
JFP 28, e10, 45 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000102

1

Push versus pull-based loop fusion in
query engines

AMIR SHAIKHHA, MOHAMMAD DASHTI

and CHRISTOPH KOCH

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

(e-mails: amir.shaikhha@epfl.ch, mohammad.dashti@epfl.ch, christoph.koch@epfl.ch)

Abstract

Database query engines use pull-based or push-based approaches to avoid the materialization

of data across query operators. In this paper, we study these two types of query engines in

depth and present the limitations and advantages of each engine. Similarly, the programming

languages community has developed loop fusion techniques to remove intermediate collections

in the context of collection programming. We draw parallels between databases (DB) and

programming language (PL) research by demonstrating the connection between pipelined

query engines and loop fusion techniques. Based on this connection, we propose a new type

of pull-based engine, inspired by a loop fusion technique, which combines the benefits of

both approaches. Then, we experimentally evaluate the various engines, in the context of

query compilation, for the first time in a fair environment, eliminating the biasing impact of

ancillary optimizations that have traditionally only been used with one of the approaches.

We show that for realistic analytical workloads, there is no considerable advantage for either

form of pipelined query engine, as opposed to what recent research suggests. Also, by using

micro-benchmarks, which demonstrate certain edge cases on which one approach or the

other performs better, we show that our proposed engine dominates the existing engines by

combining the benefits of both.

1 Introduction

Database query engines successfully leverage the compositionality of relational

algebra-style query plan languages. Query plans are compositions of operators that,

at least conceptually, can be executed in sequence, one after the other. However,

actually evaluating queries in this way leads to grossly suboptimal performance.

Computing (“materialising”) the result of a first operator before passing it to a

second operator can be very expensive, particularly if the intermediate result is large

and needs to be pushed down the memory hierarchy. The same observation has been

made by the programming languages and compilers community and has led to work

on loop fusion and deforestation (the elimination of data structure construction and

destruction for intermediate results).

Already relatively early on in the history of relational database systems, a solution

to this problem has been proposed in the form of the Volcano Iterator model (Graefe,

1994). In this model, tuples are pulled up through a chain of operators that are

linked by iterators that advance in lock-step. Intermediate results between operators

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


2 A. Shaikhha et al.

are not accumulated, but tuples are produced on demand, by request by conceptually

“later” operators.

More recently, an operator chaining model has been proposed that shares the

advantage of avoiding materialisation of intermediate results but which reverses the

control flow; tuples are pushed forward from the source relations to the operator pro-

ducing the final result. Recent papers (Neumann, 2011; Klonatos et al., 2014a) seem

to suggest that this push-model consistently leads to better query processing perfor-

mance than the pull model, even though no direct, fair comparisons are provided.

One of the main contributions of this paper is to debunk this myth. As we show,

if compared fairly, push- and pull-based engines have very similar performance, with

individual strengths and weaknesses, and neither is a clear winner. Push engines have

in essence only been considered in the context of query compilation , conflating the

potential advantages of the push paradigm with those of code inlining. To compare

them fairly, one has to decouple these aspects.

In this paper, we present an in-depth study of the trade-offs of the push versus

the pull paradigm. Choosing among push and pull – or any reasonable alternative –

is a fundamental decision that drives many decisions throughout the architecture of

a query engine. More specifically, the interface exposed for implementing different

query operators is dependent on the type of the query engine (Graefe, 1993).

Furthermore, the query processing engine needs to interact with the storage manager

to benefit from different access methods (such as hash-based and B+ tree indexes)

for efficiently accessing data in the underlying storage (Hellerstein et al., 2007).

Hence, different design choices of query engines result in different design choices for

the storage manager component as well. Thus, one must understand the relevant

properties and trade-offs deeply, and should not bet on one’s ability to overcome

the disadvantages of a choice by a hack later.

