of transversality of special
Schubert cycles in the Grassmannian of (r 4+ 1)-dimensional planes in the space of polynomials of
one variable; for more about this relation see [MV04, § 4] and for the corresponding transversality
statements see [Sot99] and [EH83].

The formulated results are based on functorial properties of the master function and the universal
weight function studied in this paper. Namely we study the behavior of ® and w when some of the
coordinates of z tend to the same limit. That corresponds to the situation in which the number
of factors in the tensor product VA becomes smaller while the factors become bigger. It turns out
that under this limit the Bethe vectors behave in a reasonable way. That reasonable behavior allows
us to establish some general properties of Bethe vectors under the condition that those properties
hold for some model examples. The properties for the model examples can be checked by direct
calculations. Ideas of that type were exploited earlier in [RV95].

The results of this paper split into two parts: one of them (constructions) is related to any simple
Lie algebra (§§ 2-4); the other one (§§ 5-7) is related to sl,1 and can be considered as applications
or examples of the previous constructions.

The paper is organized as follows. Section 2 contains the definitions of the master function and
universal weight function. We prove there that the universal weight function is well defined on
critical points of the master function. In § 3 we collect information on iterated singular vectors in
tensor products of representations. The functorial properties of the master and universal weight
functions are studied in § 4. Preliminary information on Bethe vectors and their Shapovalov norms
is collected in § 5. In § 6 we prove Theorem 6.1 that the Bethe vectors form a basis in the tensor
product of several copies of first and last fundamental s, 1-modules for generic z. In § 7 we prove
formula (1) using Theorem 6.1.

2. Bethe vectors

2.1 The Gaudin model

Let g be a simple Lie algebra over C with Cartan matrix A = (a;;); ;—;. Let D = diag{dy,...,d,}
be the diagonal matrix with positive relatively prime integers d; such that B = DA is symmetric.
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Let h C g be the Cartan sub-algebra. Fix simple roots a1, ..., a, in h* and an invariant bilinear
form (, ) on g such that (o, ;) = d;a; ;. Let Hy, ..., H, € b be the corresponding coroots, (\, H;) =
2(\, i) /(ag, ;) for A € h*. In particular, (o, H;) = a; ;. Let wi,...,w, € h* be the fundamental
weights, (w;, Hj) = 0; ;.

Let Er,...,E. €ny Hy,...,H. €h,Fy,...,F. € n_ be the Chevalley generators of g,

[EZ,F] 573 i 1,j=1,...,m7,
[, H] =0, hh eh,
[ ] <a2’ > 15 hEh,i: )"'ara
[ ] <a747 >F’Z7 h€h7i:1""?7ﬂ?
and
(ad B;)' "9 E; =0, (adF;)'"“F; =0
for all ¢ # j.
) Let (x;)icr be an orthonormal basis in g, and Q =), ; 2; ® x; € g® g the Casimir element. We
ave

E®l+1®2,0Q =0 2)
in U(g) ® U(g) for any x € g. Here U(g) is the universal enveloping algebra of g.
For a g-module V and p € h* denote by V[u] the weight subspace of V' of weight p and by
Sing V'[u] the subspace of singular vectors of weight u,
Sing Vil ={v eV |npv=0,hv = (u, h)v}.

Let n be a positive integer and A = (Ay,...,Ay), A; € h*, a set of weights. For pn € h* let V,, be
the irreducible g-module with highest weight 1. Denote by Va the tensor product Vjy, ® --- ®@ V.

If X € End(V4,), then we denote by X € End(Va) the operator --- ®id ® X ®id®--- acting
non-trivially on the ith factor of the tensor product. If X = 7, X ® Y}, € End(Vj, ® Vj,), then

we set X (1) = 3 Xlii) ® Yk(j) € End(Va).

Let z = (z1,...,2,) be a point in C" with distinct coordinates. Introduce linear operators
Ki(2),...,Kn(z) on Vp by the formula

Ki(z) =)

J#

The operators are called the Gaudin hamiltonians of the Gaudin model associated with V5. One can
check directly that the hamiltonians commute, [K;(2), K;(z)] = 0 for all 4, j.

The main problem for the Gaudin model is to diagonalize simultaneously the hamiltonians;
see [Bab93, BF94, Fre95, Fre04, FFR94, Gau76, MV00, RV95, SV03, Var95].

One can check that the hamiltonians commute with the action of g on Vi, [K;(z),z] = 0 for
all ¢+ and = € g. Therefore it is enough to diagonalize the hamiltonians on the subspaces of singular
vectors Sing Va[p] C Va.

Qi)

, t=1,...,n.
ZZ'—Zj

The eigenvectors of the Gaudin hamiltonians are constructed by the Bethe ansatz method.
We recall the construction in the next section.

2.2 Master functions, critical points, and the universal weight function

Fix a collection of weights A = (A1,...,A,), A; € h™, and a collection of non-negative integers
l=(1,...,0;). Denote l =11 +---+1l,, A=A +---+ Ay, and a(l) = Loy + -+ - + [y
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Let ¢ be the unique non-decreasing function from {1,...,1} to {1,...,r} such that #c (i) = I;
for i =1,...,r. The master function ®(t,z, A,l) is defined by

ot,z, A1) = [ (2 — 2™ HH i —za) @D TT (s — ty)(@e2e0)

1<i<j<n i=1 s=1 1<i<j<l
(see [SV9I1]). The function ® is a function of complex variables t = (t1,...,%), 2 = (21,---, 2n),
weights A, and discrete parameters I. The main variables are t; the other variables will be considered
as parameters.

