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Summary

In any partially inbred population, ‘ junctions’ are the loci that form boundaries between segments
of ancestral chromosomes. Here we show that the expected number of junctions per Morgan in
such a population is linearly related to the inbreeding coefficient of the population, with a maximum
in a completely inbred population corresponding to the prediction given by Stam (1980). We further
show that high-density marker maps (fully informative markers with average densities of up to
200 per cM) will fail to detect a significant proportion of the junctions present in highly inbred
populations. The number of junctions detected is lower than that which would be expected if
junctions were distributed randomly along the chromosome, and we show that junctions are not,
in fact randomly spaced. This non-random spacing of junctions significantly increases the
number of markers that is required to detect 90% of the junctions present on any chromosome:
a marker count of at least 12 times the number of junctions present will be needed to detect this
proportion.

1. Introduction

Several recent studies examining densely spaced gen-
etic markers in human populations have presented
evidence that some regions of the genome are of
limited haplotype diversity (Daly et al., 2001; Reich
et al., 2001; Gabriel et al., 2002). These regions have
been termed ‘haplotype blocks’, and are separated by
regions of higher diversity. Such blocks have been
reported in several regions of the human genome,
including the MHC region of chromosome 5 (Daly
et al., 2001), across the whole of chromosomes 19
(Patil et al., 2001) and 21 (Phillips et al., 2003), and at
randomly selected regions throughout the genome
(Gabriel et al., 2002). It is argued (Johnson et al.,
2001) that if such blocks were present throughout
the genome, they would facilitate whole-genome as-
sociation studies to identify quantitative trait loci
(QTL), as fewer markers would need to be genotyped
to locate a putative QTL within a haplotype block.
This has led to the development of a project to
characterize the diversity of haplotypes in the human

genome: the human HAPMAP project (International
HapMap Consortium 2003).

However, the phenomenon of haplotype blocks is
not completely understood. In the MHC region of
chromosome 5, the regions which separate haplotype
blocks correspond to recombination hotspots (Daly
et al., 2001), but there is evidence that such hotspots
are not necessary for haplotype blocks to form, as
blocks can be observed resulting from simulation
studies of random recombination and genetic drift
only (Zhang et al., 2003). The problem of separating
these two causes, the former an attribute of the
genome, the latter an attribute of the population, is
compounded by the lack of a precise, universally
applicable definition of a haplotype block. Blocks are
often defined as regions where inter-marker linkage
disequilibrium exceeds a certain threshold (e.g.
Jeffreys et al., 2001) or regions where a few haplotypes
can account for most of the observed marker geno-
types (e.g. Patil et al., 2001), but these definitions refer
only to marker genotypes, without referring to the
underlying patterns of ancestral segments.

To distinguish between these two mechanisms of
block formation, it is necessary to quantify what may* Corresponding author. e-mail : andy.macleod@bbsrc.ac.uk.
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be expected from the two processes. One theory that
relates genetic drift to the lengths of ancestral seg-
ments is Fisher’s theory of junctions (Fisher, 1954).
Fisher describes the theory of junctions as a ‘strand
theory’ rather than a ‘point theory’, one that looks at
the inheritance of whole tracts of chromosome rather
than individual loci. In Fisher’s theory, a junction is
formed where a recombination event occurs between
two chromosomes that are not identical by descent
(IBD) at the location of the crossover, where IBD is
defined relative to a base generation. Junctions can
be treated as point mutations, and followed to fixation
or loss within the population over time. The genome
of any individual in a partially inbred population
will consist of alternating IBD and non-IBD sections,
which are separated by ‘external ’ junctions (Stam
1980). In a completely inbred population, all individ-
uals will be IBD across the whole genome, with each
chromosome consisting of several segments of differ-
ent lengths, each derived from a distinct chromosome
in the base population, and separated by ‘ internal ’
junctions (Stam, 1980).

Stam (1980), and Chapman & Thompson (2003)
expand Fisher’s theory by deriving expressions for
the expectation and variance of the length of an IBD
tract (the length of the section of chromosome
between two external junctions), as opposed to the
probability that an individual is IBD at a specific
locus. The papers of Stam andChapman&Thompson
relate to random mating populations excluding and
including selfing, respectively. Stam (1980) showed
that starting with a fixed outbred population of size
N, with a genome of length LMorgan distributed over
n pairs of homologous chromosomes, and allowing
the population to mate randomly with the exception
of selfing, until the population was entirely inbred, the
number of distinct segments observed in an individual
in the inbred population (SO) would be:

SO=2(N+1)L+n:

The expected number of junctions (excluding chromo-
some ends) would thus be:

JO=2(N+1)L (1)

corresponding to 2(N+1) junctions per Morgan in a
completely inbred population (Stam, 1980).

