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Abstract. This paper considers the long-time behavior of solutions for the
Cauchy problem of a class of second-order nonlinear differential equations: �x00þ
fðt; x; x0Þx0 þ gðxÞ ¼ hðtÞ. Under appropriate conditions it is shown that the solutions
of the problem possess some dichotomy properties.
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1. Introduction. At issue is the Cauchy problem of a class of second-order
nonlinear differential equations

�x00 þ fðt; x; x0Þx0 þ gðxÞ ¼ hðtÞ; ð1:1Þ

xð0Þ ¼ x0; x0ð0Þ ¼ x1; ð1:2Þ

where f; g and h are assumed throughout the paper to be continuous functions;
moreover, f and h are !-periodic in t. We are interested in the long-time behavior of
the solutions of the problem. Before stating our results, let us pause for a moment to
observe some simple facts concerning the linear equation

�x00 þ bx0 þ x ¼ hðtÞ ð1:3Þ

where h 2 CðR1Þ and is !-periodic. It is well known that for any b 2 R1, (1.3) has an
!-periodic solution � (see, for instance [5, Theorem 2.1]). Now any solution of (1.3)
can be given by the formula

xðtÞ ¼ C1e
�1t þ C2e

�2t þ �ðtÞ ð1:4Þ

by choosing appropriate constants C1 and C2, where

�1 ¼ ðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4

p
Þ=2 > 0; �2 ¼ ðb�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4

p
Þ=2 < 0:
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From this we see that for any solution x of (1.3), either xðtÞ and x0ðtÞ ! 	1

(this occurs when C1 6¼ 0), or jxðtÞ � �ðtÞj þ jx0ðtÞ � �0ðtÞj ! 0 (this occurs when
C1 ¼ 0) as t! þ1. In this paper we try to extend this basic knowledge along with
some other properties of (1.3) to the nonlinear equation (1.1). We will show that
under appropriate conditions, the solutions of (1.1)-(1.2) exhibit some dichotomy
properties.

Assume that f; g are locally Lipschitz. Then for any x0; x1 2 R1, there exists a
0 < Tðx0; x1Þ 
 þ1 which will be denoted simply by T hereafter, such that (1.1)-(1.2)
has a unique solution x on ½0;TÞ; moreover, ifT < þ1, sup½0;TÞðjxðtÞj þ jx0ðtÞjÞ ¼ þ1.
For convenience, we denote by 	ðt; x0; x1Þ the solution of (1.1)-(1.2) with initial data
ðx0; x1Þ. We prove the following interesting results:

Theorem 1.1. Assume f and g are locally Lipschitz and satisfy:
ðF1Þ there exists a constant 
 > 0 such that

jfðt; x; pÞj 
 
ð1 þ jpjÞ;

ðG1Þ gðxÞ ! 	1 as x! 	1.
Let x be the solution of ð1:1Þ-ð1:2Þ. Then

(1) if sup½0;TÞ jxðtÞj < þ1, then sup½0;TÞ jx
0ðtÞj < þ1 ðhence T ¼ þ1Þ;

(2) if sup½0;TÞ xðtÞ ¼ þ1, then

lim
t!T

xðtÞ ¼ þ1; lim
t!T

x0ðtÞ ¼ þ1; ð1:5Þ

if inf ½0;TÞ xðtÞ ¼ �1, then

lim
t!T

xðtÞ ¼ �1; lim
t!T

x0ðtÞ ¼ �1; ð1:6Þ

(3) the sets

Iþ1 ¼ fðx0; x1Þ 2 R
2 : xðtÞ ¼ 	ðt;x0; x1Þ satisfies ð1:5Þg;

I�1 ¼ fðx0; x1Þ 2 R
2 : xðtÞ ¼ 	ðt;x0; x1Þ satisfies ð1:6Þg

are nonempty open subsets of R2;
(4) for any x0 2 R1, the sets

Dþ1ðx0Þ ¼ fx1 2 R1 : xðtÞ ¼ 	ðt;x0; x1Þ satisfies ð1:5Þg;