For given z,A,l, a point ¢ with complex coordinates is called a critical point of the master
function if the following system of algebraic equations is satisfied

" (s> As) (Qe(i)s Q) .
—Zﬁ‘i‘z"izo, ZZl,...,l. (3)

s=1 JJ#
In other words, t is a critical point if

<<I> 12?)(1&):0, fori=1,...,1

By definition, if t = (t1,...,#) is a critical point and (a(;), acj)) # 0 for some i, j, then t; # t;.
Also if (@), As) # 0 for some i, s, then ¢; # z;.

Let ¥; be the permutation group of the set {1,...,l}. Denote by ¥; C X; the subgroup of
all permutations preserving the level sets of the function c¢. The subgroup ¥; is isomorphic to
¥y, X -+ x Y, and acts on C! permuting coordinates of ¢. The action of the subgroup ¥; preserves
the critical set of the master function. All orbits of 3; on the critical set have the same cardinality
! 1

Consider highest weight irreducible g-modules Vj,, ..., Va, , the tensor product VA = V), ®---®
VA,,, and its weight subspace VA[A — a(l)]. Fix a highest weight vector v, in Vj, for all .

We construct a rational map
w:C x C" = VA[A — a(l)]

called the universal weight function.

Let P(l,n) be the set of sequences I = (i ,...,1]11, ooyt .., i7 ) of integers in {1,...,7} such
that, for all ¢+ = 1,...,r, the integer i appears in [ prec1sely l; times. For I € P(l,n), and a

permutation o € X, set 01(i) = o(i) for i = 1,...,j1, and o5(i) = o(j1 + -+ + js—1 + @) for
s=2,...,nand i=1,...,j, Define

S(I)={o €% |clos(§) =i fors=1,....,nand j =1,...j.}.
To every I € P(l,n) we associate a vector
FIU:FZ,%...]:'Z%UA1 ® - ® Fip - Fin v,
in VA[A — «(1)], and rational functions
WEo = Woy(1),...01(j1) (21) *** Won(1),....om(n) (Zn)5

labeled by o € (1), where
1

til - tiz) e (tij—l - tij)(tij - 28) .

wil,...,ij(zs) = (

We set

w(z,t) = Z Z wr,oFrv. (4)

I€P(Ln) oes(l)
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Ezamples. 1 1 = (1,1,0,.

w(t,z) =

.,0), then
1
(t1 — t2)(t2 — 1) (tz —t1)(t1 — 21)
1 1
+ Fiop, ® Fhop, +
(t1 — 21)(t2 — 22) o 2T (ta — z1)(t1 — 22)
1 1
+ vp, ® FyFov
(t—t)ta—z) 12 Aa (tz —t1)(t1 — 22)
Ifli=(2,0,...,0), then

F1Fyop, @ vp, +

FyFroa, @ vg,

Fovp, @ Frog,

A, ® F2F1UA2.

1 1
wit:2) = ((tl “H)(t— 1) | (2 —t)(0 - 21)

>F12UA1 ® VA,

1 1
+ + Frop, @ Fioa
(m—axm—@> @—mxn—aﬂ P

1 1
+ + vp, @ Fuy,.
(m—mwrwg ur¢mw—@>Al o

The universal weight function was introduced in [SV91] to solve the KZ equations; see
[SVI1, FSV95, FMTV00]. The hypergeometric solutions to the KZ equations with values in
Sing VA[A — a(1)] have the form

I(Z)Z/ ®(t, 2, A, 1)V w(t, z) dt.
v(2)

LEMMA 2.1. Assume that z € C" has distinct coordinates. Assume that t € C! is a critical point of
the master function ®( ., z, A,l). Then the vector w(t, z) € VA[A — a(l)] is well defined.

Proof. The rational function w of ¢t and z may have poles at hyperplanes given by equations of the
form ¢; —t; = 0 and t; — z; = 0. All of the poles are of first order. We need to prove two facts:

(i) If (i), ae(jy) = 0 for some 4 and j, then w does not have a pole at the hyperplane ¢; —t; = 0.
(ii) If (i), As) = 0 for some 7 and s, then w does not have a pole at the hyperplane t; — z; = 0.
Assume that (ae;), ;) = 0 for some i and j. From formulas for wy , it follows that the residue of
w at t; —t; = 0 belongs to the span of the vectors in VA having the form

Fl% "'Fijl.lvl\l R ® Fz’f "'(Fc(i)Fc(j) — Fc(j)Fc(i)) . "FZ?SUAS ® - ®Fz‘{b . F’Z’Jnn,UAn

But the element F.;) F;) — Fi(j)Fe@) acts by zero on V. Hence w is regular at ¢; — ¢; = 0.

Assume that (o, As) = 0 for some i and s. From formulas for wy , it follows that the residue
of w at t; — zs = 0 belongs to the span of monomials
such that FZ-§ = Fi). But Fva, = 0 in the irreducible g-module Vj,. Hence w is regular at
t, — 25 = 0. Ol

THEOREM 2.1. [RV95] Assume that z € C" has distinct coordinates. Assume that t € C' is a critical
point of the master function ®( ., z, A,l). Then the vector w(t,z) belongs to Sing VA[A — a(l)] and
is an eigenvector of the Gaudin hamiltonians Ki(z), ..., K,(2).

This theorem was proved in [RV95] using the quasi-classical asymptotics of the hypergeometric
solutions of the KZ equations. The theorem also follows directly from Theorem 6.16.2 in [SV91];
cf. Theorem 7.2.5 in [SV91], and see also Theorem 4.2.2 in [FSV95].

The values of the universal weight function at the critical points (with respect to t) of the master
function are called the Bethe vectors; see [RV95, Var95, FFR94].
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3. The Shapovalov form and iterated singular vectors

3.1 The Shapovalov form

Define the anti-involution 7 : g — g sending F1,...,E,, Hy,...,H,, and Fy,..., F,. to Fy,...,F,,
Hy,...,H,, and Fy,..., E,, respectively.

