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Abstract

We prove that a reduced and irreducible algebraic surface in CP3 containing infinitely many twistor lines
cannot have odd degree. Then, exploiting the theory of quaternionic slice regularity and the normalisation
map of a surface, we give constructive existence results for even degrees.
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1. Introduction and main results

In this paper we study integral (that is, reduced and irreducible) algebraic surfaces
in CP3 containing infinitely many twistor lines. Let HP1 denote the left quaternionic
projective line. This manifold is diffeomorphic to the 4-sphere S4. A twistor line is a
fibre of the usual twistor fibration

CP1 → CP3 π
→ HP1(' S4),

defined by
π[z0, z1, z2, z3] = [z0 + z1 j, z2 + z3 j],

where j ∈ H is such that i j = k and (i, j, k) is the standard basis of imaginary units in H.
Motivation to study this fibration comes from its link with Riemmannian and complex
geometry (see, for example, [15]).

It is known (see, for example, [10]) that twistor lines can be identified with
projective lines ` ⊂ CP3 such that j(`) = `, where j : CP3 → CP3 is the fixed-point-
free antiholomorphic involution given by

j[z0, z1, z2, z3] 7→ [−z1, z0,−z3, z2].
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Moreover, the map j induces (via Plücker embedding) a map (also called j) in the
Grassmannian Gr(2, 4) := {t1t6 − t2t3 + t4t5 = 0} ⊂ CP5, defined by

j([t1, t2, t3, t4, t5, t6]) = [t1, t5,−t4,−t3, t2, t6], (1.1)

(see, for example, [2, Section 3]). Twistor lines can be identified as points in Gr(2, 4),
which are fixed by this map j.

The study of algebraic surfaces from the twistor projection point of view is complete
in the case of planes and quadrics [9, 16], but still partial in the case of cubics [5–7].
In a series of papers the authors have given general results on this topic by exploiting
analytic [1, 4] (see also [10]) and algebraic [2, 3, 8] methods.

The goal of this paper is to use classical algebraic geometry and quaternionic slice
regularity to show that there are no odd degree integral surfaces containing infinitely
many twistor lines and that for each even degree there exists at least one. We will
prove this last statement by giving two methods of construction. First of all, thanks to
[16, Remark 14.5], an integral algebraic surface of degree d containing more than d2

twistor lines must be j-invariant, and hence a surface containing infinitely many twistor
lines is j-invariant. Surfaces with infinitely many lines are ruled and nonnormal and
so we will deal with this class. However, we will show with a simple argument that
cones are not allowed. Given a ruled surface Y we will recall its normalisation map
u : P(E)→ Y , E being a rank-two vector bundle over a smooth curve C. Given such
a vector bundle E and L ⊂ E a rank-one subsheaf of maximal degree, we say that
E has the property £ if L is the unique rank-one subsheaf of maximal degree (see
Definition 2.1). Afterwards, in Section 2, we will recall some known facts on the
stability of rank-two vector bundles over a smooth curve and we will link them to the
property £.

In Section 3, using the results proved in Section 2 and assuming that the surface Y
is integral and ruled by twistor lines, we are able to prove that its normalisation P(E) is
such that E does not have £ and, equivalently, that E is semistable (see Theorem 3.1).
As a direct consequence we deduce that no odd degree integral rational surface with
infinitely many twistor lines exists. More precisely, we prove the following result.

Proposition 1.1. Let Y ⊂ CP3 be an integral rational surface containing infinitely
many twistor lines. Then deg(Y) is even and CP1 × CP1 is the normalisation of Y.

With a bit more effort we are able to remove the rationality hypothesis and to prove
the following result.

Theorem 1.2. Let Y ⊂ CP3 be an integral surface containing infinitely many twistor
lines. Then deg(Y) is even.