Furthermore, we illustrate how the same challenge and trade-off has been met and

addressed by the PL community, and show a number of results that can be carried

over from the lessons learned there. Specifically, we study how the PL community’s

answer to the problem, stream fusion (Coutts et al., 2007), can be adapted to the

query processing scenario, and show how it combines the advantages of the pull and

push approaches. Furthermore, we demonstrate how we can use ideas from the push

approach to solve well-known limitations of stream fusion. As a result, we construct

a query engine that combines the benefits of both push and pull approaches. In

essence, this engine is a pull-based engine on a coarse level of granularity (i.e., on

the level of collections), however, on a finer level of granularity (i.e., on the level of

tuples), it pushes the individual data tuples.

In summary, this paper makes the following contributions:

• We discuss pipelined query engines in Section 2. After presenting loop fusion

for collection programming in Section 3, we show the connection between

these two concepts in Section 4. Furthermore, we demonstrate the limitations

associated with each approach.

• Based on this connection with loop fusion, we propose a new pipelined query

engine in Section 5 inspired by the stream fusion (Coutts et al., 2007) technique

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 3

developed for collection programming in the PL community. Also, we discuss

implementation concerns and compiler optimizations required for the proposed

pipelined query engine in Section 6.

• We experimentally evaluate the various query engine architectures in Section 7.

Using micro-benchmarks, we discuss the weaknesses of the existing engines

and how the proposed engine circumvents these weaknesses by combining

the benefits of both worlds. Then, we demonstrate using TPC-H queries that

good implementations of these three query engines do not show a considerable

advantage for either form of query engine.

Throughout this paper, we are using the Scala programming language for all

code snippets, interfaces, and examples. None of the concepts and ideas require

specifically this language – other impure functional object-oriented programming

languages (or object-oriented with functional features) such as OCaml, F#, C++11,

C#, or Java 8 could be used instead.

2 Pipelined query engines

Database management systems accept a declarative query (e.g., written in SQL).

Such a query is passed to a query optimizer to find a fast physical query plan, which

then is either interpreted by the query engine or compiled to low-level code (e.g., C

code).

A physical query plan is a data flow graph of query operators that perform

calculations and data transformations. Each query operator can be connected to one

or more input operators (which we refer to as the source operators) and one output

operator (which we refer to as the destination operator).

A sequence of query operators can be pipelined, which means that the output of

one operator is streamed into the next operator. Pipelining a query operator removes

the need for materializing the intermediate data and reading it back again, which

can bring a significant performance gain.

There are two approaches for pipelining. The first approach is demand-driven

pipelining in which an operator repeatedly pulls the next data tuple from its source

operator. The second approach is data-driven pipelining in which an operator

pushes each data tuple to its destination operator. Next, we give more details on the

pull-based and push-based query engines.

2.1 Pull engine – a.k.a. the iterator pattern

The iterator model is the most widely used pipelining technique in query engines.

This model was initially proposed in XRM (Lorie, 1974). However, the popularity

of this model is due to its adoption in the Volcano system (Graefe, 1994), in which

this model was enriched with facilities for parallelization.

In a nutshell, in the iterator model, each operator pipelines the data by requesting

the next element from its source operator. This way, instead of waiting until the entire

intermediate relation is produced, the data is lazily generated in each operator. This

is achieved by invoking the next method of the source operator by the destination

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


4 A. Shaikhha et al.

Fig. 1. Data flow and control flow for push- and pull-based query engine for the provided

SQL query.

operator. The design of pull-based engines directly corresponds to the iterator design

pattern in object-oriented programming (Vlissides et al., 1995).

Figure 1 shows an example query and the control flow of query processing for this

query. Each query operator performs the role of a destination operator and requests

data from its source operator (the predecessor operator along the flow direction of

data). In a pull engine, this is achieved by invoking the next function of the source

operator, and is shown as control flow edges. In addition, each operator serves as

source operator and generates result data for its destination operator (the successor

operator along the flow direction of data). The generated data is the return value

of the next function, and is represented by the data flow edges in Figure 1. Note

the opposing directions of control-flow and data-flow edges for the pull engine in

Figure 1.