Let W be a highest weight g-module with highest weight vector w. The Shapovalov form on W
is the unique symmetric bilinear form S defined by the conditions:
S(w7w) =1, S(mu,v) = S(’LL,T(%‘)’U),
for all u,v € W and z € g; see [Kac90]. The Shapovalov form is non-degenerate on an irreducible
W and is positive definite on the real part of W.

Let Va,,...,Va, beirreducible highest weight modules and VA their tensor product. Let vy, €
Vi, be a highest weight vector and S; the corresponding Shapovalov form on Vj,. Define a symmetric
bilinear form on Vj by the formula

S=51®--®S5. (5)
The form S will be called the tensor Shapovalov form on V.

LeMMA 3.1 [RV95]. The Gaudin hamiltonians K1(z), ..., K, (z) are symmetric with respect to S,
S(Ki(2)u,v) = S(u, K;(z)v) for all i, z,u,v.

3.2 Iterated singular vectors

Let nq,...,n, be positive integers. For p = 0,1,...,k fix a collection of non-negative integers
= ). Set 1l =10+ +- - +1F alP) = lar+- -+ Fap, n=ny+-+ng, P =5+ +17,
and [ =104+ 1" +..- 41k Forj=1,...,r set lj:lg-)—i-l]l-—k---—kl;?. We have [ =11 + -+ - + [,

For p = 1,...,k fix a collection of weights AP = (A}, AL, ... A} ),A” € h*. Denote by A the
collection of n weights A, p=1,... ki =1,...,n,. Set AP = AF +.-. + Al A=Al +... + AR
Set A? = (AY,...,AY) where

Ay = A —a(l")
forp=1,....k Set A =AY +... + AV,
Consider the tensor products
Vao = Vag @ -+ ® Vyo,
VAP:VA?{®"'®VAZP7 forp=1,...,k,
VA=VA1® - @ Vpr
:VA}®"'®VA%1®"'®VA’1€®"'®VAgk-

Let S° be the tensor Shapovalov form on Vo, SP the tensor Shapovalov form on Vjp, and S =
S ®---® S* the tensor Shapovalov form on V.

_ _ -1 -1 . .-np -Tlp .
Top=1,....kand I = (iy,...,0;;...5%; "“’Zjnp) € P(I?,n,) we associate a vector

Froap =Fy - Fuvpp @+ Q@ Finp - Finp vpp
1 M iy i np

Inp

in VaAp[AP — a(1P)]. Assume that for p =1,...,k a singular vector

war = Y djFruae € Sing Var[A? — a(IP)]
IeP(lP,np)

is chosen. Here CLZ; are some complex numbers.
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To every I = (if,... ,ijl-l; coik ,z;“k) € P(1° k) we associate a vector

in Vpo[A — ZI;:o a(lP)]. Assume that a singular vector

W0 = Z a?Fon € Sing Viao [A —
TeP(10,k)

k
a(lp)]
p=0
is chosen. Here a(} are some complex numbers.

To every I € P(1%, k) we also associate a vector

J1 Ik

in VaA[A =5 ’;:0 a(IP)]. Here Fip - -+ Fip war denotes the action of Fip --- Fir on the vector war in
Jp JIp
the g-module Vpp.

The vector
k
w = Z AV Frw e Vy [A — Za(lp)} (6)
IeP(10,k) p=0
is called the iterated singular vector with respect to the singular vectors wao, Wp1,. .., wak. It is easy

to see that w is a singular vector in V.

LEMMA 3.2. We have

k
S('w,w) = H Sp('wAp,’LUAp).
p=0

4. Asymptotics of master functions and Bethe vectors

4.1 Asymptotics of master functions

In this section we consider a master function ®(¢, z, A,1) and assume that parameters A,l do not
change while z depends on a complex parameter . We assume that z has a limit as € tends to zero.
We study the limit of the master function, its critical points, and its Bethe vectors as € tends to

Zero.

We use the notation of § 3.2.
Let z = (z1,...,2,). For s = 1,...,n we assign the weight Als’_m_,,,_npi1 to the coordinate zg if
ny+-+ny g <sKng+ -+ (7)

With this assignment we consider the master function ®(t, z, A, 1) with t = (¢1,...,t).

Introduce the dependence of z = (21,...,2,) on new variables ¢ and (y¥) as follows. Let y° =
(0, . y)). Forp=1,....klet y? = (y},... ,uh,). Let y = (y¥) wherep=0,...,kandi=1,...,k
iftp=0andi=1,...,n,if p=1,... k. Set

ZS(y7 6) = yg + Eyg—nl—---—np_p (8)
if s satisfies (7).

If the variables y are fixed and € — 0, then the coordinate z4(y,€) in (8) tends to y) and the

ratio (zs(y,€) — yg)/e has the limit y?_, _

e Np o1t

Let z = 2z(y, €) be the relation given by formula (8).
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We rescale the variables ¢ of the master function ®(t,z(y,€), A, 1) as follows. Introduce new
variables u = (u) where j = 0,1,...,kand i =1,...,1/. If
Wttt <i<lhi+-+l+1)
then we set
_.0
b = U0t l0_ i (It 1) (9)
If
Dt + 04+ P << g+ 4+
then we set

ti=yp + euf,; (10)

ooetl?_ i (el AT
Let t = t(u,€) be the relation given by formulas (9) and (10). The relation t = t(u,€), given by
formulas (9) and (10), will be called the rescaling of variables t with respect to the parameters
19,...,1% or simply the (1°,...,1%)-type rescaling.

We study the asymptotics of the function ®(t(u,€), z(y,€), A, 1) as € tends to zero.