After that we give two existence results for even degrees by constructive methods.
In the first result, using the theory of slice regularity (see [11] for an overview in
the quaternionic setting) and the results contained in [1, 4, 10], we solve the problem
with the hypothesis of rationality. A slice regular function f defined on Ω ⊂ H is a
quaternionic function of a quaternionic variable f : Ω→ H whose restrictions to any
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complex plane Cp = spanR〈1, p〉 ⊂ H, such that p2 = −1, are holomorphic functions.
For any fixed orthonormal basis {1, i, j, k} ⊂ H, it is possible to split a slice regular
function f as f = g + h j, where g|Ci , h|Ci are complex holomorphic functions of a Ci-
variable. The key result is that any slice regular function f can be lifted (via π−1) to a
holomorphic function f̃ : Q ⊂ CP3 → CP3, where Q � CP1 × CP1, and the expression
of f̃ is explicitly given in terms of the splitting f = g + h j. With this tool, the precise
result that we are able to prove is as follows.

Proposition 1.3. For each even integer d ≥ 2 there is a rational degree d ruled surface
Y ⊂ CP3 containing infinitely many twistor lines.

The last (constructive) result of the paper states that it is possible to select a smooth
curve C to construct an integral surface Y with infinitely many twistor lines, such that
u : P(E)→ Y is its normalisation and E is a rank-two vector bundle over a smooth
curve C. The precise statement is as follows.

Theorem 1.4. Let C be a smooth connected complex projective curve defined over R
with C(R) , ∅. Fix an integer d0. Then there is an integer d ≥ d0 and a degree d
integral surface Y ⊂ CP3 such that Y contains infinitely many twistor lines and the
normalisation of Y is a CP1-bundle over C.

The proof of this last theorem is constructive and it is exploited in the last example
to generate a class of integral ruled surfaces of even degree each containing infinitely
many twistor lines.

2. Preliminary results

The main reference for this section is [13, Ch. V]. Let C be a smooth connected
complex projective curve of genus g ≥ 0, E a rank-two holomorphic vector bundle on
C and L ⊂ E a rank-one subsheaf of Ewith maximal degree. As in [13, V.2] or [14], but
with opposite sign, set s(E) := 2 deg(L) − deg(E). Note that for any line bundle R on C,
the line subbundle L ⊗ R of E ⊗ R is a rank-one subsheaf of E ⊗ R with maximal degree
and hence s(E) = s(E ⊗ R). Thus the integer s(E) depends only on the isomorphism
classes of the CP1-bundle P(E). Since s(E) ≡ deg(E) (mod 2), the parity classes of the
integer deg(E) and s(E) are constant in connected families of rank-two vector bundles
on C and the parity class of s(E) is a deformation invariant for the smooth surface P(E).

Definition 2.1. Let C be a smooth connected complex projective curve of genus g ≥ 0,
E a rank-two holomorphic vector bundle on C and L ⊂ E a rank-one subsheaf of E
with maximal degree. We say that E has (the property) £ if L is the unique rank-one
subsheaf of E with maximal degree.

Thanks to the previous considerations, for any line bundle R on C the vector bundle
E has £ if and only if E ⊗ R has £. Hence it makes sense to say that a CP1-bundle P(E)
has £ or does not have £.
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Remark 2.2. If the genus g of C is equal to zero, then s(E) = s if and only if
P(E) � F−s := P(OP1 ⊗ OP1 (s)), the Hirzebruch surface with invariant −s (see [13, V,
2.13, 2.14]).

By the definition of stability and semistability for rank-two vector bundles we see
that s(E) < 0 (respectively s(E) ≤ 0) if and only if E is stable (respectively semistable).
Moreover, s(E) = 0 if and only if E is strictly semistable, that is, it is semistable but
not stable (see [13, V, Exercise 2.8] and also [14]).

Lemma 2.3. Let C be a smooth curve and E a rank-two vector bundle on C without £.
Then E is semistable.