Any inference made on a population’s history using
the theory of junctions will necessarily be made using
genetic markers. Whilst the results of Stam (1980) and
Chapman & Thompson (2003) give a precise record
of the make-up of each chromosome, this would
not be available if markers alone were examined.
Indeed Stam states (p. 143), with reference to his
results, that using spaced markers ‘may result in an
underestimation of the number of junctions’. This
paper reviews the results of Stam and examines the

influence of marker maps of varying density on the
observation of junctions. This is accomplished by
simulation, with precise tracking of junction location,
and by superimposing marker maps and assessing
the existence of junctions from these maps alone. The
distributions of segment lengths are also examined
with reference to both theory and simulation.

2. Methods

(i) Concepts and definitions

A ‘segment’ is defined here as the region of a
chromosome between two junctions, whereas a
‘bracket ’ is defined as the region between two
markers. Segments are regions inherited unbroken
from a single chromosome in the ancestral popu-
lation; brackets may appear to be unbroken if the
markers at either end derive from the same ancestral
chromosome, but may contain any number of junc-
tions.

Following Fisher, junctions are one of two major
types, depending on the state of the genome on
either side of the junction on a pair of homolo-
gous chromosomes. An external junction forms the
boundary between IBD and non-IBD tracts. Internal
junctions are either IBD on both sides of the junction
or non-IBD on both sides of the junction, and are
labelled type I and type II, respectively (Stam, 1980).
These junction types are illustrated in Fig. 1.

There are 14 junctions in total across the two
chromosomes in Fig. 1, but only 8 are detected from
the marker map alone. This map thus underestimates
the actual number of junctions present.

(ii) Simulated populations

A series of populations was simulated using
FORTRAN 90 software. Each individual consisted
of a single pair of homologous chromosomes of
length 1Morgan. Each chromosome was unique in the
first generation, i.e. the population was not inbred.
Generation t+1 was generated by random mating
of individuals in generation t, with self-fertilization
excluded, to be consistent with the simulations of
Stam (1980).

For each individual in generation t+1, the first
parent was selected at random from generation t and
one gamete generated, and the second parent selected
from the pool of remaining individuals. The number
of recombination events occurring at the formation of
each gamete was sampled from a Poisson distribution
with parameter 1, and the location of each recombi-
nation was placed at random along the chromosome,
as indicated by a random number drawn from U[0,1].

Marker maps were either based on m equidistant
markers or obtained by generating a random array of
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m marker locations. In the latter case, markers were
placed at the two ends of the chromosome, but
otherwise at positions indicated by a random number
drawn from U[0,1]. The number of possible alleles
at each locus was 2N, the number of chromosomes in
the founder population, with the marker haplotypes
defined in the founders as {j, j, … , j} for the jth
ancestral chromosome, where j=1, … , 2N. There-
after, inheritance followed directly from the sampling
of gametes and recombinations described previously.

Simulations were run for all combinations of
population sizes ofN=2, 5, 10, 25 and 50 with B=10,
20, 50, 100, 200 marker brackets, formed by m=B+1
markers including a marker at each end of the
chromosome. Each combination of parameters was
simulated over 1000 replicates, with each replicate
proceeding until the population was completely
inbred.

(iii) Observations

For each replicate, in each generation, t, we
measured: (i) the number of junctions present on
each chromosome, and Jt, the average junctions per
Morgan over the 2N chromosomes; (ii) the genotypes
of all markers on each chromosome, and (iii) the
number of junctions per chromosome, inferred from
the marker genotypes. To calculate the inferred
number of junctions from the marker map, brackets
were classified as IBD, if the markers at either end
derived from the same ancestral chromosome, or
non-IBD otherwise. The number of non-IBD brack-
ets was assumed to equate to the number of junctions.
When each population was completely inbred, the
length of each chromosome segment was recorded, as
well as the average number of junctions per Morgan.
Results were obtained by averaging over replicates,
and standard errors were calculated for the variation
between replicates. Inbreeding coefficients in each
generation were calculated as Ft=(1xHt), where

Ht=Ktx1, and Kt= 1
2N

Htx1+ 1x 1
N

� �
Ktx1. Ht is the

probability that two homologous loci drawn at
random from one individual in generation t are non-
IBD, and Kt the probability that two homologous loci
drawn at random from two distinct individuals in
generation t are non-IBD (Stam, 1980).

