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A Representation Theorem for
Archimedean Quadratic Modules on
∗-Rings

Jakob Cimprič

Abstract. We present a new approach to noncommutative real algebraic geometry based on the rep-

resentation theory of C∗-algebras. An important result in commutative real algebraic geometry is

Jacobi’s representation theorem for archimedean quadratic modules on commutative rings. We show

that this theorem is a consequence of the Gelfand–Naimark representation theorem for commutative

C∗-algebras. A noncommutative version of Gelfand–Naimark theory was studied by I. Fujimoto. We

use his results to generalize Jacobi’s theorem to associative rings with involution.

1 Introduction

Jacobi’s representation theorem [13, Theorem 5] is important in the study of positive
polynomials on compact semialgebraic sets. Its history and applications are surveyed

in [25]. We will give a functional-analytic proof of this theorem and extend it from

commutative rings to noncommutative ∗-rings. Our motivation comes from non-
commutative real algebraic geometry; see [20]. We hope that this paper will convince

the reader that irreducible ∗-representations should be considered as points of this
geometry. The problem of extending the Positivstellensatz to this context remains

open.

Our work may also be of some interest to functional analysts. In Section 3 we

characterize real C∗-algebras within the class

M = {(A,M) : M is an m-admissible wedge on an involutive ring A}

and extend the notion of an enveloping C∗-algebra from the subclass of Banach

∗-algebras to M. In Section 5 we state and prove the real version of Fujimoto’s CP-

convexity Gelfand-Naimark theorem [12].

As a motivation for later sections we present our version of Jacobi’s representation
theorem for the special case of commutative ∗-rings. Let R be a commutative unital

ring with involution ∗, write

Sym(R) = {a ∈ R : a = a∗} and R+
=

{
∑

i aia
∗

i : ai ∈ R
}

.
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40 J. Cimprič

A subset M of Sym(R) is an archimedean quadratic module if −1 6∈ M, 1 ∈ M,
M + M ⊆ M, R+M ∈ M, and for every a ∈ Sym(R) there exists n ∈ N such that

n ± a ∈ M. Write

Arch(M) = {a ∈ Sym(R) : ∀n ∈ N ∃k ∈ N : k(1 + na) ∈ M}.

The conjugation φ 7→ φ, φ(a) = φ(a), is an automorphism of order 2 on

XM = {φ : R → C : φ is a ∗-ring homomorphism such that φ(M) ≥ 0}.

We equip XM with the topology of pointwise convergence. Finally, let

C(XM ,−) = { f ∈ C(XM ,C) : f (φ) = f (φ) for every φ ∈ XM}

with the natural involution f 7→ f ∗, f ∗(φ) = f (φ). In Jacobi’s original theorem,

∗ was identity, and hence C(XM ,−) = C(XM ,R), and all elements of XM are real
valued.

Theorem 1.1 Let M be an archimedean quadratic module on a commutative unital

∗-ring R. Then the space XM is nonempty and compact. Moreover, the mapping

Φ : R → C(XM ,−), Φ(a)(φ) = φ(a),

is a homomorphism of unital ∗-rings, Q · Φ(R) is dense in C(XM ,−), and

Φ
−1(C+(XM ,−)) = Arch(M).

Proof Let R and M be as above. For every a ∈ R write

nM(a) = inf
{ r

s
: r, s ∈ N, r2 − s2aa∗ ∈ M

}

.

We will prove in Section 3 that I(M) = {a ∈ R : nM(a) = 0} is a ∗-ideal of R and

that nM induces a norm on R/ I(M). Moreover, the completion RM of R/ I(M) in

this norm is an abelian real C∗-algebra. Also, the canonical mapping j : R → RM is a
homomorphism of ∗-rings and j−1((RM)+) = Arch(M).

Let YM be the set of all real ∗-algebra homomorphisms RM → C with the topol-
ogy of pointwise convergence. We will see in Section 4 that the mapping YM → XM ,

ψ 7→ ψ ◦ j has an inverse r : XM → YM , which factors an element of XM through

R/ I(M) and extends it by continuity to an element of YM . The mapping r is a
homeomorphism with respect to the topologies of pointwise convergence on XM and

YM and it commutes with the conjugations on XM and YM . It induces a mapping

r̃ : C(YM ,−) → C(XM ,−), f 7→ f ◦ r, which is one-to-one and onto, an isometry,
and satisfies r̃−1(C+(XM ,−)) = C+(YM ,−).