D�1ðx0Þ ¼ fx1 2 R1 : xðtÞ ¼ 	ðt; x0; x1Þ satisfies ð1:6Þg

are nonempty open subsets of R1;
(5) for any x0 2 R1, the set

DBðx0Þ ¼ fx1 2 R1 : xðtÞ ¼ 	ðt;x0; x1Þ is bounded on R
þg

is a nonempty closed subset of R1.
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Remark 1.1. An example satisfying the hypothesis in Theorem 1.1 is the well
known Krall equation in atmosphere dynamics [3, 7, 14]:

�x00 þ ða� jx0jÞx0 þ �x3 � x ¼ r sin!t; ð1:7Þ

where a; �; r and ! are constants with � > 0.

Theorem 1.2. In addition to the hypothesis in Theorem 1:1, assume that f; g
satisfy:

ðF2Þ f is bounded from below, i.e., there exists a constant b > 0 such that

fðt; x; pÞ � �b; 8t; x; p 2 R1;

ðG2Þ lim inf jxj!þ1 gðxÞ=x > 0.
Suppose that the solution x of ð1:1Þ-ð1:2Þ satisfies ð1:5Þ ðresp. ð1:6ÞÞ: Then there

exist �;C0;C1;C2 > 0 such that

xðtÞ � C0e
�t � C1 ðresp: 
 �C0e

�t þ C1Þ; 8t � 0;

x0ðtÞ � �C0e
�t � C2 ðresp: 
 ��C0e

�t þ C2Þ; 8t � 0:

Theorem 1.3. In addition to the hypothesis in Theorem 1:1, if we further assume
that fðt; x; pÞpþ gðxÞ is strictly increasing in x, then when the solution x of (1.1)-(1.2)
is bounded on ½0;TÞ ðhence T ¼ þ1Þ, we have

lim
t!þ1

ðjxðtÞ � �ðtÞj þ jx0ðtÞ � �0ðtÞjÞ ¼ 0; ð1:8Þ

where � is the (unique) !-periodic solution of Eq.ð1:3Þ. ðThe existence of � will be
shown in Section 2.)

An essential feature of the type of equations under our consideration is that the
nonlinear terms gðxÞ in these equations satisfy ðG1Þ. For the study of long-time
behavior of other types of second-order nonlinear differential equations, the inter-
ested reader is referred to, for instance [2, 10, 12, 15, 16, 17] etc. and references
therein for some recent developments.

This paper is organized as follows. In Section 2, we give some auxilary results.
In Section 3, we prove Theorems 1.1-1.3 in detail.

2. Some auxiliary results. In this section we state some auxiliary results which
will be used in the proofs of Theorems 1.1-1.3.

Lemma 2.1. Let a; b 2 R1 with b� a � � > 0, x 2 C2ðða; bÞÞ. Suppose x satisfies
the following differential inequality:

jx00ðtÞj 
 cð1 þ jx0ðtÞj2Þ; t 2 ða; bÞ:

Assume that supða;bÞ jxðtÞj 
M0 < 1. Then there exists a constant C > 0 depending
only on c, M0 and � such that
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sup
ða;bÞ

jx0ðtÞj 
 C:

Lemma 2.1 is a particular case of Lemma 5.1 in [6, Ch. XII], which makes use of
a Nagumo-type condition.

Theorem 2.2. Assume that f, g satisfies ðF1Þ and ðG1Þ, respectively. Then for any
a; b; �; 
 2 R1 with a < b, the boundary value problem:

�x
00

þ fðt; x; x
0

Þx
0

þ gðxÞ ¼ hðtÞ; t 2 ða; bÞ;
xðaÞ ¼ �; xðbÞ ¼ 


�
ðBVPÞ

possesses at least one solution x.

Theorem 2.3. Assume that f, g satisfy the following conditions:
ðF1Þ

� There exists a nonnegative and nondecreasing function � 2 Cð½0; þ1ÞÞ such
that

jfðt; x; pÞj 
 �ðjxjÞð1 þ jpjÞ:

ðG1Þ
�
9 A;B 2 R1, A 
 B such that

gðAÞ 
 hðtÞ 
 gðBÞ; 8t 2 R1:

Then Eq.ð1:1Þ has at least one !-periodic solution x.
The proofs of Theorems 2.2 and 2.3 are very standard using the well-known

upper and lower solutions method, as given, e.g., in [8, 11, 13] etc., and thus are
omitted. One can also derive these results by fully analogous argument as in the
proofs of Lemma 3.1 in [5] and Lemma 3 in [9].

