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Abstract

This paper considers discrete multivariate processes with time-dependent rational
spectral density matrices and gives a solution to the spectral factorisation prob-
lem. As a result, the corresponding state space representation for the process is
obtained. The relationship between multivariate processes with time-dependent
rational spectral density matrix functions and multivariate ARMA processes with
time-dependent coefficients is discussed. Solutions for the prediction problem are
given for the case when only finite data is available and the case when the whole
history of the process is known.

1. Introduction

In both the univariate and multivariate cases, ARMA models are a popular
choice for the analysis of stochastic processes; one reason being their distinc-
tive rational form for the spectral density function. A discrete multivariate
stationary ARMA(n, m) process

where <J>(z) = I + A,z H + Anz" and 0(z) = Do + D, z + • • • + Dmzm , B is
the backshift operator such that BX(t) =X(t-l) and {£(*)} is a white noise
process, is known to have the spectral density matrix function with elements

aas rational functions of e~a . This matrix can be factorised into

(1.2)
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[2] Spectral factorisation and prediction 193

where

and * denotes the complex conjugate transpose (see [2] Section 11.8). Con-
versely, if {X(t)} has the spectral density matrix of the form (1.2) where
all the zeros of O(z) are on or inside the unit circle and those of 9{z) are
inside the unit circle then {\(t)} has the ARMA representation (1.1).

In the analysis of time series, stationarity is considered a desirable feature;
however nonstationary processes are more realistic in many applications. By
allowing the coefficients of the ARMA model or the rational spectrum to
become time-dependent we introduce a form of nonstationarity. It should
be noted that, for the time-dependent coefficient case, the equivalence of
ARMA processes (1.1) and those with spectral density matrix (1.2) no longer
holds.

Priestley [11, 12], using the concept of evolutionary spectra, showed for
the discrete univariate case that an ARMA process with time-dependent co-
efficients has a rational spectrum if the coefficients vary smoothly with time.
As a by-product of our solution to the factorisation problem in Section 2, we
give another specific condition for a process with a time-dependent rational
spectral density matrix to have a time-dependent multivariate ARMA form.

Since the assumption of an ARMA form for a process is more restrictive
than that of a rational spectrum form, this paper will initiate from processes
with a rational spectrum of the form (1.2), but now the coefficients in the
matrix polynomials are allowed to be time-dependent. We shall consider the
prediction problem for these processes.

Considering a univariate discrete-time process {X(t)} withan ARMA(p, q)
representation with time-dependent coefficients, Whittle [19] shows that the
linear least squares (LS) predictor of X{T + k) based upon {X(t), t < T}
is given by a recursion of type

j (1.3)
i=0 j=0

where r = max(p-1 ,q—k),Pt, c{ and v are functions of the coefficients of
the ARMA (p, q) process. It should be noted that, in Whittle's solution, the
coefficients /?, must satisfy a linear system, which necessitates the assumption
that the matrix of this system be nonsingular.

Another notable solution to the prediction problem for {X(t)} , an ARMA
process with time-dependent coefficients observed on (-oo, T], is given by
Rissanen and Barbosa [14, 15] (see also [13] and [3], pp. 147-155). In Ris-
sanen and Barbosa's solution, the predictor is also given in a recursive form
similar to (1.3), but the corresponding coefficients /?, and c( are now given

https://doi.org/10.1017/S0334270000006998 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006998


194 N. M. Spencer and V. V. Ann [3]

in terms of the elements of the Cholesky factor of an appropriate covariance
matrix. The Cholesky factor itself can be generated by a recursion.

In this paper, we consider multivariate discrete-time processes with a time-
dependent rational spectral density matrix. The consideration of evolution-
ary spectra for nonstationary processes was first introduced by Priestley [10].
A description of these processes with more recent references is given in Sec-
tion 2. Our approach to the prediction problem of these processes is to obtain,
under some slowly-varying condition on the coefficients, a state-space repre-
sentation of the process. This is equivalent to solving the spectral factori-
sation problem or, in the same direction, the Wold decomposition problem
(see [1], Section 9.3). Our solution relies on the reproducing kernel Hilbert
space (RKHS) techniques as explored by Parzen [8] and Hajek [4].