Proof. Let G be a rank-two vector bundle on C, which is not semistable. It is sufficient
to prove that G has £. Let L ⊂ G be a maximal degree rank-one subsheaf. Since L has
maximal degree, G/L has no torsion. Since C is a smooth curve, this means that G/L
is a line bundle. We have the exact sequence

0→ L→G
v
→G/L→ 0.

Let M be any maximal degree rank-one subsheaf of G. We have deg(M) = deg(L).
Since G is not semistable, deg(L) > deg(G/L) and so Hom(M,G/L) = 0. Thus v|M ≡ 0,
that is, M ⊆ L. Since deg(M) = deg(L), it follows that M = L, that is G has £. �

Let C be any smooth connected projective curve of genus g ≥ 2. See [14] for a large
number of examples of stable rank-two vector bundles on C with or without £.

It is proved in [14] that if E is a general rank-two stable vector bundle on C with
degree d, then the integer s(E) is the only integer in {−g, 1 − g}, which is ≡ d (mod 2).
If s(E) = −g, then E has ∞1 maximal degree rank-one subbundles and hence it does
not have £. If s(E) = 1 − g and E is general, then E has exactly 2g maximal degree-one
subbundles (a result discovered by C. Segre in 1889).

We recall the following well-known observation, which characterises the property
£ in the case of strict semistability.

Lemma 2.4. Assume s(E) = 0. Then E has £ if and only if E is indecomposable. If E
is decomposable, then either E � L⊕2 for some line bundle L (and in this case E has
∞1 rank-one subsheaves with maximal degree) or E � L ⊕ M with L, M line bundles,
deg(L) = deg(M) and L � M (and in this case L and M are the only line subbundles of
E with maximal degree).

Proof. Assume E is decomposable, say E � L1 ⊕ L2 with L1 and L2 line bundles on C
with deg(L2) ≥ deg(L1). Since s(E) = 0, in particular, s(E) ≤ 0 and deg(L2) = deg(L1).
Let πi : E → Li denote the projections. Let L be a maximal degree rank-one subsheaf
L ⊂ L1 ⊕ L2. Then there is i ∈ {1, 2} with πi|L , 0. Hence deg(L) ≤ deg(Li) and equality
holds if and only if πi induces an isomorphism L→ Li. The maximality property of
deg(L) implies deg(L) = deg(Li). This gives the second assertion of the lemma and the
‘only if’ part of the first assertion.
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Now assume that £ fails and take rank-one subsheaves L, M of E with maximal
degree. M and L may be isomorphic as abstract line bundles, but they are supposed to
be different subsheaves of E. Since deg(L) = deg(E)/2 = deg(M), we have L * M and
M * L. Hence the map f : L ⊕ M → E induced by the inclusions L ↪→ E and R ↪→ E
has generic rank two. Since f has generic rank two and L ⊕ M is a rank-two vector
bundle, f is injective. Since s(E) = 0, we have deg(L ⊕ M) = deg(E). Thus f is an
isomorphism, concluding the proof of the lemma. �

3. Surfaces with infinitely many twistor lines

Suppose that Y ⊂ CP3 is an integral ruled projective surface of degree > 1 and let
u : X → Y denote the normalisation map. Assume that Y is not a cone. Then X is a
CP1-bundle on a smooth curve C, that is, there is a rank-two vector bundle E on C
such that X � P(E). Let v : P(E)→ C denote the map with CP1 as fibres. In particular,
u sends each fibre of the ruling v : P(E)→ C to a line of CP3. The map v is a locally
trivial fibration (both in the Zariski and the Euclidean topology) and the curve C may
be obtained in the following way. Fix a general hyperplane H ⊂ CP3. Since H is
general, H ∩ Y is an integral plane curve. The curve C is the normalisation of the
curve H ∩ Y .