From a different point of view, each operator can be considered as a while loop

in which the next function of the source operator is invoked per iteration. The loop

is terminated when the next function returns a special value (e.g., a null value). In

other words, whenever this special value is observed, a break statement is executed

to terminate the loop execution.

There are two main issues with a pull-based query engine. First, the next

function invocations are implemented as virtual functions – operators with different

implementations of next have to be chained together. There are many invocations

of these functions; each invocation requires looking up a virtual table, which leads

to suboptimal instruction locality. Query compilation solves this performance issue

by inlining these virtual function calls, which is explained in Section 2.3.

Second, in practice, selection operators are problematic. When the next method

of a selection operator is invoked, the destination operator has to wait until the

selection operator returns the next data tuple satisfying its predicate. This makes the

control flow of the query engine more complicated by introducing more loops and

branches, which is demonstrated in Figure 2(c). Push engines solve the problem of

complicated control flow graphs (CFGs).

2.2 Push engine – a.k.a. the visitor pattern

Push-based engines are widely used in streaming systems (Hirzel et al., 2014). The

Volcano system uses data-driven pipelining (which is a push-based approach) for

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 5

Fig. 2. Specialized version of the example query in pull and push engines and the

corresponding control-flow graphs (CFG). (a) Inlined query in pull engine. (b) Inlined query

in push engine. (c) The CFG of the inlined query in pull engine. (d) The CFG of the inlined

query in push engine.

implementing inter-operator parallelism in query engines. In the context of query

compilation, stream processing engines such as StreamBase (Tibbetts et al., 2011)

and Spade (Gedik et al., 2008), as well as HyPer (Neumann, 2011) and LegoBase

(Klonatos et al., 2014a; Shaikhha et al., 2018) use a push-based query engine

approach.

In push-based query engines, the control flow is reversed compared to that of

pull-based engines. More concretely, instead of destination operators requesting data

from their source operators, data is pushed from the source operators toward the

destination operators. This is achieved by the source operator passing the data

as an argument to the consume method of the destination operator. This results in

eagerly transferring the data tuple-by-tuple instead of requesting it lazily as in pull-

engines.

A push engine can be implemented using the Visitor design pattern (Vlissides et al.,

1995) from object-oriented programming. This design pattern allows separating an

algorithm from a particular type of data. In the case of query engines, the visitor

pattern allows us to separate the query operators (data processing algorithms) from

a relation of elements. To do so, each operator should be defined as a visitor class,

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


6 A. Shaikhha et al.

in which the consume method, which is responsible for pushing the elements down

the pipeline, has the functionality of the visit method, whereas the produce method,

which is responsible for initializing the chain of operators, has the functionality of

the accept method of the visitor pattern.

Figure 1 shows the query processing workflow for the given example query.

Query processing in each operator consists of two main phases. In the first phase,

operators prepare themselves for producing their data. This is performed only once

in the initialization. In the second phase, they consume the data provided by the

source operator and produce data for the destination operator. This is the main

processing phase, which consists of invoking the consume method of the destination

operator and passing the produced data through it. This results in the same direction

for both control-flow and data-flow edges, as shown in Figure 1.

Push engines solve the problem pull engines have with selection operators. A

selection operator ignores the produced data if it does not satisfy the given predicate

by not passing the data to the destination operator. This is in contrast with pull

engines in which the destination operator should have waited for the selection

operator to serve the request.

However, push engines experience difficulties with limit and merge join operators.

For limit operators, push engines do not allow terminating the iteration by nature.

This is because, in push engines, the operators cannot control when the data should

no longer be produced by their source operator. This lack of control over when to

stop producing more elements causes the production of elements that will never be

used.

The merge join operator suffers from a similar problem. There is no way for

the merge join operator to guide which one of its two source operators (which

are both sorted and there is a 1-to-n relationship between them) should produce

the next data item. Hence, it is not possible to pipeline the data coming fro\m

both source operators in a merge join. As a result, at least for one of the source

operators, the pipeline needs to be broken. Hence, the incoming data coming from

one of the source operators can be pipelined (assuming it is correctly sorted,

of course), but the input data coming from the other source operator must be

materialized.