To describe the asymptotics we use the master functions ®(u?, y?, AP, IP), p = 0,...,k. Here
P = (uf,...,ul,) for p = 0,... k; 0 = (), y0); yP = (Y, ... yn,) forp =1, k; AP =
(A, A},) for p=0,...,k;and 1P = (If,...,I) for p=0,... k.
LEMMA 4.1. Let all the parameters AV be fixed. Fix a compact subset K C C! x C" in the

177

(u,y)-space such that the y?, . ,yg coordinates of points in K are distinct. Assume that € tends
to 0. Then
k
O(t(u,€), 2(y, ), A1) = VA1 (1 O uyy)) [] (P, 7, AP, 17).
p=0

Here N(A,1',... 1) is a suitable constant. The function O(e,u,y) is holomorphic in C x C! x C"
in a neighborhood of the set {0} x K and O(e,u,y)|e=g = 0.

4.2 Asymptotics of critical points
We keep the notation of § 4.1.

Let y°(x) = (49 (%), ...,y2(x)) be a point in C¥ with distinct coordinates. Let u®(x) = (ud(x),. ..,
u?o(*)) be a non-degenerate critical point of the master function ®(-,y°(x), A°,1°).

For p = 1,...,k let y?(*) = (4 (*),...,yh,(*)) be a point in C™ with distinct coordinates.
Let wP(x) = (uf(%),...,u},(*)) be a non-degenerate critical point of the master function
q)('v yp(*)’ Ap’ lp)‘

LEMMA 4.2. There exist unique functions uf(e), where p = 0,...,k andt=1,...,k if p =0 and
t=1,...,n, if p=1,... k, with the following properties.

(i) The functions u!(€) are holomorphic functions defined in a neighborhood of € = () in C.
(i) We have u?(0) = u?(x) for all p,i.
p

(iii) For all non-zero € in a neighborhood of e = 0 in C the point u(e) = (u; (€)) is a non-degenerate

critical point of the function ®(t(u,e€), z(y(x),€), A, 1) with respect to the variables u = (uf).

2

Lemma 4.2 follows from Lemma 4.1 with the help of the implicit function theorem.

Let u(e) be as in Lemma 4.2. Then for small non-zero ¢, the point t(e) = t(u(e),e) € C' is
a non-degenerate critical point of the master function ®(-, z(y(x),€), A,l). This family of critical
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points t(e) of ®(-,z(y(x),€),A,l) will be called the family of critical points associated with the
(19, ... 1%)-type rescaling and originated at the critical points u® (%), ..., uF(x) of the master functions
O(-,y0(x), A%, 10), ..., ®(-, 9% (%), A* 1¥), respectively.

4.3 Asymptotics of Hessians
If f is a function of ¢1,...,t, and t(x) = (t1(x),...,t,(*)) is a point, then the determinant
0% f
det t
i,j:ﬁ...,n atiatj ( (*))
is called the Hessian of f at t(x) with respect to wvariables t = (ti,...,t,) and is denoted by
Hess, f(t(x)).

LEMMA 4.3. Let t(e) be the family of non-degenerate critical points of the master function
®(-, z(y(*),€), A, 1) associated with the (1°, ... 1¥)-type rescaling and originated at the critical points

u®(%),...,u"(x) of the master functions ®(-,y°(x), A%, 1°), ..., ®(-,y*(x), A* 1¥), respectively. Then
1 k k
lin%) U+ Hess, log ®(t(e), 2(y (%), €), A, 1) = H Hess,» log @ (uP (x), yP (%), AP 1P).
e— 720

4.4 Asymptotics of Bethe vectors
Let t(e) be the family of non-degenerate critical points of the master function ®(-, z(y(x),€), A, 1)

associated with the (1°,...,1¥)-type rescaling and originated at the critical points u®(x), ..., u" (%)
of the master functions ®(-,3°(x), A?,1°), ..., ®(-,y¥(x), A¥ 1¥), respectively.
Let

k
S(te) (3(),) € Sing Va [ A = Y~ @)
p=0
be the Bethe vector corresponding to the critical point t(€) of ®(-, z(y(x*),€), A, 1).
For p=20,...,k let
w(u (%), 4" (*)) € Var[A” — a(IP)]
be the Bethe vector corresponding to the critical point u?(x) of ®(-, yP(*), AP, IP).

Let
k
Wy 0,wp1ywar € OING VA [A — Z a(lp)}
p=0
be the iterated singular vector with respect to singular vectors wpo,wp1,...,wpk.

LEMMA 4.4. We have
el _
W(t(E), 2Y(£),€)) = Waryg opsrions

Lemma 4.4 easily follows from the formula for the universal weight function by repeated appli-
cation of the identity
1 1 1

(ti —t5)(t; —tn)  (ti —tg)(t; —tg) " (ti —t5)(ti —tr)

4.5 Asymptotics of hamiltonians
In this section we keep the notation and assumptions of § 4.4.

For s = 1,...,n, let Ks(z) : VA — VA be the Gaudin hamiltonian associated with the ten-
sor product Vo and the point z € C™. Let cs(€) be the eigenvalue on the Bethe eigenvector
w(t(e), z(y(x),€)) of the operator Kq(z(y(x),¢€)).
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For i = 1,...,k, let K;(y°(x)) : VAo — Vjo be the Gaudin hamiltonian associated with the
tensor product Vo and the point y°(x) € C*. Let ¢)(u(x),y°(*)) be the eigenvalue on the Bethe
eigenvector w(u’(x),y°(x)) of the operator K;(y°(x)).

For p =1,...,kand i = 1,...,n,, let K;(y”(x)) : Va» — Var be the Gaudin hamiltonian
associated with the tensor product Var and the point y?(x) € C"». Let c(u?(*),yP(*)) be the
eigenvalue on the Bethe eigenvector w(u(x), yP(x)) of the operator K;(yP(x)).