(iv) Predictions

(a) Segment lengths

Assuming that the location of junctions that become
fixed in the final generation represents a random
sample of JO points along the chromosome, the
distribution of the JO+1 segment lengths will be
given by a b distribution with parameters [1, JO]
(Waddington et al., 2000). The lengths obtained from
simulation were compared with this distribution, by
taking the first segment length for each simulated
population. Under the assumptions given above,
the distributional property remains valid despite the
chosen segment being situated at one chromosome
end.

The distribution of segments obtained for a speci-
fied population size, N, and number of markers, m,
are conditional on the realized value of JO. Therefore
unconditional expectations for the mean and variance
of first segment lengths, L, were obtained from the
mean and variances of b[1, JO] and the mean and
variance of JO over replicates.

E[L]=Ereplicates[1=(JO+1)] (2)

Var[L]=Varreplicates[1=(JO+1)]

+Ereplicates[JO(JO+1)x2(JO+2)x1]: (3)

(b) Detection of junctions

Separate predictions were made for randomly spaced
markers and for equidistant markers assuming that
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Fig. 1. An example of internal and external junctions matched to the pattern of IBD along gametes. Junctions types are
shown above the chromosomes: I, internal (types 1 and 2); E, external, with the pattern of IBD across the chromosome
shown above (black, IBD, white, non-IBD). Below the chromosomes are shown the marker haplotypes for a set of
markers spaced across the chromosome.
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the junctions were randomly, and independently,
scattered over the chromosome.

Randomly scattered markers. On a chromosome
with B+1 markers, one placed at each end of the
chromosome but otherwise randomly distributed, and
JO junctions, the number of junctions we predict
the marker map will detect is taken to equal to the
number of brackets that contain one or more junc-
tions. This is equivalent to the number of runs of one
or more junctions in a randomly drawn sequence
of JO junctions and Bx1 markers (i.e. the number of
groups of one or more junctions separated from each
other by one or more markers). Thus, ignoring ends, a
sequence with 4 internal markers (m) and 3 junctions
( j) given by jmmjjmm would be assumed to detect
only 2 junctions. Note that this would be expected to
further underestimate the number of junctions when
runs of length 2 or more result in the flanking markers
coming from the same ancestral chromosome, result-
ing in no junctions being detected in that bracket.
However, this error may be expected to diminish as N
becomes large. Using the results on theory of runs
from Feller (1967), for a chromosome with JO junc-
tions, and B+1 markers (including one at each end),
let JD represent the junctions detected. Then:

E[JD]=JOB(JO+Bx1)x1 (4)

Var[JD] �E[JD]
2(JO+Bx1)x1: (5)

Note that the expected number of runs of length 2
or more provides an estimate of one component of
the risk of missing junctions. This can be shown to
be E[JD](JOx1)(JO+Bx2)x1. By defining variables
Xt=1 if the sequence tx1, t, t+1 is jjm and 0 other-
wise, this is calculated as gJO+B+1

t=2 E(Xt).
Equi-distant markers. Although detection of junc-

tions for equidistant markers still relies upon inter-
preting sequences such as jmmjjmm, the markers
are no longer spaced randomly, and the problem is
equivalent to that of the classical occupancy problem
described by Feller (1967) : for a chromosome with a
uniformly spaced marker map, the problem becomes
one of distributing JO junctions in B brackets of
equal length, rather than looking at the order of two

non-uniformly distributed sequences of markers and
junctions. With JO junctions in B brackets, Feller
(1967) shows that as JO and B become large, the dis-
tribution of unoccupied brackets tends to Poisson
with mean Bexc, where c=JO/B. Thus:

E[JD]=B(1xexc) and Var[JD]=Bexc: (6)

The expected single occupancy is also approximated
by Poisson with mean cBexc, so the expected multiple
occupancy is B(1x(1+c)exc).

Predicted proportions were compared to the actual
proportion of junctions detected for randomly spaced
marker maps of a given (average) density. For both
random and equidistant markers the moments given
above, conditional on JO, were made conditional on
N using the approach described for segment lengths
(see equations 2 and 3).