The state-space representation problem is considered in Section 2. Section
3 gives a solution to the prediction problem when only finite data is available.
When the entire history of the process is available, we obtain in Section 4 a
recursive form for the predictor. The recursion is explicit and requires no
further condition.

2. State-space representation

Let {U(f), t e Z} be a nonstationary /?-variate second-order purely non-
deterministic process with constant maximum rank. Without loss of gener-
ality, we assume that EV{t) = 0 . As shown in Melard and Herteleer-de
Schutter [6], \J(t) can be represented as

U(0 = f 0,
J-n

where

and

j=o

the y/At) being the coefficients in the normalised Wold-Cramer decompo-
sition of U(0 (see Equations (1) and (2) of [6]). Now the Wold-Cramer
spectral density function is denned by
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[4] Spectral factorisation and prediction 195

In this paper we consider a process with the particular form for g,(A) defined
by

(2.1)

? < « , -n <X<n, where for each *, |D0(f)| # 0 and Ak(t) and
are p x p matrices such that

and
fc=O

9

0 for |z| < 1

^ 0 f o r | z | < l .

(2.2)

(2.3)

and S being a nonnegative definite p x p matrix. [The conditions (2.2)
and (2.3) correspond to the AR and MA regularity conditions for ARMA
models with time-varying coefficients. (See, for example, [17].) Another type
of regularity conditions for these models involves

\H[t,s)\ <oo for all t,
s=-oo

where H(t, s) is the one-sided Green's function associated with the homo-
geneous equation of the AR or MA difference operator (see [7, 9]). However,
conditions of the above type do not seem simpler than the conditions on the
roots given in (2.2) and (2.3).]

We first consider a finite segment {X'(0 = (Xl{t), ... , Xp(t)), 0<t<N,
N >2n} of a zero mean second-order full rank process with the representa-
tion

X(0 = fJ~
ia (2.4)

k=o
with

{Zi{dk),Zj{dn)) =
\±-dX if^A, . .
< 2 T T I, J = I, ... , p;

1 0 if/i^X,

Ak(t) being a p x p matrix defined above.
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The spectral density matrix of {X(t)} is then

1 ( " -ikx\~l ( " -ikxX'X

\k=0 J \k=0 J
( 2 . 5 )

F o r t h i s p r o c e s s d e f i n e t h e p x l v e c t o r Y(t) a s
n

n<t<N, (2.6)

where the coefficient matrices Ck(t) are chosen according to

-ijX I -ikX _ , , - 7 x

k=0 \j=0 ' j
We shall consider only those processes for which (2.7) has a unique solution.

THEOREM 1. The process {Y(f), n < t < N} under conditions (2.2) and (2.7)
is mutually uncorrelated with covariance matrix E and is uncorrelated with
{X(0), . . . , X(/i - 1)}. The closed linear manifold L2{X(0), . . . ,
X(n - 1), Y(t), n < t < N) coincides with the closed linear manifold
L2{X{t), 0<t<N}.

PROOF. From (2.4), Y(t) has the spectral representation

- l

Y(0 = E Ck(t) f ei{'~k)X ( ±
fc=o J~n \j=o

= r eia6Z{dk),
J — 1Z

by choice of the coefficient matrices Cfc() as per (2.7).

Thus

(Y(0 ,Y(J )>= T fn em-slx)AAt(Z(dk),Z(dfi))
J-n J -it
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Thus {Y(0 , n < t < N} is a white noise process. Also, for n < t < N and
0< J < « - 1,

(Y(0, X(*)> = f [' ei
J-n J-n

i{a~Sfl)E

* - l

dX

;, putting z = ea

for t > s by Cauchy's Theorem as

- i

and

j=o

in the closed unit disc according to the assumption given in (2.4).
The RKHSi/(f) of {X(0} corresponding to f of (2.5) contains elements

0 denned by 0(t) = (X(t), v) = E[X(t)\*] for some unique v in L2{X(t),
0 < t < N} . The Hilbert space H(f) is isomorphic to the space of random
vectors of the form v = Y^=n

 h (0Y(0 where h(t) is an element of the
space of quadratically summable matrix valued functions, and which solve
the equation <Y(/), v) = h(f), n<t<N, (see [8]).