In this section we discuss the existence and nonexistence of integral surfaces
Y ⊂ CP3 of degree d with d ≥ 3, which contain infinitely many twistor lines. As stated
in the introduction, any integral surface Y ⊂ CP3 of degree d containing at least d2 + 1
twistor lines is j-invariant. Hence, if Y contains infinitely many twistor lines, then
j(Y) = Y . Since any two twistor lines are disjoint and a cone has only finitely many
curves not through the vertex, we may exclude cones. Moreover, no smooth surface
of degree d > 2 contains infinitely many lines and therefore we need to allow singular
surfaces. Hence, our situation accords with the construction described at the beginning
of the section.

Our first result concerns the property £ and semistability.

Theorem 3.1. Let Y ⊂ CP3 be an integral surface containing infinitely many twistor
lines. Let E be a rank-two vector bundle on a smooth curve C and P(E) the
normalisation of Y. Then E does not have £ and in particular, by Lemma 2.3, it is
semistable.

Proof. We know that j(Y) = Y , that Y is not a cone and that Y contains infinitely many
twistor lines appearing as lines of the ruling. Let u : P(E)→ Y denote the normalisation
map. Assume that E has £ and let T ⊂ P(E) be the section of the ruling v : P(E)→ C
associated to the unique rank-one line subbundle L of E with maximal degree. The
maximality of the integer deg(L) implies that L is a rank-one subbundle of E, that
is, E/L is a line bundle on C, and deg(E/L) is the minimal degree of a line bundle
M such that there is a surjective map f : E → M. Surjective maps f : E → M (or,
equivalently, embeddings of rank-one subbundles R ↪→ E) correspond to sections of
the ruling v [13, Proposition V.2.6]. Since u is the normalisation map, u is finite. Thus
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L ⊂ P(E) corresponds to a minimal degree curve D ⊂ Y , which is the image of T , that
is, D = u(T ). Since T intersects each fibre of Y , D intersects each line of the ruling of
Y . Each section of v different from T has as image in CP3 a curve of degree greater
than deg(D). Since deg( j(D)) = deg(D), the section giving j(D) is equal to the one
giving D and hence j(D) = D. Fix a twistor line ` of the ruling and take z ∈ D ∩ `
(z exists, because each fibre of v meets T ). Then j(z) ∈ ` because ` is a twistor line,
and j(z) ∈ D because j(D) = D. Since j : CP3 → CP3 has no fixed point, ` contains at
least two different points of D. Hence the fibre of v over v(u−1(`)) meets T in at least
two different points, a contradiction. �

Proposition 1.1 now follows as an easy corollary of the previous result.

Proof of Proposition 1.1. Set d := deg(Y). By Theorem 3.1 the normalisation of Y
is associated to a degree d rank-two vector bundle on C. Since Y is rational, the
genus g of C is not positive and therefore C � CP1. But then the normalisation of
Y is the Hirzebruch surface with invariant s = s(E) = 0 (see Remark 2.2). Thanks
to Theorem 3.1 and Lemma 2.4, two line bundles on CP1 of the same degree are
isomorphic. It follows that E � L⊕2 with L � OCP1 (d/2). Therefore, d is even and
P(L⊗2) � P(O⊕2

CP1 ) � CP1 × CP1. �

To remove the hypothesis of rationality in Proposition 1.1, we need the following
Lemma whose proof is in the same spirit as that of Theorem 3.1.

Lemma 3.2. Let Y ⊂ CP3 be an integral surface containing infinitely many twistor lines.
Let E be a rank-two vector bundle on a smooth curve C and P(E) the normalisation of
Y. Let L ⊂ E be a line bundle with maximal degree and D ⊂ Y be a curve of minimal
degree, which is the image of a section T of v corresponding to L. Then j(D) , D.

Proof. Assume j(D) = D. Thus j induces an antiholomorphic involution of D. Fix a
twistor line ` of the ruling and take z ∈ D ∩ `. Then j(z) ∈ ` because ` is a twistor line
and j(z) ∈ D because j(D) = D. Since j : CP3 → CP3 has no fixed point, ` contains at
least two different points of D. Hence the fibre v over v(u−1(`)) meets D in at least two
different points, a contradiction. �

Proof of Theorem 1.2. Since any plane contains exactly one twistor line, we may
assume d ≥ 3. Let u : X = P(E)→ Y denote the normalisation map. We recall that
there is a smooth connected curve C and a rank-two vector bundle E on C such that
X = P(E) and u sends each fibre of the ruling v : P(E)→ C to a line of CP3.