Empirical predictions. Empirical predictions were
made for JD, the number of junctions detected on
an inbred chromosome, for randomly distributed
markers, based upon 1000 records comprising 40 rep-
licates from each of the 25 combinations of brackets
and population size described above. The prediction
was made using generalized linear models, fitted
using Genstat, with Poisson errors and a reciprocal
link with a linear model based upon the expectations
from the ‘theory of runs’ model described above:

E[Jx1
D ]=a+bJx1

O +cBx1+d(BJO)x1: (7)

3. Results

(i) Validity of Stam’s predictions

Table 1 shows the average number of junctions pres-
ent per Morgan in the final generation of the simu-
lations, when the populations have become completely
inbred, and compares the average values to those
predicted by equation (1). Stam’s predicted values,
and the observed averages over 1000 replicates, are
shown for inbred populations of size N=2, 5, 10, 25
and 50. The observed averages do not differ signifi-
cantly from Stam’s predictions, validating Stam’s

Table 1. Predicted and observed numbers of junctions in the completely inbred populations

Population
size (N)

Predicted
junctions

Observed
junctions

Standard
deviation Range

Inter-quartile
range

2 6 6.06 (0.094) 2.999 [0, 17] [4, 8]
5 12 11.90 (0.134) 4.249 [1, 27] [9, 14]
10 22 22.06 (0.205) 6.487 [3, 47] [17, 26]
25 52 51.90 (0.313) 9.911 [17, 98] [45, 58]
50 102 102.31 (0.458) 14.482 [59, 150] [92, 112]

Predicted values follow equation (1), observed values are averaged over 1000 replicates, with standard errors in parentheses.

A. K. MacLeod et al. 72

https://doi.org/10.1017/S0016672305007329 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672305007329


approach for the simulated populations examined
here. Further simulations in larger populations con-
firmed the expected results. For example, a popu-
lation of size N=1000, has an expectation of 2002
junctions per Morgan at inbreeding, hence 20.02
junctions per centimorgan. Simulations at N=1000
with a 1 cM chromosome gave an average junction
count of 20.47 junctions over 100 replicates with a
standard error of 0.629, suggesting that Stam’s ex-
pectation is valid for larger populations.

Initially Jt increased rapidly over time, towards
JO, and Fig. 2 shows that this increase was linearly
related to the inbreeding coefficient Ft, with Jt=Ft

(JOx1)+1. This result can be confirmed by equating
Jt to SHj from generation j=1 to j=tx1, and is
equivalent to equation 5 in Chapman & Thompson
(2002). This result can also be derived analytically as
illustrated in Appendix. Whilst the expected number
of recombination events present on each chromosome
will increase linearly with time (1 per generation per
Morgan), fewer recombinations will result in junction
formation in later generations, since they will occur
between loci that are already IBD.

(ii) Segment lengths

Figure 3 shows the distributions of the lengths of the
first segment in inbred chromosomes for populations
of size N=50, and the expected distribution based on
a mixture of b distributions, calculated as:

f(x)=g
JO

P(JO)g(x;1, JO)

where g(x ;1,JO) is the b density function with par-
ameters 1, JO, and P(JO) are the observed frequencies
of JO in the 1000 replicates. It is clear that the
observed distribution is skewed towards the more
extreme segment lengths (note that mean segment
length is the same for observed and expected distri-
butions), the actual distribution being more dis-
persed than expected, with extreme segment lengths

over-represented, which can be confirmed by com-
parison with equation (3). Using a mixture of b
distributions accounts for any variation in JO over
the replicates, so any deviation in the segment length
frequencies will be due to the deviation of the dis-
tribution of segment lengths from a b distribution,
as defined by equations (2) and (3). It may therefore
be inferred that the distribution of segment lengths
over these replicates does not follow the expected b
distributions, suggesting that the junction locations
are not at random along the chromosome, but tend to
cluster in various locations.

(iii) Assessment of junctions using markers

The detection of junctions using equidistantly spaced
markers became less efficient as N increased, and B
decreased, as shown in Fig. 4. As marker density
increased, the percentage of junctions detected in-
creased towards 100%, but at a slower rate for the
larger population sizes. The lowest percentage of
junctions detected in the final generation for all com-
binations of N and B was 9.7% for N=50, B=10
(markers spaced every 10 cM). Even with marker
spacing of 0.5 cM (B=200), the average percentage of

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1
Ft

Jt

N=2
N=5
N=10
N=25
N=50

Fig. 2. Average junctions per Morgan (Jt) against
inbreeding coefficient (Ft). The relationship between Jt and
Ft is Jt=(JOx1)Ft+1, and is derived analytically in
Appendix.
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junctions detected in an inbred population was as low
as 66.9% for the parameters studied here.