Note that YM coincides with the spectral space Ω(RM); see [17, Definition 2.7.1,
Theorem 5.2.10 and Theorem 3.2.3 (7) ⇒ (4)]. Since Ω(RM) is nonempty by [17,

Theorem 2.7.3] and compact by [17, Theorem 2.7.2 (4)], so also are XM and YM .

The Gelfand transform Γ : RM → C(YM ,−),Γ(a)(ψ) = ψ(a) is a ∗-isomorphism by
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[17, Proposition 5.1.4] and satisfies Γ
−1(C+(YM ,−)) = (RM)+ by [17, Proposition

5.2.2 (3) and Theorem 2.7.2 (4)].

The mapping Φ can be decomposed as Φ = i ◦ Γ ◦ r̃. Since j,Γ, and r̃ are ho-
momorphisms, so is Φ. Since Q · j(R) is dense in RM and Γ and r̃ are isometries, it

follows that Q ·Φ(R) = r̃(Γ(Q · j(R))) is dense in C(XM ,−). Since r̃−1(C+(XM ,−)) =

C+(YM ,−), Γ
−1(C+(YM ,−)) = (RM)+ and j−1((RM)+) = Arch(M), it follows that

Φ
−1(C+(XM ,−)) = Arch(M).

The main difference in the noncommutative case is that we replace homomor-
phisms by topologically irreducible representations on a Hilbert space of a sufficiently

high dimension. A noncommutative version of Gelfand’s theory is provided by Fuji-

moto’s CP-convexity theory. In Section 6 we will compare our theory with the theory
of ∗-orderings on ∗-rings. Recent generalizations of Jacobi’s theorem by M. Marshall

[21, Theorem 2.3] and I. Klep [16] are not considered here.

2 Quadratic Modules, Definition, and Examples

Let A be a unital ring with involution and Sym(A) = {a ∈ A|a = a∗}. A subset

M ⊂ Sym A is called a quadratic module if

(i) −1 6∈ M,
(ii) 1 ∈ M,

(iii) M + M ⊆ M,
(iv) aMa∗ ⊆ M for every a ∈ A.

In [27], the term m-admissible wedge is used. If ∗ = identity, then our definition

coincides with the definition of a quadratic module in [24].
Write A+ for the set of all finite sums

∑

i aia
∗

i . This is consistent with the notation

Z+,Q+,R+,C+. Clearly, A+ ⊆ M for every quadratic module M. Thus:

Lemma 2.1 The following are equivalent:

(i) −1 6∈ A+,

(ii) A+ is a quadratic module on A,

(iii) A has at least one quadratic module.

A quadratic module M on A is archimedean if for every a ∈ A there exist n ∈ N

such that n − aa∗ ∈ M.

Example 1 If A = R[X1, . . . ,Xn] with ∗ = identity, then −1 6∈ A+. The quadratic

module A+ is not archimedean. A quadratic module M ⊂ A is archimedean if and
only if there exists m ∈ N such that m − ∑n

i=1 X2
i ∈ M; see [19, Corollary 5.2.4].

Example 2 Let A be a real or complex Banach ∗-algebra. Then A+ is an archime-

dean quadratic module on A.

Example 3 Let A = k[G] where G is any group and k is Q , R or C. For every

element a =
∑

i αigi ∈ A, write

a∗ =

∑

i

αig
−1
i , ‖a‖1 =

∑

i

|αi |.
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Clearly, a 7→ a∗ is an involution on A and ‖ · ‖1 is a norm on the ∗-ring A. Since for
every a ∈ A,

‖a‖2
1 − aa∗ =

∑

i< j

|αiα j |
(

1 − αiα j

|αiα j |
gig

−1
j

)(

1 − αiα j

|αiα j |
gig

−1
j

)∗ ∈ M,

A+ is an archimedean quadratic module on A.

Finally, we have several general constructions for producing new quadratic mod-

ules from old ones.

Example 4 For every quadratic module M on A and for every subset S ⊂ Sym(A)

write

MS :=
{

∑

i, j

ai jcia
∗

i j : ai j ∈ A, ci ∈ M ∪ S
}

.

Note that M(S) is a quadratic module if and only if −1 6∈ MS. In this case MS is the

smallest quadratic module which contains M and S.

Example 5 Let M be a quadratic module in A. Then

Me := {a ∈ A : ka ∈ M for some k ∈ N}

is a quadratic module on A,

M ⊗ Q
+ :=

{
∑

i

mi ⊗ ri : mi ∈ M, ri ∈ Q
+
}

is a quadratic module on A ⊗ Q , and (M ⊗ Q+) ∩ A = Me. This example shows that
we may always assume without loss of generality that Q ⊂ A and M = Me. (This

works even if (A,+) has nonzero torsion.)