3. Proof of Theorems 1.1-1.3. In this section we prove in detail our main results
stated in the introduction.

Proof of Theorem 1.1.
(1) Assume that sup½0;TÞ jxðtÞj < þ1. Then by ðF1Þ, one easily deduces that

jx00ðtÞj 
 cð1 þ jx0ðtÞj2Þ

on ½0;TÞ. If T < 1, by Lemma 2.1 we obtain directly that sup½0;TÞ jx
0ðtÞj < þ1.

Assume that T ¼ þ1. By applying Lemma 2.1 to x on any interval ða; aþ 1Þ for
a � 0, we conclude immediately that sup½0;TÞ jx

0ðtÞj < þ1.
(2) We only consider the case where sup½0;TÞ x ¼ þ1. The proof for the other

one is analogous. By ðG1Þ, there exists A > 0 such that for any z � A,

gðzÞ � hðtÞ þ 1; 8t 2 R1: ð3:1Þ

Since sup½0;TÞ x ¼ þ1, we can find at least one t0 > 0 such that xðt0Þ � A with
x0ðt0Þ > 0. We claim that x is nondecreasing for t � t0 and hence

342 DESHENG LI

https://doi.org/10.1017/S0017089502020165 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502020165


lim
t!T

xðtÞ ¼ þ1: ð3:2Þ

Indeed, if there exist t1; t2 � t0 with t1 < t2 such that xðt1Þ > xðt2Þ; then x attains
its maximum on ½t0; t2� at some point s 2 ðt0; t2Þ, at which we have xðsÞ > xðt0Þ � A
and x0ðsÞ ¼ 0, x00ðsÞ 
 0. By (3.1), one finds that at the point s,

�x00 þ fðs; x; x0Þx0 þ gðxÞ � hðsÞ þ 1 > hðsÞ;

which leads to a contradiction (as x is a solution of (1.1)).
In the sequel we show that limt!T x

0ðtÞ ¼ þ1. We first prove that x0 is
unbounded on ½0;TÞ. Suppose not. Then for some C > 0, jx0ðtÞj < C for 8t 2 ½0;TÞ.
If T < þ1, it follows that x is bounded on ½0;TÞ. This contradicts to (3.2). Thus we
assume T ¼ þ1. By ðG1Þ, there exists B > 0 such that for any x � B,

gðxÞ > 
ð1 þ CÞCþ jhðtÞj þ 1; 8t � 0; ð3:3Þ

where 
 is the constant in ðF1Þ. By (3.2), we can take a t� > 0 such that xðtÞ � B for
t � t�. Because of (3.3) we have

x00 ¼ gðxÞ þ fðt; x; x0Þx0 � hðtÞ � 1; 8t � t�: ð3:4Þ

As a consequence, we see that x0ðtÞ ! þ1 as t! þ1. This a contradiction.
Since x0 is unbounded on ½0;TÞ, we can take a sequence ftng � ½0;TÞ, tn ! T

such that x0ðtnÞ ! þ1 (as x is nondecreasing on ½t0;TÞ and hence x0ðtÞ � 0 for
t 2 ½t0;TÞ). Let M > 0 be given arbitrary. By the same argument as in (3.3)-(3.4), we
can prove that there exists tM > 0 such that if t � tM and x0ðtÞ 
M, then x00ðtÞ � 0.
It follows that if tn � tM is such that x0ðtnÞ �M, then

x0ðtÞ �M; 8t � tn:

This completes the proof of the desired result.
(3) As above, we only show Iþ1 is a nonempty open subset of R2.
Let A > 0 be such that (3.1) holds for any z � A. Assume that ðx0; x1Þ 2 Iþ1.