The fraction of junctions present and detected at
time t declined with time (see Fig. 5). Whilst the per-
centage detected declined approximately linearly with
F for B=200, for lower values of B, this decrease was
non-linear, with the efficiency of detection decreasing
very rapidly over the initial stages of inbreeding.

The fraction of junctions detected when the popu-
lations were fully inbred is shown in Fig. 6 for
both marker distributions. For randomly distributed
markers it predicts that marker maps require to be
20-fold denser than junctions to achieve a 90% de-
tection rate, 5-fold more dense than may have been
anticipated with naı̈ve assumptions which result in
the continuous line in Fig. 6: E[JD/JO]=cx1(1xexc).
Even with informative equidistant needed the markers
needed to be 2-fold denser than estimated from naı̈ve
assumptions. When marker density is random and
of the same order as junction density only 40% of
junctions may be detected.

The Human HapMap project (International
HapMap Consortium, 2003) states as one of its initial
aims to characterize one SNP every 5kb across the
genome. Taking 1 MorganB1000 kb, this is equiv-
alent to 200 markers per centiMorgan. Looking at
this density of markers in simulations with N=1000,
L=1 cM, the expected number of junctions per
chromosome in an inbred population is 20.02. One
hundred simulations under these conditions gave an
average of 20.47 junctions per centiMorgan. A ran-
domly spaced marker map with B=200 gives a value
for c of 0.1024, and an average of 88.22% of the
junctions were detected over these 100 replicates.
Compare this figure with the value for N=10, B=200
in Fig. 4. With an expected value of 22 junctions, and
201 markers distributed randomly across the 1.0 M
chromosome, the value for c is 0.11 and the percent-
age of junctions detected is 90.25%, confirming that
junction detection is a function of c, the ratio of
junctions per Morgan to brackets per Morgan.

(iv) Predictions of effectiveness of junction detection

Table 2 shows the efficiency of junction detection
for randomly distributed and equidistant markers of
varying densities, for both N=2 and N=50 when
the population was fully inbred with JO junctions.
In the cases examined, the number of junctions
observed when using randomly distributed markers
was lower than for equidistant markers. The expected
relative efficiency of random to equidistant markers
was JO (B+JOx1)x1(1xexc)x1 and for B4JO41,
this ratio will be approximately (1+c)x1. However,
in the most extreme case presented here (B=200,
N=50, c=0.51) the random markers did marginally
better than predicted by this asymptotic ratio, with a
relative efficiency compared to equidistant of 88%.

The number of junctions observed using the
markers was much smaller than predicted (e.g. see
Fig. 6). This difference was small when N=2, but
substantial when N=50. In the latter case, only ap-
proximately 82% of the expected number, based on
the predictions, were detected when B=200; note this
corresponds to approximately 68% and 56% of the
actual number of junctions present for equidistant
and random spacing, respectively.

There are a number of possible reasons for this
discrepancy that were tested and will be exemplified
by B=200, N=50, with an expected JO of 102 and
c=0.51. Firstly, the predictions may be poor given
the assumptions made; however, simple simulation
of classical random occupancy, placing junctions at
random across a number of brackets, suggested an
error of less than 0.1% for the parameters investi-
gated here, and cannot account for difference between
JD and E[JD] given by equation (6) for equidistant
markers. Secondly, when multiple junctions occur
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within a bracket, there is a finite probability that the
recombination events lead to both the markers that
define the bracket originating from the same founder
gamete and no junction is identified. Further analysis
of the simulation results suggests that this accounts
for approximately two-thirds of the shortfall between
JD and E[JD]. Approximately 8 brackets that con-
tained junctions were missed for this reason. This
is greater than might have been expected from an
ad hoc correction of 1/2N, based on sampling from
founder generations. Nevertheless, this leaves a short-
fall (statistically very significant) of approximately
4 brackets between JD and E[JD], which may be
explained by greater multiplicity of junctions within
brackets than predicted by random occupancy.

For randomly distributed markers, similar con-
clusions can be drawn (note that equation (4) is exact
and not approximate). Thus the lower than expected
detection can be explained by a combination of fewer
than expected brackets containing junctions, due to
an increased multiplicity of junctions within brackets,
in addition to failure to identify junctions where
they are present within brackets which appear to
be inherited unbroken from a single founder
chromosome.