Consider the tensor product Va as the tensor product Va1 ® --- @ Vr of k g-modules. For ¢ =
1,..., k, consider the Gaudin hamiltonian I?Z(yo(*)) : VA — VA,

k ..
~ O@7)
Ki(y"()) = Y 0o
i Y () = i)

associated with those k& g-modules and the point 3°(x) € C*. For p = 1,...,kand i = 1,... M,
denote by K;(37(x))®) the linear operator on Vj = Va1 ®- - -® Vpr acting as K;(yP(x)) on the factor
Var and as the identity on other factors of that tensor product.

LEMMA 4.5. Let s € {1,...,n} and s satisfies (7). If n, = 1, then
lim 7, (2(y° (+), €)) = Kp(y°(+)
and
lim ei(e) = c)(u’(+), 4°(+))
Ifn, > 1, then
lim K, (=05 (4), ) = Koy vty ) (7 ()
and

lim ec;(e) = Cf_(nl+,,,+np_l)(up(*),yp(*)).

e—0

5. Norms of Bethe vectors and Hessians

5.1 The z-dependence of the norm of a Bethe vector
We use the notation of § 2.2.

Fix a collection of weights A = (Ai,...,A;,) and a collection of non-negative integers | =
(l1,...,1). Consider the master function ®(t, z, A, 1).
Let 20 = (29,...,20) be a point with distinct coordinates. Let Y = (£9,...,t)) be a non-

degenerate critical point of the master function ®(-, 2%, A,1). By the implicit function theorem there
exists a unique holomorphic C'-valued function ¢ = #(z), defined in the neighborhood of z° in C,
such that #(z) is a non-degenerate critical point of the master function ®(-,z, A,1) and #(z°) = ¢°.
Let w(t(z), z) € Sing VA[A—a(l)] be the corresponding Bethe vector. Let S be the tensor Shapovalov
form on Vj.

THEOREM 5.1 [RV95]. We have
S(w(t(z),2),w(t(z),z)) = C Hess;log ®(t(2), 2, A, 1), (11)
where C does not depend on z.

CONJECTURE 5.1 [RV95]. The constant C in (11) is equal to 1.

The conjecture is proved for g = sly in [Var95]. We prove the conjecture for g = sl in
Theorem 7.1.
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5.2 The upper bound estimate for the number of critical points

Fix a collection of integral dominant g-weights A = (A,...,A,) and a collection of non-negative
integers I = (ly,...,[,). Consider the master function ®(¢, z, A,1) and its critical points with respect
to t. Recall that the group ¥; = ¥;, x --- x ¥ acts on the critical set of ®.

THEOREM 5.2. If A —a(l) is not a dominant integral g-weight, then the master function ®(-, z, A, 1)
does not have isolated critical points; see Corollary 5.3 in [MV03].

If A—a(l) is a dominant integral g-weight, then the master function ®(-, z, A, 1) has only isolated
critical points; see Lemma 2.1 in [MV04].

If g = sly+1 and A — a(l) is a dominant integral sl,;1-weight, then the number of the ¥;-orbits
of critical points of the master function ®(-, z, A, 1), counted with multiplicities, is not greater than
the multiplicity of the irreducible sl,1-module V) _ ) in the tensor product Vy; see Theorem 5.13

in [MV04].
If g = slo, the weight A — a(l) is a dominant integral sla-weight, and the coordinates of the point
z = (z1,...,2y) are generic, then the number of critical points of the master function ®(-, z, A, 1) is

equal to the multiplicity of the irreducible sly-module V) _ () in the tensor product Va. Moreover,
in that case all critical points are non-degenerate; see Theorem 1 in [SV03)].

5.3 Tensor products of two sl,;1-modules if one of them is fundamental

Let A be an integral dominant sl,i-weight, wq,...,w, the fundamental sl,;i-weights. Set e; =
Wy, €9 = Wy — Wi, ...,Ep = Wp — Wp_1,641 = —W,. For p=1,... 7 we have
Vi Vi, = DV, (12)
o

where the sum is over all dominant integral weights p such that p = XA +e; +---+¢;,, 1 <ip <
e <y <+ 1

For example, if A, u are dominant integral sl,ii-weights, then V, enters V) ® V,,, if and only if
A=p—wi+ Y5 o for some i <r.

Notice also that if A, i are dominant integral sl -weights, then V, enters V) ® V,,, if and only
if A =p —w, + 377 a; for some i < 7.

Consider the pair A = (A1, Ag) where A; is an integral dominant sl,;1-weight, and Ay = wy.
Write Ay = Z;Zl Ajw; for suitable non-negative integers ;. Let I = ({y,...,0,) = (1,...,1;, 0541,
..., 0) for some i < r. Assume that 1 = Aj+w; —a(l) is an integral dominant weight. Let z° = (0, 1),
and ¢t = (t1,...,t;). Consider the master function ®(t,2°, A,1).

Let S be the tensor Shapovalov form on Vi, ® Vi, .

THEOREM 5.3 [MVO00]. Under the above assumptions the function ®(-, 2" A,l) has exactly one
critical point, denoted by t° = (19, ... ,t?). The critical point t° is non-degenerate. The coordinates
of 9 are given by the formula

P AL N i e m A
m=1

j=1,...,i. (13)

The Bethe vector w(t’, 20) € Sing Va, ® Vi, [A1 + w1 — a(l)], corresponding to the critical point t°,
has the property

S(w(t?,29),w(t%, 2°)) = Hess; log ®(t°, 2°, A, 1).

Similarly consider the pair A = (A, A2) where A; is an integral dominant sl,;1-weight, and
Ay =w,. Let L= (ly,...,0;) = (0,...,0;, Li41,...,1) for some i < r. Assume that p = A; +w, —a(l)
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is an integral dominant weight. Let 2% = (0,1), and ¢ = (¢1,...,¢,_;). Consider the master function
d(t, 20 A, 1).
Let S be the tensor Shapovalov form on the tensor product Vj, ® V,,.