The mentioned limitation is not specific to operators such as merge joins. A

similar situation can arise in the case of more sophisticated analytical tasks where

one has to use collection programming APIs (such as Spark RDDs (Zaharia et al.,

2012)). In collection programming many different methods (for example, element-

wise operations on two numeric vectors) are implemented using the zip method. The

situation is similar for operations which are variants of the merge join operator such

as Leapfrog Triejoin (Veldhuizen, 2014). These methods require parallel traversal on

two (or more) collections similar to the merge join operator, which cannot be easily

pipelined in push-based engines.

Note that these limitations can be resolved by providing special cases for these

two operators in the push engine. In the case of limit operator, one can avoid

producing unnecessary elements by manually fusing the limit operator with its source

operator, which is an ordering operator in most cases. This is because in most cases

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 7

limit-queries have an order-by clause.1 For the merge join operator, one can

implement a variant of this operator which uses different threads for its source

operators and uses synchronization constructs in order to control the production of

data by its two inputs, which can be costly. However, such engines can be considered

as hybrid engines, and in this paper, by push engine, we mean a purely standard

push engine without such augmentations.

2.3 Compiled engines

In general, the runtime cost of a given query is dependent on two factors. The

first factor is the time it takes to transfer the data across storage and computing

components. The second factor is the time taken for performing the actual

computation (i.e., running the instructions of the query). In disk-based DBMSes,

the dominating cost is usually the data transfer from/to the secondary storage.

Hence, as long as the pipelining algorithm does not break the pipeline, there is no

difference between pull engines and push engines. As a result, the practical problem

with selections in pull engines (c.f. Section 2.1) is obscured by data transfer costs.

With the advent of in-memory DBMSes, the code layout of the instructions

becomes an ever more important factor. More specifically, the virtual function calls

(or function calls via function to pointers) appearing in the iterator model start

becoming a bottleneck in the performance. One solution is block-oriented processing

of elements instead of processing elements one-by-one, which hides the cost of

virtual calls behind the cost of processing a large number of elements (Padmanabhan

et al., 2001; Zukowski et al., 2005). The alternative approach, which is the main

focus of this paper, is query compilation. This approach uses code generation and

compilation techniques in order to inline virtual functions and further specialize the

code to improve cache locality (Grust et al., 2009; Ahmad & Koch, 2009; Koch,

2010; Krikellas et al., 2010; Neumann, 2011; Nagel et al., 2014; Koch, 2014; Koch

et al., 2014; Klonatos et al., 2014a; Viglas et al., 2014; Armbrust et al., 2015; Crotty

et al., 2015; Karpathiotakis et al., 2015; Shaikhha et al., 2016; Karpathiotakis et al.,

2016). As a result of that, the code pattern used in each pipelining algorithm really

matters. Hence, it is important to investigate the performance of each pipelining

algorithm for different workloads.

Figure 2(a) shows the inlined pull-engine code for the example SQL query given in

Figure 1. Note that for the selection operator, we need an additional while loop. This

additional loop creates more branches in the generated code, which makes the CFG

more complicated. Figure 2(c) demonstrates the CFG of the inlined pull-engine code.

Each rectangle in this figure corresponds to a block of statements, whereas diamonds

represent conditionals. The edges between these nodes represent the execution flow.

The backward edges represent the jumps inside a loop. This complicated CFG

1 Even without manually fusing the ordering and limit operators, the cost of sorting dominates the cost
of final scan. This reduces the impact of pipelining the limit operator in realistic workloads, as we
observe in Section 7.2.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


8 A. Shaikhha et al.

makes the code harder to understand and optimize for the optimizing compiler. As

a result, during the runtime execution, performance degrades.