Empirical predictions using generalized linear
models in Genstat are shown in Table 3. In all four

models, all terms displayed were statistically signifi-
cant; however, the progression from I to IV was
carried out with a view to parsimonious prediction.
However, the dropping of terms changed the mean
deviance only slightly. In models I to III, the terms
1/B and 1/JOwere the primary terms in predicting JD ;
however, these models predict that not all junctions
will be found even as B becomes very large. The term
(BJO)x1 has rapidly diminishing influence as B and
JO become large. Model IV was fitted to provide a
predictive model in which JD/JOp1 as BpO. Thus
with model IV, JD/JOyB/(B+1.39JO) or 1/(1+
1.39c), predicting that for JO=202, corresponding to
Ny100, approximately 2500 randomly distributed
markers would be required to detect 90% of the
junctions, i.e. 12.5-fold denser markers than junc-
tions. However, it should be recognized that prog-
ressing from model I to IV becomes increasingly
optimistic in the relative marker density required.
Nevertheless 20 replicates of (N=100, B=2500,
c=0.0808) on a chromosome of length 1.0M resulted
in a mean detection rate for junctions of 86% (SE
1%), in good agreement with model IV. Note that
the value of c for these simulations (202/2500) is
close to the value described in Section (iii) above,
where 200 markers were placed along 1 cM in a
population of size N=1000, and a similar percentage

Table 2. Observed (O) and expected (E) junctions in inbred populations of size N=2 and N=50, when markers
are either randomly distributed over the chromosome or placed at equidistant intervals

B

N=2, E[JO]=6, Observed=5.97 N=50, E[JO]=102, Observed=102.05

Random Equidistant Random Equidistant

E O E O E O E O

10 3.74 2.91 4.25 3.51 9.18 8.00 10.00 9.01
20 4.56 3.79 4.99 4.40 16.82 14.07 19.85 16.60
50 5.30 4.77 5.55 5.25 33.64 27.01 43.25 33.31
100 5.61 5.28 5.75 5.57 50.52 40.54 63.60 50.27
200 5.78 5.59 5.86 5.77 67.51 55.94 79.64 67.33

Observed values are means from 5000 replicates. Expectations assume random distribution of junctions as described in the
Materials and Methods. Standard errors of O vary between 0.02 and 0.04 for N=2 and 0.02 and 0.12 for N=50.

Table 3. Regression coefficients for terms in generalised linear models used to predict JD

Model

Model Terms

Mean
Deviance (d.f.)

Constant
(r103) 1/JO 1/B 1/(JOB)

I 2.6 (0.3) 0.972 (0.017) 1.163 (0.025) 4.238 (0.799) 0.338 (996)
II 1.5 (0.3) 1.035 (0.014) 1.256 (0.019) – 0.347 (997)
III – 1.081 (0.011) 1.307 (0.017) – 0.357 (998)
IV – 1 1.394 (0.013) – 0.376 (999)

The analytical model is described in Section 2 and equation (7). Model : I, full model ; II, dropping term 1/(JOB) ; III,
dropping ‘Constant’ ; and IV constraining coefficient for 1/JO to equal 1.
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of junctions was detected. These results suggest that
the number of junctions detected is a function of the
ratio of junctions to brackets in a particular section of
chromosome, and is independent of the length of that
particular segment.

This model can be applied to intermediate gener-
ations, by replacing JO with Jt. We can predict E[Jt]
for given values of N and Ft, and using model IV,
predict the number of these junctions we would expect
to detect for a given marker map.

4. Discussion

This study has shown that the prediction by Stam
(1980) of the expected number of internal junctions
in an inbred population is accurate (there are no
external junctions in inbred populations), and that
furthermore the increase in such junctions over time
is linearly related to the inbreeding coefficient. How-
ever, the distribution of the locations of junctions
present in the inbred population is not random over
the chromosome. This lack of randomness has con-
siderable impact upon the effectiveness of detecting
junctions when using a net of markers.

Any pair of homologous chromosomes in a
partially inbred population will consist of IBD and
non-IBD regions, where IBD is measured relative
to some founder population. These regions will be
separated by external junctions and will contain
within them internal junctions, where a junction is
a point on a chromosome in the current population
where segments derived from two distinct founder
chromosomes meet as a result of a recombination
event at some point in the past. Stam (1980) derived
an expression for the number of (internal) junctions
that would be expected on a chromosome in a com-
pletely inbred population. Here we have shown that
the number of junctions per chromosome in a
partially inbred population is linearly related to the
inbreeding coefficient, reaching Stam’s expectation
when the population becomes completely inbred. The
expected number of junctions per Morgan, Jt, in a
randomly mating population of size N at time t, with
an inbreeding coefficient Ft is Jt=Ft (JOx1)+1,
where JO is Stam’s expectation for the number
of junctions per Morgan in a completely inbred
population (equation 1).