N o w L 2 { X ( t ) , 0 < t < N) D L 2 { X ( 0 ) , ... , X ( « - 1 ) , Y ( 0 , n < t < N } .
Let v e L2{X{t), 0 < t < N} be such that v ± X(t), 0 < t < n - 1 and

v 1 Y(0 , n<t<N. Then,

(X(0,v)

0 (0 , 0 < t < n - 1
(2.8)
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and
O = (Y(O,v)

ck{t)<x(t-k),j) ( 2 - 9 )

k=0

k=0
This is a homogeneous matrix difference equation with n initial conditions
given by (2.8). We need to show that the solution to (2.9) with the initial
conditions (2.8) is 0 ( 0 = 0, 0<t<N. Now, when t = n , (2.9) reads

0(#i) + C,(«)0(n - 1) + • • • + CB(w)0(O) = 0

which by the initial conditions, gives

0{n) = O. (2.10)

When t = n + 1, (2.9) reads

0(n + 1) + C,(/i+ 1)0(«) + • • • + Cn(n + 1)0(1) = 0

which implies 0(n + 1) = 0 due to (2.8) and (2.10). Similarly, 0(n + 2)
= • • • = 0(N) = 0 . Therefore the solution to the homogeneous matrix
difference equation (2.9) with the n initial conditions (2.8) is 0 ( 0 = 0,
0 < t < N, and consequently L2{X(t), 0 < t < N} = L2{X(0), . . . ,

We shall now derive the state space system which represents a process
{U(0} obtained from the above white noise process {Y(0} •

Suppose {X(0 , -Q < t < N} is as denned by (2.4) and (2.5), and consider
a finite segment of a second order full rank process {U'(0 = (U^t), ... ,
Up(t)), 0<t<N} having the representation

U«) = / _ / I 2 J I W ' A I [}Z±k(t)e— ] AZ(^) (2.11)

where Z(dX) is an orthogonal process:

~A1 i f " = J ' (2.i2)
l o if | t /A,

for i,j = I,..., p. The coefficient matrices A^(0 and Dj(t) are as-
sumed to satisfy the conditions (2.2) and (2.3). The spectral density matrix
g(t,s,X) of {U(0} is given by (2.1).
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[8] Spectral factorisation and prediction 199

We now define the coefficient matrices D,(f), j = 0, . . . , q, by the con-
dition

., -ikx\

u=o

j=0

THEOREM 2. The Markovian representation of {U{t)} under conditions (2.2),
(2.3), (2.7) and (2.13) is given by

fc=0

j=Q

PROOF. Let M be the p xp matrix difference operator M = 2 ^ = 0 S y ( 0 ^ '
where B is the backshift operator.

Then

U(0 = 2j,&j(t)X(t - j) = MX(0 (2.14)

because using the representation (2.11) for U(t) we obtain

{V(t),V(s))=E[V(t)V(s)t]

,^ -ikX\
J-nJ-n U=0

\ *-l

k=0 J \j=0

= £ ( E °y(ô '-̂

\;=o j=o

by (2.13).

https://doi.org/10.1017/S0334270000006998 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006998
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Conversely, given U(t) denned by (2.14),

- 1
ikX AZ(rfA),

/ e'
J-n

- 1

AZ(rfA) )

which is (2.15) in view of (2.13). Then by reversing the steps that lead to
(2.15) we find that the covariance of {UJ , where {UJ is defined by (2.14),
is the same as that obtained from the spectral representation (2.11).

The Markovian representation of {U(t)} now follows directly.