Take a t0 > 0 such that

xðt0Þ > A; x0ðt0Þ > 0;

where x ¼ 	ðt; x0; x1Þ. By continuity of 	 with respect to initial data ðx0; x1Þ, there
exists a � > 0 such that for any ðy0; y1Þ with jy0 � x0j; jy1 � x1j < �, y ¼ 	ðt; y0; y1Þ

satisfies

yðt0Þ > A; y0ðt0Þ > 0: ð3:5Þ

By the same argument as in showing (3.2), we can show that y is nondecreasing
for t � t0. Now we claim that limt!T yðtÞ ¼ þ1 and hence ðy0; y1Þ 2 Iþ1. Indeed, if
this is not the case, then

A < lim
t!T

yðtÞ ¼ c� < þ1: ð3:6Þ
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By the first conclusion (1), we know that y0ðtÞ is bounded on ½0;TÞ and hence
T ¼ þ1. Define

ynðtÞ ¼ yðtþ n!Þ; t 2 ½0; !�; n 2 N:

By periodicity, we have

�y00n þ fðt; yn; y
0
nÞy

0
n þ gðynÞ ¼ hðtÞ; t 2 ð0; !Þ: ð3:7Þ

Since yðtÞ and y0ðtÞ are bounded on ½0;þ1Þ, by (1.1), one sees that y00ðtÞ is also
bounded on ½0;þ1Þ. By the classical Arzela-Ascoli’s Theorem, yn has a subsequence
yni that converges to a function y� in C1ð½0; !�Þ. Invoking (3.7), one also deduces that
yni converges to y� in C2ð½0; !�Þ. In view of (3.6), we have y� � c� on ½0; !�. Now we
pass to the limit in (3.7) for yni to obtain that

gðc�Þ ¼ hðtÞ; t 2 ð0; !Þ;

which contradicts (3.1).
The nonemptiness will be shown in the following argument.
(4) Let x0 2 R1. Let A > 0 be the constant such that (3.1) holds with any

z � A. We take a y0 > maxðA; x0Þ and consider the boundary value problem

�x
00

þ fðt; x; x
0

Þx
0

þ gðxÞ ¼ hðtÞ; t 2 ð0; 1Þ;
xð0Þ ¼ x0; xð1Þ ¼ y0:

�
ð3:8Þ

According to Theorem 2.2 (3.8) has at least a solution x� 2 C2ð½0; 1�Þ. Since y0 >
maxðA; x0Þ, we can find a t0 2 ð0; 1� such that x�ðt0Þ > A and x�0ðt0Þ > 0. Let
x1 ¼ x�0ð0Þ, xðtÞ ¼ 	ðt; x0; x1Þ. By uniqueness of (1.1)-(1.2), we have xðtÞ ¼ x�ðtÞ on
½0; 1�; therefore xðt0Þ > A; x0ðt0Þ > 0. Repeating the argument below (3.5) in the
proof of the third conclusion (3), one can show that sup½0;TÞ xðtÞ ¼ þ1 and hence
ðx0; x1Þ 2 Iþ1. Therefore Iþ1 and Dþ1ðx0Þ are nonempty. The openness of Dþ1ðx0Þ

is a consequence of that of Iþ1.
Similarly we can show that D�1ðx0Þ is a nonempty open subset of R1.
(5) Let x0 2 R1. By (1) and (4), one sees that Dþ1ðx0Þ

S
D�1ðx0Þ

S
DB

ðx0Þ ¼ R1. As a topological consequence, we deduce immediately from (4) that
DBðx0Þ is a nonempty closed subset of R1.

The proof of the theorem is complete.
Now we turn to the proof of Theorem 1.2. We only consider the case when the

solution of (1.1)-(1.2) satisfies (1.5). For the other one the argument is parallel and
thus is omitted. We start with the following basic lemma.

Lemma 3.1. Let b; k 2 R1 with k > 0,

�1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4k

p
� bÞ=2; �2 ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4k

p
þ bÞ=2:

Assume that x 2 C2ð½0;TÞÞ satisfies

x00 þ bx0 � kx � 0; 8t 2 ð0;TÞ; ð3:9Þ
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xð0Þ � 0; x0ð0Þ � �1xð0Þ � 0: ð3:10Þ

Then xðtÞ; x0ðtÞ � 0 for t 2 ½0;TÞ.