Example 6 Let A be a unital ∗-ring. The complexification A◦ of A is the set A × A

with the following operations:

(i) (x, y) + (u, v) = (x + u, y + v),

(ii) −(x, y) = (−x,−y),

(iii) (x, y)(u, v) = (xu − yv, xv + yu),
(iv) (x, y)∗ = (x∗,−y∗).

Note that A◦ is also a unital ∗-ring with unit (1, 0). The element i = (0, 1) behaves
as imaginary unit.

Let M be a quadratic module on A. Define

M◦ :=
{

∑

i

(ai , bi)(mi, 0)(ai, bi)
∗ : ai , bi ∈ A,mi ∈ M

}

.

Note that M◦ is a quadratic module on A◦.
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Example 7 Let A be a unital ∗-ring and n ∈ N. The set Matn(A) of all n×n matrices
with entries in A is a unital ∗-ring with involution [ai j]

∗
= [a∗ji].

Let M be a quadratic module on A. We define

Mn :=
{

∑

j







a1 j

...
an j






m j

[

a∗1 j · · · a∗n j

]

: m ∈ M, ai j ∈ A
}

.

Clearly, Mn is a quadratic module on Matn(A).

3 The C∗-Algebra of an Archimedean Quadratic Module

From now on we assume that every ∗-ring is unital and contains Q .

Lemma 3.1 Let M be a quadratic module on a ∗-ring A. For every c ∈ Sym(A) and

every r ∈ Q+ we have r2 − c2 ∈ M if and only if r ± c ∈ M.

Proof If r2 − c2 ∈ M, then

r ± c =
1
2r

(

(r ± c)2 + (r2 − c2)
)

∈ M.

If r ± c ∈ M, then

r2 − c2
=

1
2r

(

(r − c)(r + c)(r − c) + (r + c)(r − c)(r + c)
)

∈ M.

For every element a ∈ A write

nM(a) = inf{r ∈ Q
+ : r2 − aa∗ ∈ M}.

We use the convention inf ∅ = ∞.

Theorem 3.2 Let M be a quadratic module on a ∗-ring A and n = nM . For every

a, b ∈ A and every t ∈ Q we have

(i) n(ta) = |t| n(a),

(ii) n(a) = n(a∗),

(iii) n(ab) ≤ n(a) n(b),

(iv) n(a + b) ≤ n(a) + n(b),

(v) n(aa∗) = n(a)2,

(vi) n(a)2 ≤ n(aa∗ + bb∗).

If there exists an element i in the center of A such that i∗ = −i and i2
= −1, then

assertion (i) holds for every t ∈ Q(i).

Proof Assertion (i) is trivial, and assertion (v) is a consequence of Lemma 3.1. To
prove assertion (ii), it suffices to show that n(a∗) ≤ n(a) for every a ∈ A. This is

clear if n(a) = ∞. Otherwise pick any r ∈ Q+ such that n(a) < r. Since

( r2

2

) 2 −
( r2

2
− a∗a

) 2
= a∗(r2 − aa∗)a ∈ M,
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it follows that r2

2
±

(

r2

2
− a∗a

)

∈ M by Lemma 3.1. Hence n(a∗) ≤ r.

Assertions (iii) and (iv) are true if either n(a) = ∞ or n(b) = ∞. Otherwise, pick

any r, s ∈ Q+ such that n(a) < r and n(b) < s. Since r2 −aa∗ ∈ M and s2 −bb∗ ∈ M,
it follows that

r2s2 − (ab)(ab)∗ = s(r2 − aa∗)s + a(s2 − bb∗)a∗ ∈ M,

so that n(ab) ≤ rs, proving (iii). Since n(ab∗) < rs and n(ba∗) < rs by assertions (ii)

and (iii), we have that

4r2s2 − (ab∗ + ba∗)2
= 2(r2s2 − ab∗ba∗) + 2(r2s2 − ba∗ab∗)

+ (ab∗ − ba∗)(ab∗ − ba∗)∗ ∈ M.

As 2rs ± (ab∗ + ba∗) ∈ M by Lemma 3.1, we get

(r + s)2 − (a ± b)(a ± b)∗ = r2 − aa∗ + s2 − bb∗ + 2rs ± (ab∗ + ba∗) ∈ M.