Let L ⊂ E be a line bundle with maximal degree. As explained in the proof of
Theorem 3.1, L ⊂ P(E) corresponds to a curve D ⊂ Y of minimal degree, which is
the image of a section of v. Since j(Y) = Y , deg( j(D)) = deg(D) and j(D) , D (by
Lemma 3.2), and j(D) corresponds to a maximal degree line subbundle R ⊂ E with
deg(R) = deg(L) and R , L.

Since j(D) , D and D is an integral curve, the set S := j(D) ∩ D is finite. Note
that j(S ) = S . Since the antiholomorphic involution j has no base points, b := |S | is
even. Moreover, j|D : D→ j(D) is a bijection and hence j induces an antiholomorphic
involution Ĵ : X → X.
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Now we prove that d is even. Let T1 ⊂ X and T2 ⊂ X be the sections of v
such that u(T1) = D and u(T2) = j(D). Since u|T1 : T1 → D and u|T2 : T2 → j(D) are
bijections, Ĵ induces a bijection T1 → T2 and S ′ := T1 ∩ T2 has cardinality b. For
any divisors A, B on X let A · B denote the intersection product in the Chow ring
of X, or equivalently, the cup product H2(X, C) × H2(X, C)→ H4(X, C) � C. We
have A · B ∈ Z. For p ∈ S ′ (if any) let cp be the degree of the connected component
containing p of the zero-dimensional scheme T1 ∩ T2 (scheme-theoretic intersection).
Since Ĵ is an antiholomorphic isomorphism, we have c j(p) = cp for all p ∈ S ′. Since
T1 ∩ T2 is finite, we have T1 · T2 =

∑
p∈S ′ cp. Decomposing S ′ into the disjoint union

of pairs {o, Ĵ(o)}, we see that T1 · T2 is an even nonnegative integer. Since Y is not
a cone, there is an ample and base point free line bundle OX(1) on X such that u is
induced by a four-dimensional linear subspace of H0(OX(1)) and d = OX(1) · OX(1).
We have Pic(X) � v∗(Pic(C)) ⊕ ZT1 [13, Proposition V.2.3]. Write ∼ for the numerical
equivalence of divisors and line bundles on X: by definition, two fibres F and F′

are equivalent if A · F = A · F′ for each divisor A. Let F denote the numerical
equivalence class of a fibre of v. Since two different fibres of v are disjoint, we
have F · F = 0. For any degree x line bundle A on C we have v∗(A) ∼ xF. Since
Y is ruled by lines, OX(1) · F = 1. Thus there is an integer x such that OX(1) ∼
T1 + xF. Since T2 is a section of v, there is an integer y such that T2 ∼ T1 + yF. We
have deg(D) = OX(1) · T1 = (T1 + xF) · T1 = T1 · T1 + x and deg( j(D)) = OX(1) · T2 =

(T1 + xF) · (T1 + yF) = T1 · T1 + x + y. Since deg( j(D)) = deg(D), we have y = 0.
Thus T1 · T1 = T1 · T2. Hence T1 · T1 is an even nonnegative integer. Moreover,
d = OX(1) · OX(1) = (T1 + xF) · (T1 + xF) = T1 · T1 + 2x. Since T1 · T1 is even, then d
is even. �

We now give two different methods to construct integral surfaces with infinitely
many twistor lines. We begin with Proposition 1.3. As stated in the introduction,
the theory of quaternionic slice regularity can be exploited in this case. In fact, as
explained in [1, 4, 10], any slice regular function f : Ω→ H where Ω ⊂ H can be
lifted, with an explicit parametrisation, to a holomorphic curve f̃ : CP1 × CP1 → CP3.
This geometric construction is the core of the proof.