Proof. Equation (3.9) can be rewritten as

d

dt
ðx0 � �1xÞ � �2ðx

0 � �1xÞ � 0; 8t 2 ð0;TÞ;

from which we infer that

x0 � �1x � ðx0ð0Þ � �1xð0ÞÞe
�2t � 0; 8t 2 ½0;TÞ: ð3:11Þ

It follows that

xðtÞ � xð0Þe�1t � 0; 8t 2 ½0;TÞ: ð3:12Þ

Noting that �1 > 0, by (3.11) and (3.12),

x0ðtÞ � �1xðtÞ � 0; 8t 2 ½0;TÞ:

The proof is complete.

Proof of Theorem 1.2. Assume that xðtÞ ¼ 	ðt; x0; x1Þ satisfies (1.5). By Theorem
1.1, we know that limt!T xðtÞ ¼ þ1; limt!T x

0ðtÞ ¼ þ1: Let t0 � 0 be such that

xðtÞ > 0; x0ðtÞ > 0; 8t � t0: ð3:13Þ

By ðF2Þ and ðG2Þ, there exist k; c0 > 0 such that

x00 þ bx0 � kx� c0 � 0; 8t � t0: ð3:14Þ

Let �1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4k

p
� bÞ=2, �2 ¼ �ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4k

p
þ bÞ=2. We denote by y the solution

of the initial-value problem:

y00 þ by0 � ky� c0 ¼ 0; yð0Þ ¼ xðt0Þ; y
0ð0Þ ¼ x0ðt0Þ:

Then

yðtÞ ¼ c1e
�1t þ c2e

�2t �
c0

k
:

We claim that c1 > 0. Indeed, if c1 
 0, noting that �1 > 0 and �2 < 0, we will
have either yð0Þ ¼ c1 þ c2 � c0=k < 0 (in case c2 
 0) or y0ð0Þ ¼ �1c1 þ �2c2 < 0 (in
case c2 > 0), which yields a contradiction (as xðt0Þ; x

0ðt0Þ > 0). Write uðtÞ ¼ xðtÞ�
yðt� t0Þ. Then uðt0Þ ¼ u0ðt0Þ ¼ 0. u satisfies

u00 þ bu0 � ku � 0; 8t � t0:

By virtue of Lemma 3.1, we have uðtÞ; u0ðtÞ � 0 for t 2 ½t0;TÞ, i.e.,
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xðtÞ � c1e
��1t0e�1t þ c2e

��2t0e�2t �
c0

k
; 8t � t0;

x0ðtÞ � �1c1e
��1t0e�1t þ �2c2e

��2t0e�2t; 8t � t0;

which completes the proof of the desired results.
Finally we give a detailed proof of Theorem 1.3.

Proof of Theorem 1.3. Let x be the solution of (1.1)-(1.2). Assume that
supRþ jxðtÞj < þ1. By Theorem 1.1 (1), supRþ jx0ðtÞj < þ1. Further by (1.1), one
sees that supRþ jx00ðtÞj < þ1. From Theorem 2.3, we know that under the assump-
tions of Theorem 1.3, (1.1) has at least a !-periodic solution �. In the sequel we show
that (1.8) holds. If x � � on Rþ, then the proof is complete. Thus we may assume,
without loss of generality that there exists t1 2 Rþ such that xðt1Þ � �ðt1Þ > 0. In the
following we first prove that x� � is monotone on ½t�;þ1Þ for some t� > 0. We
divide the argument into two cases.

Case 1. There exists t2 > t1 such that xðt2Þ � �ðt2Þ < 0. In this case, one can
easily see that there exists t� > t1 such that

xðt�Þ � �ðt�Þ 
 0; x0ðt�Þ � �0ðt�Þ < 0:

We show that x� � nonincreasing on ½t�;þ1Þ. Suppose not, then (noting that
x� � is stictly decreasing on ½t�; t� þ �Þ for some small � > 0) x� � will have a local
minimum point s, at which we have xðsÞ < �ðsÞ: Noting that x0ðsÞ ¼ �0ðsÞ,
x00ðsÞ � �00ðsÞ, by the strict monotonicity assumption on fðt; z; pÞpþ gðzÞ in z, one
finds at the point s that

�x00 þ fðs; x; x0Þx0 þ gðxÞ < ��00 þ fðs; �; �0Þ�0 þ gð�Þ ¼ hðsÞ;

which is a contradiction.