So, n(a ± b) ≤ r + s, proving (iv).

If n(aa∗ + bb∗) < r for some r, then r − aa∗ − bb∗ ∈ M by Lemma 3.1. Since

bb∗ ∈ M, it follows that r − aa∗ ∈ M. Therefore n(a) ≤ √
r, proving (vi).

Let us say that an element a ∈ A is bounded with respect to M if nM(a) <∞, and

infinitesimal with respect to M if nM(a) = 0. Write B(M) for the set of all bounded

elements and I(M) for the set of all infinitesimal elements (of A with respect to M).
Theorem 3.2 implies the following result.

Corollary 3.3 Take A and M as above.

B(M) is a ∗-subring of A and I(M) is a two-sided ∗-ideal in B(M).

The mapping nM induces a norm ‖·‖ on B(M)/ I(M). Denote by AM the completion

of B(M)/ I(M) with respect to this norm. Then AM is a real C∗-algebra.

If there exists an element i in the center of A such that i∗ = −i and i2
= −1, then

AM is a complex C∗-algebra.

Property (vi) from Theorem 3.2 is very important in the theory of real C∗-algebras
because a C∗-norm with this property extends to a C∗-norm on the complexifica-

tion of the algebra; see [22]. The spectral and representation theories of such real

C∗-algebras work as in the complex case; we refer to [4, 5] or [17].

Example 8 Let A be either a real C∗-algebra with the property ‖a‖2 ≤ ‖aa∗ + bb∗‖
for all a, b ∈ A or a complex C∗-algebra. If M = A+ then

‖a‖ = nM(a) for every a ∈ A,

so that A = AM . Namely, [5, Corollary 4.2.1.16] says that for every x ∈ Sym(A),

‖x‖ ≤ r if and only if r1 ± x ∈ A+ if and only if σ(x) ∈ [−r, r].

https://doi.org/10.4153/CMB-2009-005-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-005-4


A Representation Theorem for Archimedean Quadratic Modules on ∗-Rings 45

Example 9 If M◦ is as in Example 6, then (A◦)M◦
∼= (AM)◦. If Mn is as in Example

7, then Matn(A)Mn
∼= Matn(AM). We omit the proofs because they are straightfor-

ward and because we will not use these results in the sequel.

For every archimedean quadratic module M on a ∗-ring A, the seminorm nM

defines a topology on A with basis B(a, ǫ) = {b ∈ A : nM(b − a) < ǫ}. Write

Arch(M) for the nM-closure of M and Int(M) for the nM-interior of M in A.

Lemma 3.4 Let A, M, nM be as above and x ∈ Sym(A). The following properties of x

are equivalent:

(i) x ∈ Arch(M),

(ii) nM(r − x) ≤ r for some r ∈ Q>0 such that r ≥ nM(x),

(iii) r + x ∈ M for every r ∈ Q>0.

Similarly, the following properties of x are also equivalent:

(i) x ∈ Int(M),

(ii) nM(r − x) < r for some r ∈ Q>0 such that r ≥ nM(x),

(iii) x ∈ r + M for some r ∈ Q>0.

The following result is useful.

Theorem 3.5 Let A, M be as above and denote by j : A → AM the canonical mapping.

For every x ∈ Sym(A),

(i) x ∈ Arch(M) if and only if j(x) ∈ (AM)+,

(ii) x ∈ Int(M) if and only if j(x) ∈ (AM)+ ∩ inv(AM).

Proof To prove assertion (i), pick any x ∈ Sym(A). By Lemma 3.4, x ∈ Arch(M)
if and only if nM(r − x) ≤ r for some rational r ≥ nM(x). Since nM(a) = ‖ j(a)‖
for every a ∈ A, nM(r − x) ≤ r is equivalent to ‖r − j(x)‖ ≤ r. By Example 8 and

Lemma 3.4, this is equivalent to j(x) ∈ (AM)+. Assertion (ii) is similar.

Theorem 3.5 implies the following generalization to C∗-algebras of Stone’s famous

characterization of rings of continuous functions [28].

Corollary 3.6 Let M be a quadratic module on a ∗-ring A. Then A is a C∗-algebra

with positive cone M if and only if

(i) M ∩ −M = {0},

(ii) M is archimedean, i.e., B(M) = A,

(iii) M = Arch(M),

(iv) A is complete in the norm nM .

The next two examples will follow from Theorem 4.4 in Section 4.