THEOREM 5.4 [MVO00]. Under the above assumptions the function ®(-,z° A,l) has exactly one
critical point, denoted by t°. The critical point t° is non-degenerate. The Bethe vector w(t’, z2°)
€ Sing Vi, ® Vi, [A1 + w, — a(l)], corresponding to the critical point t°, has the property

S(w(t’, 2%),w(t?,2°)) = Hess; log ®(1°, 2°, A, 1).

The formulas for coordinates of the critical point in Theorem 5.4 can be easily deduced from
formula (13).

5.4 Tensor products of two sly-modules if one of them is the second fundamental

If A\, ;v are dominant integral sly-weights, then V), enters V\ ® V,,, if and only if A\ = y— w3 + ¢ where
0 = 0 or § is one of the following five weights:

o, Q1+ ay, ay+az, ap+ay+az, a4+ 2a0 + as. (14)
For each ¢ in (14), write § = lyaq + 1o+ 133 for suitable non-negative integers ;. Set I = (I, 1, 13),
l=l14+1l+13, A= ()\,wg), 20 = (0, 1), and t = (tl,... ,tl).
Consider the master function ®(t,2°, A,1).

THEOREM 5.5. Let A\, u be dominant integral sl4-weights, such that A = u — wo + 0 and ¢ is one
of the weights in (14). Then the function ®(-,z°, A,1) has exactly one critical point t°. The critical
point t° is non-degenerate. The Bethe vector w(t’, z°) € Sing V) ® Vi, [u], corresponding to t°, is a
non-zero vector.

Proof. If § is as, a1 + a, or as + ag, then the theorem follows from Theorems 5.3 and 5.4.
If § is a1 + a9 + ag or ag + 2as + ag, then the theorem is proved by direct verification. Namely,
let A = A\wi + Aawy + A\sws. If § = aq + as + a3, then one can check that t¥ = (t(l), 19, tg), where
19— A(A1+ A2+ A3+ 2) 0_ M tAaFA3+2
M+DM+A+X3+3)7 2 M+Ad+A3+3
A3(A1+ A2 + A3+ 2)
As+1)(A1+ A2+ A3+ 3).
If § = a1 + 22 + g, then one can check that t° = (£9,¢9,19,9), where

toz()\1+)\2+1)()\1+)\2+)\3+2) toz()\2+)\3+1)()\1+)\2+)\3+2)
T O+ +2) M +2+23+3) 4 Qa+x+2)M +A+A3+3)

(A1 422 + A3 +4) (A1 A3 + 2A1 A2 + 2X0A3 + 2()\2)2 +2X\] +6Xy +2)\3 +4)

19 =

A+ 1A+ A2 +2)( A2+ A3+ 2) (A1 + Ao+ A3 + 3)
tOtOZ )\2()\1+)\2+1)()\2+)\3+1)()\1 —l—)\2+)\3+2)
237 Do+ DM+ A +2) e+ A3+ 2)(A1 + A2 + A3 +3)°
One easily verifies the statements of the theorem using those formulas. O

6. Critical points of the sl,; master functions with first and last
fundamental weights

Let A = (Aq,...,A;) be a collection of sl,;1-weights, each of which is either the first or last
fundamental, i.e. A; € {wy,w,}. Let I = (Iy,...,1,) be a sequence of non-negative integers such that
A — a(l) is integral dominant; here A = A; +--- + A, and o(l) = lhag + -+ + L.
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Consider the master function ®(t,z,A,l) where t = (t1,...,t),l =11 +---+ 1, and z =
(21,...,2n). Recall that the group 3; =3, x --- x ¥;, acts on the critical set of ®(-, z, A, ).

THEOREM 6.1. For generic z the following statements hold:
(i) The number of X¥y-orbits of critical points of ®(-,z, A1) is equal to the multiplicity of the

slyy1-module V. in the tensor product V.

(ii) All critical points of ®(-, z, A,l) are non-degenerate.

(iii) For every critical point t°, the corresponding Bethe vector w(t’, z) has the property

S(w(t®, 2),w(t?, 2)) = Hess; log ®(t°, z, A, 1).

(iv) The Bethe vectors, corresponding to orbits of critical points of ®(-,z, A1), form a basis in
Sing Va[A — a(1)].

Proof. The proof is by induction on n. If n = 2, then the theorem follows from Theorems 5.3 and

5.4.

Assume that Theorem 6.1 is proved for all tensor products of n — 1 representations, each of
which is either the first or last fundamental. We prove Theorem 6.1 for the tensor product Va

of n given representations Vj,,..., Vs, , each of which is either the first or last fundamental, and
the given sequence I = (I1,...,l,). We will use the notation and results of §§ 3.2 and 4.
We may assume that A,, = wi. We may obtain that result by either reordering Aq,..., A, or

using the automorphism of sl which sends F;, H;, F;, oy, and w; to Eyi1—4, Hpp1—4, Frp1—i,
Qrt1—i, and wy4q—4, respectively.

Introduce nq,...,n, and AL, ... AF (as in § 3.2) using the following formulas. Set k = 2,
n=n—1,ng=1 A" = (A;,Aa,..., A1), A2=(N,), Va1 =Vp, ®--- @V, ,, Va2 = Vj,, and
VA=VAar@Vae =V3, ®@--- @ V), , @ Va,.

Consider the set M’ of the r + 1 integral weights A — w; — a(l), A — w1 — a(l) + aq, ...,
A—w; —a(l)+aj + -+ a,. Denote by M the subset of all u € M’ which are dominant.