The evidence for non-randomness in the junction
locations came from two sources : the distribution of
segment lengths and variations in junction density. In
a completely random dispersal of junctions across
the chromosome, the distribution of segment lengths
will be described by a b distribution with one of its
two parameters determined by the number of junc-
tions present (Waddington et al., 2000). The observed
distribution of the first segment length was found to
be over-dispersed with an excess of longer segments,

and since the mean was correct, an excess of shorter
segments. Again with random dispersal of junctions
over the chromosome, accurate predictions are avail-
able for the distribution of runs and occupancy of
marker brackets. In all parameterizations studied,
with random or equidistant markers, the extent of
multiple occupancy by junctions of marker brackets
was in excess of expectation. For B=200 equal-sized
marker brackets and N=50, the excess multiple
occupancy was approximately 10% of the expected
number.

A mechanism for this clustering and over-
dispersion can be advanced. There are two possibilities
for non-randomness : (i) junctions have different sur-
vival probabilities ; and (ii) junctions do not occur at
random positions. In our neutral models the first can
be dismissed since the survival probability of a newly
formed junction (together with an arbitrarily small
segment of chromosome either side of the junction)
will be 1/2N, independent of position: the size of
the intact region will depend on N but nevertheless a
region will exist. However, both a mechanism and
supporting evidence can be found for non-random
occurrence of junctions. As described by Stam (1980),
junctions occur over time, decreasing in rate of
appearance as heterozygosity decreases. At an inter-
mediate stage of heterozygosity: (i) some regions will
be fixed and IBD, and junctions cannot occur within
such regions ; (ii) crossovers will still occur, but are
of no significance to the segregation of the variation
since junctions can only occur where there is segre-
gation among founder alleles. Regions that become
fixed early will have been subject to fewer crossovers
before fixation, and consequently would be expected
to form longer IBD segments. Junctions formed at
this intermediate stage that ultimately survive can
only occur in increasingly smaller regions, thereby
forming clusters with shorter segment lengths. Based
on this hypothesis it would be predicted that markers
that are fixed early belong to longer segments, and
this is confirmed in Fig. 7.

It can be concluded that the processes of genetic
drift and uniform recombination will result in a
mechanism that will tend to concentrate the segre-
gating genetic variation remaining from any given
generation into localized regions. Whatever specific
definition of ‘haplotype block’ one assumes, the
underlying paradigm is the same: that in a given
population of chromosomes, there are large regions of
low haplotype diversity that are separated by smaller
regions of higher diversity. Our results show that such
an outcome can be observed in a population with
uniform recombination rates, and give more detail
than the explanations provided by Zhang et al. (2003)
on the impact of drift and recombination.

Most results concerned with the effectiveness of
detecting junctions using markers presented in this
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study are derived from inbred lines, but they have
both immediate and general applicability. Completely
inbred lines are rare in nature, but they occur in lab-
oratory populations, for example in recombinant
inbred lines. Although most natural populations
are partially inbred, with Ft values intermediate be-
tween 0 and 1, we have shown that for a randomly
mating population on fixed size, excluding self-
fertilization, that the average number of junctions per
chromosome, Jt, is linearly related to the inbreeding
coefficient at generation t. The number of junctions
we can expect to detect for a given marker map can be
calculated by substituting Jt for JO in Section (iv) of
the Results. For populations with different histories,
the approach of Chapman & Thompson (2002) can
be followed to calculate E[Jt]=gtx1

j=0Hj and the
substitution made for JO.

For a marker bracket to be recorded as containing
a junction, the markers at either end must derive
from distinct ancestral chromosomes. In actual popu-
lations, this may be complicated, as markers in the
current generation may be identical by state without
being identical by descent, depending on the number
and frequency of alleles in the founder population.
In the simulated populations investigated here, each
marker allele can be assigned unambiguously to a
single chromosome in the founder population, and
a junction inferred where consecutive markers derive
from distinct ancestral chromosome. This inference
will lead to an underestimation of the actual number
of junctions for two reasons : (i) if Jt>B, then at least
one or more brackets will contain multiple junctions,
some of which will not be detected from the marker
map; and (ii) a bracket containing two or more junc-
tions may, by chance, have markers from the same

ancestral chromosome at either end, and none of
the junctions therein will be recorded. This second
discrepancy can be overcome if there are sufficient
markers to ensure that each junction is the only
one in a bracket. However, as the population size
and/or the inbreeding coefficient of the population
increases, Jt will increase, and the number of markers
needed to detect all of these junctions may be
prohibitive.