Example 10 If A is a real or complex unital Banach ∗-algebra and M = A+ then AM

is exactly the C∗-enveloping of A; see [6, 2.7.2]. Namely, by assertion (i) of Theorem
4.4, nM coincides with the C∗-seminorm ‖ · ‖ ′ in the sense of [6, Proposition 2.7.1].

Example 11 Let G be any group, and denote by C[G] its group ring and by L1(G)

the completion of C[G] in the norm ‖ · ‖1 of Example 3. Note that L1(G) is an
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involutive complex Banach algebra. Its enveloping C∗-algebra is denoted by C∗(G)
and called the C∗-algebra of G; see [6, Section 13.9]. If A = C[G] and M = A+, then

AM = C∗(G).

4 M-Positive Mappings

A positive form on a ∗-ring A is a mapping f : A → C such that f (a+b) = f (a)+ f (b),

f (a∗) = f (a) and f (aa∗) ≥ 0 for every a, b ∈ A.

Proposition 4.1 Let M be an archimedean quadratic module on a ∗-ring A. For every

positive form f on A, the following properties are equivalent:

(i) f (M) ≥ 0.

(ii) | f (s)| ≤ nM(s) f (1) for every s ∈ Sym(A),

(iii) | f (a)| ≤ nM(a) f (1) for every a ∈ A.

Proof Assume that (i) is true and pick s ∈ Sym(A). For every r ∈ Q+ such that

nM(s) < r, we have that r2 − s2 ∈ M, hence r ± s ∈ M by Lemma 3.1. Since
f (M) ≥ 0, it follows that r f (1) ± f (s) = f (r ± s) ≥ 0, hence | f (s)| ≤ r f (1).

Therefore (ii) is true. Conversely, if (ii) is true, pick m ∈ M and r ∈ Q+ such that

nM(m) < r. By Lemma 3.4, nM(r−m) ≤ r. By (ii), |r f (1)− f (m)| ≤ nM(r−m) f (1).
It follows that f (m) ≥ 0. Hence (i) is true.

Assume now that (ii) is true and pick a ∈ A. By the Cauchy–Schwartz inequal-
ity, we have | f (a)|2 ≤ f (aa∗) f (1). Applying (ii) with s = aa∗, we get f (aa∗) ≤
nM(aa∗) f (1). Finally nM(aa∗) = nM(a)2 by Theorem 3.2. It follows that (ii) is true.
Clearly, (iii) implies (ii).

Let A be a ∗-ring and H a complex Hilbert space. A representation of A on H is a
(non-unital) ∗-ring homomorphism from A to L(H), where L(H) is the ∗-ring of all

bounded operators on H. Let us say that a representation ψ of A on H is M-positive

if ψ(m) is positive semidefinite for every m ∈ M.

Proposition 4.2 Let M be an archimedean quadratic module on ∗-ring A and H

a complex Hilbert space. Then every M-positive representation ψ of A on H satisfies

‖ψ(a)‖ ≤ nM(a)‖ψ(1)‖.

Proof Pick ψ ∈ RepM
Z

(A,H). For every ξ ∈ H and a ∈ A, write fξ(a) = 〈ψ(a)ξ, ξ〉.
Clearly, each fξ is a positive form and fξ(M) ≥ 0. By Proposition 4.1, | fξ(s)| ≤
nM(s) fξ(1) for every s ∈ A. It follows that for every a ∈ A,

‖ψ(a)‖2
= sup

ξ

〈ψ(a)ξ, ψ(a)ξ〉
〈ξ, ξ〉 = sup

ξ

〈ψ(a∗a)ξ, ξ〉
〈ξ, ξ〉

≤ nM(a∗a) sup
ξ

〈ψ(1)ξ, ξ〉
〈ξ, ξ〉 = nM(a)2‖ψ(1)‖.

A representation ψ of a ∗-ring A on a complex Hilbert space H is irreducible (resp.

cyclic) if ψ(A)ξ is dense in Hψ := ψ(A)H for every (resp. for some) ξ ∈ H.
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Lemma 4.3 Let M be a quadratic module on a ∗-ring A. For a complex Hilbert space

H there are natural one-to-one correspondences between

(i) the set RepM
Z

(A,H) of all M-positive representations of A on H,

(ii) the set Rep
R

(AM,H) of all R-linear representations of AM on H,

(iii) the set Rep((AM)◦,H) of all C-linear representations of (AM)◦ on H.

The correspondences preserve the property of being irreducible or cyclic.