Proof of Proposition 1.3. For any even degree d it is possible to construct a rational
ruled surface Y ⊂ CP3 parameterised by the twistor lift f̃ of a slice regular function
f [1, 4, 10], that is,

f̃ : CP1 × CP1 → Y, ([s, u], [1, v]) 7→ [s, u, sg(v) − uĥ(v), sh(v) + uĝ(v)],

where g, ĝ, h and ĥ are holomorphic functions defined on C. From [4, Remark 4.9], if
ĝ(v) = g(v) and ĥ(v) = h(v), then deg(Y) is even and Y contains infinitely many twistor
fibres (namely the fibres over f (R)). By suitably choosing these functions, it is possible
to construct a birational morphism between CP1 × CP1 and Y . �

Finally, we prove Theorem 1.4. Note that the map j : CP3 → CP3 can
be decomposed as j = ◦σ = σ◦ , where denotes the usual conjugation and
σ[z0, z1, z2, z3] = [−z1, z0,−z3, z2]. Analogously, the map j defined in Equation (1.1)
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can be decomposed as j = ◦ σ = σ◦ , where is again the usual conjugation in CP5,
and σ : CP5 → CP5 is defined by

σ([t1 : t2 : t3 : t4 : t5 : t6]) = [t1 : t5 : −t4 : −t3 : t2 : t6]. (3.1)

The compatibility of these two maps is given by the following observation. Using
standard Plücker coordinates t1 = z0 ∧ z1, t2 = z0 ∧ z2, t3 = z0 ∧ z3, t4 = z1 ∧ z2,
t5 = z1 ∧ z3 and t6 = z2 ∧ z3,

σ(t1) = σ(z0) ∧ σ(z1) = (−z1) ∧ (z0) = z0 ∧ z1 = t1
σ(t2) = σ(z0) ∧ σ(z2) = (−z1) ∧ (−z3) = z1 ∧ z3 = t5
σ(t3) = σ(z0) ∧ σ(z3) = (−z1) ∧ z2 = −t4
σ(t4) = σ(z1) ∧ σ(z2) = z0 ∧ (−z3) = −t3
σ(t5) = σ(z1) ∧ σ(z3) = z0 ∧ z2 = t2
σ(t6) = σ(z2) ∧ σ(z3) = (−z3) ∧ z2 = z2 ∧ z3 = t6.

We recall that CP1 is defined over R with RP1 as its real points. Moreover, if g > 0
there are infinitely many nonisomorphic smooth and connected complex projective
curves C of genus g defined over R and with C(R) , ∅ [12, 17].

Proof of Theorem 1.4. Set F := {t2 − t5 = t3 + t4 = 0} ⊂ CP5 and E := Gr(2, 4) ∩ F.
Note that σ|F is the identity map. Take homogeneous coordinates t1, t5, t4, t6 on
F � CP3. Note that E is the smooth quadric surface of F with t1t6 − t2

5 − t2
4 = 0 as

its equation and, over R, the quadric E has signature (1, 3). So E has many real points,
but it is not projectively isomorphic to RP1 × RP1. Set F′ := F \ {t6 = 0} � C3.

Let C be a smooth and geometrically connected projective curve defined overRwith
C(R) , ∅. Then C(R) is topologically isomorphic to the disjoint union of k circles with
1 ≤ k ≤ g + 1 (because C(R) is infinite and hence it is dense in C(C) for the Zariski
topology). Fix p ∈ C(R) and set C′ := C \ {p} so that C′ is an affine and connected
rational curve defined on R. Thus there are nonconstant algebraic maps f4 : C′ → C
and f5 : C′ → C defined over R. Set f1 := f 2

4 + f 2
5 .