Denote by mult(s; A1, ..., Ap) the multiplicity of V,, in V), @ --- ® V). We have

mult(A — a(l); Ay, ..., Ay) = Z mult (p; Aq, ..o, Ap—1).
neM

To prove parts (i) and (ii) of the theorem we will introduce a dependence of z on € so that
Z1,...,2n—1 tend to 0 as ¢ — 0 and z, tends to 1. Using the results of § 4 we will construct
non-intersecting sets of 3j-orbits of critical points of ®, depending on ¢, labeled by u € M, and
consisting of mult(u; Ay, ..., A,_1) elements each. Together with Theorem 5.2 it will prove parts (i)
and (ii).

More precisely, introduce the dependence of z = (z1,...,2,) on the new variables € and y =
(W) =N, 43, ut,...,yt_,) as follows. Set

zs(y, ) =) +eyl, s=1,...,n—1,
Zn(ya 6) = yg (15)
Let z = z(y, €) be the relation given by formula (15). Set 3° = (y?,49) and y' = (y1,..., 9L ).
Introduce r + 1 types of rescaling of coordinates t¢; cf. § 4.1.

Type 0 rescaling. Set 1° = (0,...,0), and I* = (I1,...,l.). Introduce new variables u =
(ui,...,u}),

ti=yl +eul, i=1,...,L (16)

This relation t = t(u, €) will be called the type 0 rescaling of variables t. Set u® = 0, u* = (ui, ... ,ull)
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Type m rescaling, m = 1,...,r. Set 1° = (1,...,1,,,0,...,0), and I' = (I; — 1,... 0, — 1,

lm+1,---,1r). Introduce new variables u = (u(f, .. ,u%,u%, .. ,ull_m),

ti:u?, iti=L+---+lj1+1forj=1,...,m,

ti=yl+eu 5, i+l a+1<i<lh+--+lforj=1,...m,

ti=yd+eul . il Ly, < (17)
This relation ¢ = t(u,e€) will be called the type m rescaling of variables t. Set u® = (u?,...,ud),
ul = (ul, ... ui ).

We study the asymptotics of the function ®(¢(u,e€), z(y,€), A,1) as € tends to zero for each of
the r + 1 rescalings.

To describe the asymptotics we use the master functions ®(u?,y?, AP, IP), p = 0,1. Here the
collections A' = (Ay,As,..., A1), 1°,1', and the variables u” and 3P have already been defined
for each of the 7 + 1 rescalings. The collection AY is defined as follows. For the type 0 rescaling we
set A = (A! — a(1'), A,). For the type m rescaling with m = 1,...,r, we set AY = (A — a(l!) +
a4 g, Ay).

The master functions corresponding to the type m rescaling will be provided with the corre-
sponding index: @, (uP,y?, AP, 1), p =0,1.

Let y'(*) = (y1(*),...,9yL _1(x)) be a point with distinct coordinates such that the following
holds:

For m =0,1,...,r, if A —w; — a(l) + a1 + - - + a,;, is dominant, then the master function
., (ut, yl (%), AL, 1Y) has mult(A —wy — a(l) + a1 + -+ + am; A1, ..., Ay_1) distinct orbits of
non-degenerate critical points satisfying parts (iii) and (iv) of Theorem 6.1.

Such y!(*) exists according to the induction assumptions.

Consider the type m rescaling with m = 1,...,7. Put 4°(x) = (0, 1). By Theorem 5.3 the function
@, (-, 9" (%), A%, 19) has one critical point. Denote the critical point by u®(x) = (ul(x),...,ud (x)).

Choose mult(A —wy — a(l) + a1 + -+ + am; A1, ..., A1) critical points of ®,(-,y!(x), A1, 11)
lying in different ¥;, 1 x---x¥; 1 x¥; ., X---x ¥ -orbits. Denote those critical points by ul(*j),
j=1,...,mult(A—w; —a(l)+ay+--+am; AL, ..., Ay_1). Let t(e, j,m) € C' be the family of critical
points of ®(-, z(y(x),€), A, 1) associated with type m rescaling and originated at the critical points
uY(*), and u'(x;) of the master functions ®,,(-,y°(x), A% 1%) and ®,, (-, y! (), A, 1), respectively;
see § 4.2.

Consider the type 0 rescaling. Put y°(*) = (0,1). The function ®¢(u,y°(x), A°,1°) does not
0

depend on u”.

Choose mult(A — w; — a(l);Aq,...,A,_1) critical points of ®g(-,y(x), Al,l!) lying in
different ;, x --- x ¥, -orbits. Denote the critical points by u!(*;), 7 = 1,...,mult(A — w; —
a(l);Aq,...,A,_1). Let t(e,5,0) € C! be the family of critical points of ®(-,z(y(x),¢),A,l)
associated with type O rescaling and originated at the critical point ul(*j) of the master function
Do (-, y (%), AL, 1Y); see § 4.2.

All together we have constructed mult(A — «(l);Aq,...,A,) families of critical points of
O+, z(y(x),¢€), A, ).

The constructed families are all different. Indeed, the families corresponding to the same rescaling
are different by construction. The families corresponding to different rescalings are different because
they have different limits as € tends to 0. Now Theorem 5.2 implies part (i).

All constructed critical points are non-degenerate by Lemma 4.2. This proves part (ii). Part (iii)
is a direct corollary of the induction assumptions, Theorems 5.1 and 5.3, and Lemmas 4.4 and 4.3.

Part (iv) is a direct corollary of the construction and Lemma 4.4. O
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Let A = (Aq,...,A,) be a collection of sly-weights, each of which is fundamental, i.e. A; €
{w1,wa,w3}. Let L = (I1,12,13) be a sequence of non-negative integers such that A — «(1) is integral
dominant; here A = Ay + -+ A, and o(l) = Loy + laas + l303.

Consider the master function ®(t,z,A,l) where t = (t1,...,t),l = Il + 1o + I3, and z =
(#1,...,2n). Recall that the group 3; = ¥;, x ¥;, x ¥, acts on the critical set of ®(-,z, A,l).