Proof Every M-positive representation of A on H is continuous with respect to nM

by Proposition 4.2. Hence, it can be factored through A/ I(M) and then extended by

continuity to AM . The continuity implies that the extension to AM is R-linear. The
converse mapping is given by ψ 7→ ψ ◦ j; see Theorem 3.5.

Every R-linear representation ψ of B = AM on H extends to a C-linear represen-

tation ψ◦ of B◦ on H by ψ◦(b ′, b ′ ′) = ψ(b ′) + iψ(b ′′) for every b ′, b ′ ′ ∈ B. The
converse mapping is the restriction mapping π 7→ π|B.

Write IrrM
Z (A,H), IrrR(AM,H) and Irr((AM)◦,H) for the corresponding sets of

irreducible representations. Write IrrM
Z (A) =

⋃

H IrrM
Z (A,H) where H runs through

all complex Hilbert spaces.

Theorem 4.4 Let M be an archimedean quadratic module on A and a ∈ A.

(i) nM(a) = supψ∈IrrM
Z

(A) ‖ψ(a)‖.

(ii) a ∈ Arch(M) if and only if ψ(a) is positive semidefinite for every ψ ∈ IrrM
Z (A).

(iii) a ∈ Int(M) if and only if ψ(a) is positive definite for every ψ ∈ IrrM
Z (A).

Proof By Lemma 4.3 and Theorem 3.5 we may assume that A is a complex C∗-

algebra and M = A+. In this case, the results are known from [6, Sections 2.6 and

2.7]. Namely, assertion (i) follows from [6, 2.7.1 and 2.7.3]; assertion (ii) is a variant
of [6, 2.6.2] which follows from [6, 2.5.4], and Krein–Milman Theorem and assertion

(iii) is another variant of [6, 2.6.2] which follows from [18, remarks after Definition

2.14.6 and Proposition 2.3.13].

Let M be an archimedean quadratic module on a ∗-ring A. Write αi(A,M) =

supπ∈IrrM
Z

(A) dim Hπ . Define αc(A,M) similarly, just replacing irreducible by cyclic

representations. If H is a complex Hilbert space with dim H ≥ αi(A,M), then every
ireducible M-positive representation of A can be realized on H. For such H IrrM

Z (A)

in Theorem 4.4 can be replaced by IrrM
Z (A,H). Let AE

u(IrrM
Z (A,H), L(H)) denote the

set of all mappings γ : IrrM
Z (A,H) → L(H) such that

(i) γ is bounded (i.e., ‖γ‖ := supπ∈IrrM
Z

(A,H) ‖γ(π)‖ <∞),

(ii) γ is equivariant (i.e., γ(u∗πu) = u∗γ(π)u for every π ∈ IrrM
Z (A,H) and every

partial isometry u ∈ L(H) such that uu∗ ≥ the projection on Hπ),

(iii) γ is uniformly continuous (with respect to the weak operator topology on L(H)

and the topology of pointwise convergence on IrrM
Z (A,H)).

The set AE
u(IrrM

Z (A,H), L(H)) is a complex C∗-algebra for pointwise algebraic oper-

ations and the norm γ 7→ ‖γ‖.

For every π ∈ IrrM
Z (A,H) define π̄ ∈ IrrM

Z (A,H) by π̄(a) = π(a)∗ for every

a ∈ A. Write AE
u(IrrM

Z (A,H),−) for the set of all γ ∈ AE
u(IrrM

Z (A,H), L(H)) such that
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γ(π̄) = γ(π)∗ for every π ∈ IrrM
Z (A,H). Note that AE

u(IrrM
Z (A,H),−) is a real C∗-

subalgebra of AE
u(IrrM

Z (A,H), L(H)). Its positive cone AE
u(IrrM

Z (A,H),−)+ is equal to

the set of all γ ∈ AE
u(IrrM

Z (A,H),−) such that γ(π) is positive semidefinite for every
π ∈ IrrM

Z (A,H).

We can rephrase Theorem 4.4 as a generalization of Jacobi’s theorem.

Theorem 4.5 Let M be an archimedean quadratic module on a ∗-ring A and H a

complex Hilbert space such that dim H ≥ αi(A,M). The evaluation mapping

Φ : A → AE
u(IrrM

Z (A,H), L(H)), Φ(a)(π) = π(a),

is a ∗-homomorphism and an isometry. Moreover,

Arch(M) = Φ
−1(AE

u(IrrM
Z (A,H),−)+).

When we compare Theorem 4.5 with Theorem 1.1, the following questions arise.