REMARK 1. The system given in Theorem 2 with white noise input
solves the time-varying spectral factorisation problem for U{t), and can be
written in the standard form for a state space model as illustrated below.

Define

From (2.7), we get C0(t) = AQ(t) for any t. From condition (2.2), it is
necessary that det A0(t) ^ 0 , which implies the existence of C^'(f).

Then by writing Ck(t) = C0{t)~lCk(t),

z(t) = 6
o

0
0

0 J

0

Y(0

•aY(/)

o
0

0
0

0 J

z ( f - l )

and X(0 = (10- •• 0 ) i (0 .
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[10] Spectral factorisation and prediction 201

Now define
X(t)

M0= , « < « ,

l(qxp)xl)

then as D0(f) is nonsingular for each t

«.(') = p

0

0

u(t).

This can be rewritten as

o J
where

lp

0 0

0

0

0
(2.16)

Extending z»,(0 to z(r) converts (2.16) to
l (I. %{t)-x2x{t)

0

0

u(0 =
0

0

0 0
which can be expressed as u{t) = 3S{t)z{t). Thus the system (2.15) can be
written as

z(r)=j/( /)z(/- l)+aY(0
0 n<t<N. ( ' '

REMARK 2. The processes {U(t)} considered in this section are restricted by
conditions (2.7) and (2.13). These are a type of 'slowly-varying' conditions
which are almost always required in the analysis of time-varying systems.
There does not appear to be any convenient way to simplify these conditions
further, unless specific forms for the matrices \(t) and D-(f) are known.
However, for the univariate case, the coefficients in the corresponding equa-
tions can be obtained explicitly (see [18]).
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202 N. M. Spencer and V. V. Ann [11]

REMARK 3. The system given in Theorem 2 can be written as

"1 1 (2.18)

or \J(t) = M ( L ~ ' Y ( O ) where L is the matrix difference operator given by
L = £ L o c * W £ * » B being the backshift operator. (2.18) will describe a
time-dependent ARMA process if

i.e., if the operators M and L ' commute. However,

L(M(L"1Y(0))=L(MX(0)
= LU(/)

k=0 j=Q

while

7=0

j=0 k=0

So a sufficient condition for commutativity is

or equivalently,

r=\ r=\

If the matrix coefficients are constants, however, then as D it) = SfM) and
Ak(t) = Ck(t) for all / ,

1 = L(MX(0)

j=0
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[12] Spectral factorisation and prediction 203

while

7=0 *:=0

so the sufficient condition for commutativity becomes AfcD; = D -A^. If
this condition is satisfied then the system (2.18) describes a multivariate
ARMA(«, q) process.

3. Prediction based on finite data

Using classical methods for the solution of difference equations, prediction
of processes with time-dependent rational spectral density matrices will be
discussed in this section. From the knowledge of this spectral density matrix
function for {U(t), 0 < t < N} we have established the following state space
representation for V(T) under conditions (2.2), (2.3), (2.7) and (2.13):

k n-m<t<N (3.1)
k=0

U(O = X > , M X ( * - J ) 0<t<N. (3.2)
;=0

THEOREM 3. The linear least squares predictor for \J(t) based on {U(t),
t = 0, ... ,N} is

U(* + r) = j^arft + r) £ ¥,(t) £ C , ( T - />) £ «JS(T -p- i)V(s)
j=0 p=r-j-\ i=0 5=0

-£^ ( f + r)5>,(T) £ Fk(r-p)c(r-p-k)
j=0 p=0 k=x-p

where x = t + r - j , and the coefficients *Pp(t), y/p{t), and Fk(t) are as
defined below.

PROOF. The solution to the system of matrix difference equations given by
(4.1) is

E^(OYC " P) ~ E VpM E ¥^ ~ PW-P~k) (3-3)
p=0 p=0 k=t-p
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where C(J) = X(/), i = —n + I, ... , 0 are constant initial vectors,

¥k(t)=G(t)Ck(t), k = 0,...,n

and

where the sum

Pj = P with p0 = 0 for p = 0, and Pj > 0

is over all the permutations of the integers Pj that sum to p.
This result is a direct extension of the work by Jordan [5], Section 178.