Case 2. xðtÞ � �ðtÞ � 0 for all t � t1. If x0ðtÞ � �0ðtÞ 
 0 for t � t1, then x� � is
nonincreasing on ½t1;þ1Þ and thus t� ¼ t1. Now assume that there exists a t� � t1
such that x0ðt�Þ � �0ðt�Þ > 0. Since xðt�Þ � �ðt�Þ � 0, by fully analogous argument as
in Case 1, we can show that x� � is nondecreasing on ½t�;þ1Þ.

Now since x is bounded, we conclude that limt!þ1ðxðtÞ � �ðtÞÞ exists. Let

lim
t!þ1

ðxðtÞ � �ðtÞÞ ¼ c�: ð3:15Þ

We show that c� ¼ 0 and thus

lim
t!þ1

ðxðtÞ � �ðtÞÞ ¼ 0: ð3:16Þ

Define xnðtÞ ¼ xðtþ n!Þ for t 2 ½0; !�. By periodicity, we have

�x00n þ fðt; xn; x
0
nÞx

0
n þ gðxnÞ ¼ hðtÞ; t 2 ð0; !Þ: ð3:17Þ
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By similar argument as in showing the convergence of yn in (3.7), we know that
xn has a subsequence xnk that converges in C2ð½0; !�Þ to a function x�. In view of
(3.15) and the definition of xn, we see that x�ðtÞ ¼ �ðtÞ þ c�. We pass to the limit in
(3.17) and obtain

��00 þ fðt; � þ c�; �0Þ�0 þ gð� þ c�Þ ¼ hðtÞ; 8t 2 ð0; !Þ; ð3:18Þ

which implies by the strict monotonicity assumption on fðt; z; pÞpþ gðzÞ in z that
c� ¼ 0.

Finally we show that

lim
t!þ1

ðx0ðtÞ � �0ðtÞÞ ¼ 0: ð3:19Þ

Assume that x� � is nonincreasing on ½t�;þ1Þ. In this case we infer from
(3.16) that

xðtÞ � �ðtÞ � 0; t � t�: ð3:20Þ

Note that x0ðtÞ � �0ðtÞ 
 0 for any t � t�. If (3.19) is not true, then there exists
"0 > 0 and a sequence tn 2 R

þ, tn ! þ1 such that x0ðtnÞ � �0ðtnÞ < �2"0 for any
n 2 N. Since x00 and �00 are bounded, we deduce that x0 � �0 is uniformly continuous
on Rþ, therefore there exists � > 0 such that for 8n,

x0ðtÞ � �0ðtÞ < �"0; 8t 2 ½tn; tn þ ��: ð3:21Þ

Equations (3.16) and (3.21) imply that xðtn þ �Þ � �ðtn þ �Þ < 0 for n sufficiently
large. This contradicts (3.20) and proves (3.19).

In a quite similar manner we can prove (3.19) in the case when x� � is non-
decreasing on ½t�;þ1Þ. The proof is complete.

Remark 3.1. When the function f in equation (1.1) is independent of t, x0 and
does not change sign, some results similar to Theorem 1.3 can be found in a recent
paper [1, Theorem 3.2 and Proposition 3.6]). The method in [1] makes use of some
topological tools. In contrast, ours seems to be more simple and direct.

A significant feature of the results in [1] is that the functions f and g are
allowed to be defined only on an interval ða; bÞ � R1, thus one can consider even
some singular equations. We also point out that in the case in which f is a negative
constant, the conclusion of Theorem 1.3 here is included in Theorem 3.2 of [1].

Remark 3.2. When a solution x of (1.1) satisfying (1.5) or (1.6) blows up in
finite time (i.e., T < þ1) is an interesting problem. It has been considered recently
in [4]. For instance, we have proved that for the Krall equation (1.7), any solution
satisfying (1.5) or (1.6) blows up in finite time.
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