The map ( f1, f4, f5) : C′ → C3 is defined over R and it maps C′ into F′ ∩ E. Since
C is a smooth projective curve, ( f1, f4, f5) extends in a unique way to a regular map
ψ : C → F. As ( f1, f4, f5) is defined over R, the uniqueness of the extension ψ means
that ψ commutes with the complex conjugation. The image of C′ is contained in
F′ ∩ E, and therefore D := ψ(C) ⊂ E ⊂ Gr(2, 4) and, because f5 is not constant, D is
an integral projective curve. Since C and ψ are defined over R, then D is defined over
R. We now state three claims, which lead us to the desired conclusion.

Claim 1. We can find f4 and f5 such that ψ is birational onto D (that is, C is the
normalisation of D).

Since C is compact, ψ is a proper map. Moreover, since f5 is a nonconstant algebraic
map, f 2

5 is a proper map deleting finitely many points of C, that is, there is a finite set
S ⊂ C such that, taking C′′ := {( f 2

5 )−1(C \ S )}, f 2
5 induces a proper nonconstant map

u′ : C′′ → C \ S . Since C′′ is an irreducible (affine) curve, the differential of this map
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vanishes only at finitely many points. Increasing if necessary the finite set S , we
may assume that u′ has everywhere nonzero differential. Fix any a ∈ C \ S and set
S ′ := f −1

5 (a). Then S ′ is a nonempty finite set. To prove Claim 1 it is sufficient to take
f5 such that f 2

5 (b) , f 2
5 (b′) for all b, b′ ∈ S ′ such that b , b′ and to repeat the same

argument for f4. It is possible to find f4 and f5 satisfying the previous condition for
the following reason. Since S ′ is a finite set, there are infinitely many algebraic maps
h : C′ → C such that h(p) < h(S ′ \ {p}) ∪ −h(S ′) for all p ∈ S ′ (and hence such that
h2(p) , h2(p′) if p , p′ are element of S ′). This proves Claim 1.

Claim 2. j(D) = D.
Since C and ψ are defined over R, D is defined over R, that is, complex conjugation

induces a real analytic isomorphism between D and itself. In particular, complex
conjugation induces a bijection of D. Thus to prove Claim 2 it is sufficient to prove
that σ(D) = D. This follows since σ|F is the identity map. This proves Claim 2.

Claim 3. If Y is the integral surface in CP3 defined by Y = ∪p∈D`p, where `p is the
line in CP3 corresponding to p ∈ Gr(2,4), then Y contains infinitely many twistor lines.

Fix a ∈ D(R) ⊂ E = Gr(2, 4) ∩ F and let `a ⊂ Y be the line associated to a. We
prove that j(`a) = `a for any a ∈ D(R). Since a ∈ D(R), then `a is defined over R and
hence the complex conjugation sends `a into itself. Moreover, as D(R) ⊂ F and σ|F
is the identity map, we have σ(a) = a. Thus, Claim 3 follows from the decomposition
j = ◦ σ = σ◦ . This proves Claim 3.

Given these three claims, to conclude the proof of Theorem 1.4 we only need to
observe that we may take f5 such that the map f 2

5 : C′ → C has degree ≥ d0. �

The proof of Theorem 1.4 allows us to give several examples, all with Y having
even degree, as explained in the following example.

Example 3.3. In the set-up of Theorem 1.4, take F = CP3 with homogeneous
coordinates t1, t4, t5, t6. Let E ⊂ F be the smooth quadric surface with equation
t1t6 = t2

5 + t2
4. All integral projective curves D ⊂ E defined over R give examples

of surfaces Y ⊂ P3 with infinitely many twistor lines. Taking D to be a complete
intersection of E with a smooth quadric surface defined over R gives a degree-four
elliptic ruled surface Y ⊂ CP3 with infinitely many twistor lines. Taking general
intersections of E with a degree t ≥ 3 hypersurface of F defined over R gives a smooth
curve C with degree 2t and genus t2 − 2t + 1 (adjunction formula). This construction
only gives ruled surfaces Y of even degree (even allowing singular curves D) because
E contains only even degree curves defined over R.
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