(i) Is Q · Φ(A) dense in AE
u(IrrM

Z (A,H),−)?
(ii) Is IrrM

Z (A,H) compact in the topology of pointwise convergence?

The answer to question (i) is yes if dim H ≥ αc(A,M); see Theorem 5.3. Note that

properties (ii) and (iii) from the definition of AE
u(IrrM

Z (A,H), L(H)) are not required

in the proof of Theorem 4.5. However, they will be required in the proof of Theorem
5.3. We do not know the answer to question (i) if αi(A,M) ≤ dim H < αc(A,M).

We believe that the answer to question (ii) is no (cf. [3]), but we do not have
an explicit counterexample. There exists a natural compactification of IrrM

Z (A,H),

namely its closure in the set of all additive mappings ψ : A → L(H) of norm ≤ 1.
This follows from the fact that the unit ball of L(H) is compact in the weak operator

topology.

5 The Real CP-Convexity Gelfand–Naimark Theorem

The aim of this section is to prove a real version of the CP-convexity Gelfand–
Naimark theorem from [12] similar to the real Gelfand–Naimark theorem from [17].

Let A be a complex C∗-algebra and H a complex Hilbert space. Let us denote by
AE

u(Irr(A,H), L(H)) the set of all mappings κ : Irr(A,H) → L(H) which are equiv-

ariant, bounded, and uniformly continuous as above. Let αc(A) denote the supre-

mum of dim Hπ where π runs through all cyclic representations of A on all complex
Hilbert spaces. The CP-convexity Gelfand–Naimark theorem from [12] says the fol-

lowing.

Theorem 5.1 Let A be a complex C∗-algebra and H a complex Hilbert space such that

dim H ≥ αc(A). The Gelfand transform

g : A → AE
u(Irr(A,H), L(H)), g(c)(ψ) = ψ(c),

is a ∗-isomorphism and an isometry.
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Now let us turn our attention to the real case. Let B be a real ∗-algebra with
complexification B◦ and H a complex Hilbert space. Write AE

u(IrrR(B,H), L(H)) for

the set of all mappings η : IrrR(B,H) → L(H) which are equivariant, bounded, and
uniformly continuous. Let s : IrrR(B,H) → Irr(B◦,H) denote the natural corre-

spondence of Lemma 4.3. The correspondence s is a homeomorphism with respect

to the topologies of pointwise convergence. The mapping

AE
u(IrrR(B,H), L(H)) → AE

u(Irr(B◦,H), L(H)), η 7→ sηs−1,

is a ∗-isomorphism and an isometry.
For every ρ ∈ IrrR(B,H) we define ρ̄ ∈ IrrR(B,H) by ρ̄(b) = ρ(b)∗ for ev-

ery b ∈ B. Write AE
u(IrrR(B,H),−) for the set of all η ∈ AE

u(IrrR(B,H), L(H))
such that η(ρ̄) = η(ρ)∗ for every ρ ∈ IrrR(B,H). This is a real C∗-subalgebra of

AE
u(IrrR(B,H), L(H)). The mapping

gR : B → AE
u(IrrR(B,H),−), gR(b)(η) = η(b),

will be called the real Gelfand transform. Since gR(b)(ρ̄) = ρ̄(b) = ρ(b)∗ = gR(b)(ρ)∗

for every b ∈ B, it follows that gR(b) ∈ AE
u(IrrR(B,H),−) for every b ∈ B. Hence gR

is well defined. Clearly, gR is a homomorphism of real ∗-algebras.

Theorem 5.2 is a real version of Theorem 5.1.

Theorem 5.2 Let B be a real ∗-algebra and H a complex Hilbert space such that

dim H ≥ αc(B◦). The real Gefand transform gR : B → AE
u(IrrR(B,H),−) is a ∗-

isomorphism and an isometry.

Proof We have a commutative diagram

B◦

g
// AE

u(Irr(B◦,H), L(H))

B

OO

gR

// AE
u(IrrR(B,H),−)

η 7→sηs−1

OO

where the vertical arrows are one-to-one. By Theorem 5.1, g is one-to-one and onto.