THEOREM 6.2. For generic z the following statements hold:
(i) the number of ¥j-orbits of critical points of ®(-,z, A,l) is equal to the multiplicity of the
sly-module Vi _ () in the tensor product Vi ;
(ii) all critical points of ®(-, z, A,l) are non-degenerate;

(iii) the Bethe vectors, corresponding to orbits of critical points of ®(-, z, A, 1), are non-zero vectors
and form a basis in Sing VA[A — a(1)].

The proof of this theorem is parallel to the proof of Theorem 6.1 and is based on Theorem 5.5.

7. Norms of Bethe vectors in the sl,; Gaudin models

Let A° = (A9,...,A?) be a collection of sl integral dominant weights. Let 19 = (19,...,1%) be a
sequence of non-negative integers such that A —a(1%) is integral dominant. Here A® = A +- .-+ A9
and a(1°) = oy + - + 0.

Consider the master function ®(u’, 4%, A% 1°) where u® = (u,... ,u?o),lo =04+ +19 and
v =l ).
THEOREM 7.1. Let y"() € C* be a point with distinct coordinates. Let u’(x) be a non-degenerate
critical point of ®(-,y"(x), A°,1°). Let w(u®(x),4°(x)) € Sing Vpo[A® — a(1°)] be the corresponding
Bethe vector. Let S° be the tensor Shapovalov form on Vpo. Then

Sw(u(%),° (), w(u’ (), 5" (+))) = Hess,o log ®(u’(x), 5" (), A, 1%).
COROLLARY 7.1. The Bethe vector w(u®(x),3°()) is a non-zero vector.

Proof of Theorem 7.1. We deduce Theorem 7.1 from Theorem 6.1 using the results of § 4.

It is known that for each integral dominant sl,,q-weight A\, the multiplicity of V) in Vﬁ” is
positive for a suitable n.

P

For each p = 1,...,k, fix n, such that the multiplicity of VAg in Vﬁn is positive. Set AP =

(wi,...,wi) where w; is taken n, times. Denote by S? the tensor product Shapovalov form on
Vi

We have n,w; — Ag =lay+- -+ o, where IP = (I7,...,1F) is a sequence of non-zero integers.
Set ¥ =W+ -+ & y? = (y7,...,9h,), and v? = (uf,...,u},). Consider the master function

O (uP, yP, AP, IP). That master function satisfies the conditions of Theorem 6.1. Hence there exists
a point yP(x) € C™ with distinct coordinates and a non-degenerate critical point u”(x) € C
of the function ®(-, y?(x), AP, IP) such that the Bethe vector w(uP(x),yP(*)) € Sing Vi [AD] satisfies
the identity:

SP(w(uP (%), 4P (%)), w(uP (%), " (x))) = Hessyr log @(u (%), 3" (+), AP, 1P).
Setn=mng+-Fnp, L=+ +F =0+ -+ 0+ 15, =10+ +I"
Set z = (2F), where p=1,.... k,i=1,...,n, Set A = (AY), wherep=1,...,k,i =1,...,np, and

A? = wy. Assign the weight A? to the variable 2 for every p,i. Set ¢ = (t1,...,t;). Consider the
master function ®(t, z, A, 1).
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Introduce the dependence of variables z on variables u, € by the formula: 2z’ = yg +ey? for all p, i.
Introduce the (1%, ..., 1*) rescaling of variables ¢ by formulas (9) and (10). Let t(¢) € C' be the family
of critical points associated with this rescaling and originated at the critical points u®(x), ..., u"(x)
of the master functions ®(-,3°(x), A, 19), ..., ®(-,y*(x), A*,1¥), respectively; see § 4.2.

Let w(t(e),z(y(x),€)) € Sing V5™ be the corresponding Bethe vector. Let S be the tensor
Shapovalov form on Vf?l". By Theorem 6.1 we have

S(w(t(e), z(y(x), €)), w(t(e), 2(y(*), €))) = Hess;log ®(w(t(e), 2(y(*), €)), A, 1)
Now by Lemmas 4.3, 4.4, and 3.2 we may conclude that
SO w(u (), 5 (), w(u’ (), % () = Hess,o log @(u’ (%), 5° (x), A, 1%). O

Similarly to Theorem 7.1 one can prove the following theorem.

THEOREM 7.2. Let t°(x) be a critical point of ®(-,3°(x), A°,1%). Let w(u®(x),3°(*)) € Sing Vpo[A? —
a(1°)] be the corresponding Bethe vector. Assume that the number
SO’ (%), 5" (%)), w(u’ (), 3 (%))

is not equal to zero. Then t°(x) is a non-degenerate critical point.

COROLLARY 7.2. Let t9(x) be a critical point of ®(-,y°(x), A°,1°) such that the corresponding Bethe
vector w(u®(x),y°(x)) € Sing Vpo[A® — a(1°)] is not equal to zero and belongs to the real part of
Vao. Then t°(x) is a non-degenerate critical point.

The corollary follows from Theorem 7.2 since the Shapovalov form is positive definite on the
real part of Vjo.

Ezample (cf. [RV95]). Let g = sla, AY = (wy,wy,wy), I° = (1), and y°(*) = (1,n,7%), where
n = e*>™/3. Consider the master function ®(t,y"(x), A°,1°) = ((t1)® — 1)~*. The point t°(x) = (0) is
the only critical point of ®. The critical point is degenerate. The corresponding Bethe vector
w(uo(*)7 yo(*)) = _Flvun & Vyyy @ Vg
—772vw1 ® F1uy, @ Uy, — Ny, @ Uy, @ F1vy, € Vo
is a non-zero vector and S°(w(u®(x), (%)), w(ul(x),y°(*))) = 1+ n* + 7% = 0.
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