The results have demonstrated the difficulty of
detecting junctions in practice, since they can only be
identified by using marker maps. The circumstances
considered here have developed a theoretical upper
bound, shown in Fig. 6, in which the markers are
assumed to be equidistant and to be fully informative,
in which the detection rate a is given by cx1(1xexc)
where c=J/B where expected J at any time t is given
by E[Jt]=Ft[2N+1]+1 junctions per Morgan for
the populations investigated here. This predicts that
for approximately 90% detection rate, i.e. a=0.9,
By5J. However, our data have shown that this is
considerably optimistic. Models based on our simu-
lated data suggest that for randomly distributed
markers ay1/(1+1.4c), equivalently B=1.4Jta/
(1xa), and a 90% detection rate requires By12.5Jt.
Even these assumptions are likely to be conservative
due to the strong assumption of perfectly informative
markers, although this will be partially offset by the
ability to design a marker map that moves towards
equidistance.

The impact of this is the scale of marker maps
needed to get a complete picture of a junction map.
Consider the simulated population used by Zhang
et al. (2003) where a population of Ne=10 000 was
inbred for 10 000 generations. In this case Fty0.4,
giving E[Jt]y8000 junctions per morgan, hence ap-
proximately 13 junctions over the region of 0.17 cM
investigated. This suggests that at least 170 markers
would be needed over this region to detect 90% of
the junctions. The study by Zhang et al. (2003) used
10 markers in this region and did not have the objec-
tive of defining junctions; nevertheless it demon-
strates the difficulty of reliable extrapolation from
such data. In practice the density of markers required
to detect junctions will influence the reliability of
tracking ancestral chromosome segments and thus
potentially of locating functional polymorphisms that
they contain.

Appendix. Relationship between inbreeding coefficient

and the mean number of junctions per Morgan

Following the argument of Stam (1980), the fate of a
new junction is the same as that of a neutral mutation.
It may become fixed or lost in the end, but its expected
frequency remains constant (1 copy). The rate at
which new junctions forms is Ht, and the expected
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Fig. 7. The relationship between the logarithm of segment
length containing a fixed, but randomly chosen locus and
the logarithm of the time to fixation for the locus. The
locus was positioned 15 cM from an end, and observed
correlation from 5000 replicates was x0.42.
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number of junctions in any generation is thus

Jt=g
tx1

j=0
Hj:

The linear relationship between Ft(=1xHt) and Jt
can most easily be seen by allowing self-fertilization
(we will return to the exclusion of selfing later).

Ht+1= 1x
1

2N

� �
Ht

Ht=ltH0 (l=1x1=2N)

or, since H0=1,

Ht=lt

The expected number of junctions, Jt, thus equals

Jt=g
tx1

j=0
Hj

=g
tx1

j=0
lj

=
1xlt

1xl

=
1

1xl
(1xHt)

=2N(1xHt)

=2NFt,

a simple linear relationship.
Now consider the case where selfing is excluded.

Again following Stam,

Ht=Alt1+Blt3,

where

l1=
Nx1+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N2+1

p

2N
,

l3=
Nx1x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N2+1

p

2N
,

A=
1xl3

l1xl3
,

B=x
1xl1

l1xl3
:

[Note: checking Stam’s equation for the expected
limiting number of junctions we see that

JO g
O

t=0
Ht=A

1

1xl1
+B

1

1xl3
,

which simplifies to 2(N+1).]
Now consider an intermediate generation.

Jt= g
tx1

j=0
Hj=A g

tx1

j=0
lj1+B g

t=1

j=0
lj3

=A
1xlt1
1xl1

+B
1xlt3
1xl3

=
A

1xl1
+

B

1xl3
x

1

1xl1

� �
Alt1x

1

1xl3

� �
Blt3 :

From the above note, the first two terms sum to
2(N+1). Since l3 is small and negative, after a few
generationsAlt1 is the dominant term in the expression
for Ht, so Ht can be approximated by Alt1 without
serious error. After a few generations, we may write

Jt � 2(N+1)x
1

1xl1
Alt1

� 2(N+1)x
1

1xl1
Ht

=2(N+1)x
2N

N+1x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N2+1

p Ht

� 2(N+1)x(2N+1)Ht

=(2N+1)(1xHt)+1

or

Jt=(JOx1)Ft+1:
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