It follows that gR is one-to-one. It remains to show that gR is onto.
For every π ∈ Irr(B◦,H) write π̄ for the mapping defined by π̄(c) = π(c̄)∗ for

c ∈ B◦. Note that ρ◦ = (ρ̄)◦ for every ρ ∈ IrrR(B,H). It follows that

AE
u(Irr(B◦,H),−) := {sηs−1 : η ∈ AE

u(IrrR(B,H),−)}

= {γ ∈ AE
u(Irr(B◦,H), L(H)) : γ(π̄) = γ(π)∗ for all π ∈ Irr(B◦,H)}

Pick any c ∈ B◦. Note that g(c̄)(π)∗ = g(c)(π̄) for every π ∈ Irr(A◦,H). It follows
that g(c) ∈ AE

u(Irr(B◦,H),−) if and only if g(c)(π)∗ = g(c̄)(π)∗ for every π ∈
Irr(A◦,H). Since g is one-to-one, this is equivalent to c = c. Since g is onto, it

follows g(B) = AE
u(Irr(B◦,H),−). Hence, gR is onto.
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The following corollary of Theorem 5.2 complements Theorem 4.5.

Theorem 5.3 Let A, M, H, and Φ be as in Theorem 4.5. If dim H ≥ αc(A,M) then

Q · Φ(A) is dense in AE
u(IrrM

Z (A,H),−).

Proof Let r : IrrM
Z (A,H) → IrrR(AM ,H) be the natural correspondence from

Lemma 4.3. Clearly, r is a homeomorphism with respect to the topologies of point-
wise convergence and it induces a mapping

r̃ : AE
u(IrrM

Z (A,H),−) → AE
u(IrrR(AM,H),−), κ 7→ rκr−1,

which is a ∗-isomorphism and an isometry. The diagram

AM

gR

// AE
u(IrrR(AM,H),−)

A

j

OO

Φ
// AE

u(IrrM
Z (A,H),−)

r̃

OO

is commutative. Since dim H ≥ αc(A,M) = α((AM)◦), Theorem 5.2 implies that
gR is onto. We know from Theorem 4.5 that gR is an isometry. It is clear from

the construction of AM in Section 3 that Q · j(A) is dense in AM . Since gR and r̃

are isometries and onto, it follows that Q · Φ(A) = r̃−1(gR(Q · j(A))) is dense in

AE
u(IrrM

Z (A,H), L(H)) = r̃−1(gR(AM)).

6 Comments on ∗-Orderings

When functional analysts and real algebraic geometers talk about ordered complex

∗-algebras, they don’t mean the same thing. For a functional analyst, an ordering on
A is a cone on A, i.e., a subset C ⊂ Sym(A) such that C + C ⊆ C and R+C ⊆ C.

For a real algebraic geometer, an ordering on A is usually a ∗-ordering, i.e., a subset
P ⊆ Sym(A) such that P + P ⊂ P, aPa∗ ⊆ P for every a ∈ A, st + ts ∈ P for every

s, t ∈ P, P ∩ −P is a Jordan prime ideal and P ∪ −P = Sym(A); see [20]. Note that

every ∗-ordering is a cone. The full matrix ring Matn(C) (n ≥ 2) is a typical example
of a complex ∗-algebra that is ordered for a functional analyst and not orderable for

a real algebraic geometer. Another example is group rings C[G], which are always

orderable for a functional analyst, but only in special cases (for certain orderable
groups) for a real algebraic geometer.

Let us recall the motivation for the definition of a ∗-ordering. The most trivial

example is (C,R+). If A is a commutative complex ∗-algebra and φ : A → C is a
hermitian homomorphism, then P := φ−1(R+) ∩ Sym(A) is a natural candidate for

a ∗-ordering. We list its algebraic properties (P + P ⊆ P, PP ⊆ P, aa∗ ∈ P for every
a ∈ P, P ∩ −P is a prime ideal and P ∪ −P = Sym(A)) and take them as axioms of

a ∗-ordering. The noncommutative definition is a modification that makes most of

the commutative theory work.
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A definition of an ordering that is not too restrictive for functional analysts and
not too general for real algebraic geometers should follow the same steps as in the

commutative case. Let us consider the set Πn of all positive semidefinite hermi-
tian matrices on Matn(C) as the simplest ordering. Let A be a complex ∗-algebra,

π : A → Matn(C) an irreducible ∗-representation, and set P = π−1(Πn) ∩ Sym(A).

The algebraic properties of P include the following:

(i) P + P ⊆ P,

(ii) if a, b ∈ P commute, then ab ∈ P,
(iii) aPa∗ ⊆ P for every a ∈ A,

(iv) P ∩ −P is the symmetric part of a prime ideal,

(v) for every primitive hermitian idempotent e ∈ A, eAe is linearly ordered by
P ∩ eAe.

Similar orderings have been considered in [1]. It would be interesting to know

whether an Artin–Schreier theory of such orderings can be developed.
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