Figure 2(b) shows the specialized query for a push engine of the previous example

SQL query. The selection operator here is summarized in a single if statement. As

a result, the CFG for the inlined push-engine code is simpler than the one for the

pull engine, as shown in Figure 2(d). This simpler CFG results in fewer branching

machine instructions generated by the underlying optimizing compiler, leading to

better run time performance.

Up to now, there is no separation of the concept of pipelining from the

associated specializations. For example, HyPer (Neumann, 2011) is in essence a

push engine that uses compiler optimizations by default, without identifying the

individual contributions to performance by these two factors. As another example,

LegoBase (Klonatos et al., 2014a) assumes that a push engine is followed by operator

inlining, whereas the pull engine does not use operator inlining (Klonatos et al.,

2014b). On the other hand, there is no comparison between an inlined pull engine

– we suspect Hekaton (Diaconu et al., 2013) to be of that class – with a push-based

inlined engine in the same environment. Hence, there is no comparison between pull

and push engines which is under completely fair experimental conditions, sharing

environment and code base to the maximum degree possible. In Section 7, we

attempt such a fair comparison.

Furthermore, näıvely compiling the pull engine does not lead to good performance.

This is because a näıve implementation of the iterator model does not take into

account the number of next function calls. This can lead to in-efficient code, due

to the code explosion resulting from inlining too many next calls. For example,

the näıve implementation of the selection operator invokes the next method of its

source operator twice, as it is demonstrated below:

1 class SelectOp[R] (p: R => Boolean) {
2 def next(): R = {
3 var elem: R = source.next()
4 while(elem != null && !p(elem)) {
5 elem = source.next()
6 }
7 elem
8 }
9 }

The first invocation is happening before the loop for the initialization (line 3),

and the second invocation is inside the loop (line 5). Inlining can cause an explosion

of the code size, which can lead to worse instruction cache behavior. Hence, it is

important to take into account these concerns while implementing query engines. For

example, our implementation of the selection operator in a pull-based query engine

invokes the next method of its source operator only once by changing the shape of

the while loop (c.f. Figure 5(a)). Section 7.2 shows the impact of this inline-friendly

implementation of pull engines.

3 Loop fusion in collection programming

Collection programming APIs are getting more and more popular. Ferry (Grust et al.,

2009; Grust et al., 2010) and LINQ (Meijer et al., 2006) use such an API to seemlessly

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 9

integrate applications with database back-ends. Spark RDDs (Zaharia et al., 2012)

use the same operations as collection programming APIs. Also, functional collection

programming abstractions exist in mainstream programming languages such as

Scala, Haskell, and recently Java 8. The theoretical foundation of such APIs is

based on Monad Calculus and Monoid Comprehensions (Wadler, 1990; Breazu-

Tannen & Subrahmanyam, 1991; Breazu-Tannen et al., 1992; Trinder, 1992; Grust

& Scholl, 1999; Fegaras & Maier, 2000).

Similar to query engines, the declarative nature of collection programming comes

with a price. Each collection operation performs a computation on a collection and

produces a transformed collection. A chain of these invocations results in creating

unnecessary intermediate collections.

Loop fusion or Deforestation (Wadler, 1988) removes the intermediate collections

in collection programs. This is a nonlocal and brittle transformation which is difficult

to apply to impure functional programs (i.e., in languages which include imperative

features) and is thus absent from mainstream compilers for such languages. In

order to provide a practical implementation, one can restrict the language to

a pure functional domain-specific language (DSL) for which the fusion rules

can be applied locally. Here, intermediate collections are removed using local

transformations instead of global transformations. This approach is known as

short-cut deforestation. It is more realistic to integrate this approach into real

compilers; short-cut deforestation has been successfully implemented in the context

of Haskell (Gill et al., 1993; Svenningsson, 2002; Coutts et al., 2007) and Scala-based

DSLs (Jonnalagedda & Stucki, 2015; Shaikhha et al., 2016).

Next, we present two approaches for short-cut deforestation, fold fusion, and unfold

fusion, in the order they were discovered. They employ two kinds of “collection”

micro-instructions each, to which a large number of collection operations can be

mapped. This allows to implement fusion using very few rewrite rules.