Hence for r steps ahead

j=0

where the X(t + r - j), j = 0 , ... , q, are given by (3.3). The linear least
squares predictor for \J(t + r) is obtained by setting the unobserved values
of Y(0, i.e. Y(t+l), ... ,\{t + r), equal to zero; thus

T - l

p=r-j-\

T - l
(3.4)

where x = t + r — j . To express V(t + r) in terms of known past values of
{U(t)} we convert (3.2) into the series

X(0= (3.5)

Note that this series is actually finite as we are only considering the segment
{U{s), 0 < s < N} . The p xp matrix coefficients ds(t), -oo < s < t, are
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determined by substituting (3.5) into (3.2) and equating coefficients of U(0 :

j=0

= E
j=0 s=-oo

= E

= iz n &j{t)ds{t-j)v(s)
s=-oo j=0

where / is the indicator function, that is, I(r < s) = 1 if r < s and
0 otherwise, and q A (t - s) means min{<7, t - s} . Hence the relations
determining ds(t) are given by

qA(t-s)

Y^ 3t.(t)ds(t - j) = I Sst (3.6)
j=o

where
s = t,

Alternatively substituting (3.2) into (3.5) we obtain

Now using (3.5), (3.1) becomes

n t—k

k=0 s=-oo

so that the least squares predictor (3.4) becomes

q T - 1 n x-p-i
x ' i^^ J * ' ( * p* ' ^_^ Iv ' ' £^^

j=0 p=r-j-\ i"=0 5=0
9 T - 1 n

y'=0 p=0 k=t—p

where T = t + r-j.
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4. Prediction with infinite past

When the whole history of the process is available we can extend the results
due to Whittle [19] for the prediction of a scalar discrete-parameter ARMA
process to the multivariate case. Our solution, however, initiates from a
multivariate process with a time dependent rational spectral density matrix
of the form (2.1) rather than a multivariate time-dependent ARMA process.
The solution is explicit (compared with Whittle's equation (32) and condition
(33)).

For a process with a spectral density matrix of the form (2.1) under con-
ditions (2.2), (2.3), (2.7) and (2.13) we have already established the corre-
sponding state space representation which is given by (3.1) and (3.2).

We shall further assume that

)zk

k=0

From (3.1) we can write

for |z| < 1. (4.1)

X(0 = E a,«Y(t>) (4.2)

where the convergence of this series is assured by the assumption (4.1) for
each t (see [2] Proposition 3.1.1 and Theorem 3.1.1).

The coefficients &v(t) are determined by substituting (4.2) into (3.1) and
equating coefficients of Y(t). This yields the relations

nA{t-v)

£ Ck{t)*v{t-k) = lp5vr (4.3)
k=Q

Alternatively if (3.1) is substituted into (4.2) we obtain the relations

nA(r-ti)

E »s+kWCk(s + k) = lpdst. (4.4)
fc=0

Now from (4.2) we obtain, for r steps ahead, r > 1,

t t+r

t n t+r v '

= E *v(t + r)^Ck(v)X(v-k)+ £ *v(t +
u=-oo k=0 v=t+l
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from (3.1). The least squares predictor of X(t + r) is achieved when the
unobserved innovations Y(t + I), ... ,\{t + r) are set equal to zero; then
(4.5) becomes

X(t + r) = £ av(t + r)J2Ck(v)X(v-k).
v=-oo A:=0

Using the change of variable v = t - j + k, X(t + r) can be written

oo nAj

X(* + ') = £ £»,_,+*(' + r)Ck(t + k- j)X(t - j). (4.6)
j=0 k=0

The relations (4.4) yield that (4.6) is zero for j > n; therefore

r) = E E a»-y+*C + W + k ~ J
; = o fc=o

A recursion for the predictor U(J + r) is now given by (4.7), (3.2), and (3.5).
Note that only the last n values, X(t - n + 1), ... , X(t), from (4.5), are
required for the recursion.

The predictor X(t + r), and hence U(* + r), is given in recursive form
in (4.7). We now show that U(f + r) can be written in terms of {U(s),
-oo <s <t}.

THEOREM 4. The linear least squares predictor of\J(t + r) for r steps ahead
in terms of {U(s), -oo < s < t} is

U(f + r) =

V(t + r) =

£ /̂(

r - l

£^(
;=0

m

+ ££

7 + r) £ av{t +
t) = — OO

r

:/+r) £ a«c+
«=—oo

t+r-y

?,(« + r) £ « ( *
u=-oo

s=—oo

V

r-i) E
J = — OO

V

r-J) £
J = — OO

E C*(»)d

nA(u-j)

E
k=0

nA(v-s)

E

C*(«)d

C*(«)d,

,(«

,(«

-fc)U(j),

ifq<r,

- k)V{s)

-k)V{s),

ifq>r,

and the mean square error is

qA(r-l) qA(r-l) (t+r-j)A(t+r-k)2= £ £ £
j=0 k=0 v=l+l
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PROOF. Using (4.2) in (3.2)
d t+r-j

U(f + r) = £ # / / + r) £ ajr + r - j)Y(v). (4.8)
j=0 v=—oo

If # < r, (4.8) becomes

U(« + r) =£#} (* +r) £ a^ + r-;•)¥(<;)
_/=0 u=—oo

j=0 v=t+l

and on setting the unobserved values of Y(t) to zero we obtain the least
squares predictor

U(* + r) = J2®j(t + r) J2 *v(t + r ~ ;)Y(*>) • (4.9)
y=0 V=—OO

Now using (3.5) in (3.1), Y(v) is given by

< « - s)ds(v - k)V(s)
k=Q s=-oo

v nh(v—s)

= E E Ck(v)Ds(v-k)V(s),
s=-oo k=0

Therefore (4.9) becomes
q t v nA{v-s)

\J(t + r) = J2®j(t + r) E "»(' + r " ̂ ) E E WW
j=0 v=—oo j=—oo Jt=O

(4.11)
Similarly if ? > r

r-\ t v «A(ti-j)

r) = ^3fj(t + r)Yl*v(t + r-J)H E Ck(v)*s(v ~ Wi*)
y=0 u=—oo s=—oo k=0

m t+r-j v nl\(v—s)

^®.{t + r) £ ^(t + r-j) X E Cfc(«)d,(i;-fc)U(j). (4.12)
y=0 U=—OO 5=—oo fc=Q
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(4.11) and (4.12) give the predictor V(t + r) in terms of the entire past of
{U{s), -oo < s < t) .

Alternatively (4.9) can be expressed as
q t+r-j

\ \ * nx i \ V ^
/ /__/ j ^ I /__,

7=0 v=—oo
q t+r-j

7=0 v=t+l
q q t+r-j

= Y,®j(t + r)X(t + r-j)-J2&j(t + r) £ ^(t + r -
j=0 7=0 v=t+\

m t+r—j

= V(t + r)- ^&j(t + r) J2 av(r + r - j)Y(v) for q < r;
7=0 v=t+l

(4.13)
and (4.12) can be expressed as

r-\ t+r-j

V(t + r) = V(t + r)-y£®j(t + r) £ *v(t + r-j)Y(v) forq>r. (4.14)
7=0 v=t+i

On combining (4.13) and (4.14) we have
q/\(r-\) t+r-j

V(t + r) = V(t + r ) - J2 &j{t + r)Y,\(t + r-Jmv), r>\,
7=0 v=t+\

so that the mean square error is

e\r) = tr{E(\J(t + r) - U(f + r))(U(t + r) - U(f + r))*)

( (qh(r-l) t+r-\

\ 7=0 w

( qA(p-l) t+r-k

£ 3fk{t + r) £ zs(t + r-k)Y(s)
fc=0 s=t+l

?A(r-l) ?A(r-l) (t+r-j)A(t+r-k)

= E E E
7=0 *:=0 ' v=t+l
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