3.1 Fold fusion

In this approach, every collection operation is implemented using two constructs: (1)

the build method for producing a collection, and (2) the foldr method for consuming

a collection. Some collection-transforming methods such as map use both of these

constructs for consuming the given collection and producing a new collection.

However, some methods such as sum, that produces an aggregated result from a

collection, require only the foldr method for consuming the given collection.

We consider an imperative variant of this algorithm, in which the foldr method

is substituted by foreach. The main difference is that the foldr method explicitly

handles the state, whereas in the case of foreach, the state is handled internally and

is not exposed to the interface.

Using Scala syntax, the signature of the foreach method on lists is as follows:

class List[T] {
def foreach(f: T => Unit): Unit

}

The foreach method consumes a collection by iterating over the elements of that

collection and applying the given function to each element. The build function is the

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


10 A. Shaikhha et al.

corresponding producer for the foreach method. This function produces a collection

for which the foreach method applies the higher order function consumer to the

function f. The signature of the build function is as follows:

def build[T](consumer: (T => Unit) => Unit): List[T]

We illustrate the meanings of these two methods by an example. Consider the map

method of a collection, which transforms a collection by applying a given function

to each element. This method is expressed in the following way using the build and

foreach functions:

class List[T] {
def map[S](f: T => S): List[S] = build { k =>
this.foreach(e => k(f(e)))

}
}

The implementation of several other collection operators using these two methods

is given in Figure 4(b).

After rewriting the collection operations using the build and foreach constructs, a

pipeline of collection operators involves constructing intermediate collections. These

intermediate collections can be removed using the following rewrite rule:

Fold-fusion rule:

build(f1).foreach(f2) � f1(f2)

For example, there is a loop fusion rule for the map function, which

fuses two consecutive map operations into one. More concretely, the expression

list.map(f).map(g) is converted into list.map(f o g). Figure 3 demonstrates how the

fold-fusion technique can derive this conversion by expressing the map operator in

terms of foreach and build, following by application of the fold-fusion rule.

One of the key advantages of this approach is that instead of writing fusion

rewrite rules for every combination of collection operations, it is sufficient to only

express these operations in terms of the build and foreach methods. This way, instead

of writing O(n2) rewrite rules for n collection operations, it is sufficient to express

these operations in terms of build and foreach, which is only O(n) rewrite rules.

Hence, this approach greatly simplifies the maintenance of the underlying compiler

transformations (Shaikhha et al., 2016).

This approach successfully deforests most collection operators very well. However,

it is not successful in the case of zip and take operations. The zip method involves

iterating over two collections, which cannot be expressed using the foreach construct

that iterates only over one collection. Hence, this approach can deforest only one of

the collections. For the other one, an intermediate collection must be created. Also,

for the take method, there is no way to stop the iteration of the foreach method

halfway to finish. Hence, the fold fusion technique does not perform well in these

two cases. The next fusion technique solves the problem with these two methods.

3.2 Unfold fusion

This is considered a dual approach to fold fusion. Every collection operation is

expressed in terms of the two constructs unfold and destroy. We use an imperative

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 11

Fig. 3. Different fusion techniques on list.map(f).map(g).

version of unfold fusion here, which uses the generate function instead of unfold. The

prototype of generate and destroy are as follows:

class List[T] {
def destroy[S](f: (() => T) => S): S

}
def generate[T](gen: () => T): List[T]

The destroy method consumes the given list. Each element of this collection

is accessible by invoking the next function available by the destroy method. The

generate function generates a collection whose elements are specified by the input

function passed to this method. In the case of map operator, the elements of the result

collection are the images of the elements of the input collection under the function

f.

The map method of collections is expressed in the following way using the generate

and destroy methods:

class List[T] {
def map[S](f: T => S): List[S] = this.destroy { n =>
generate { () =>
val elem = n()
if(elem == null) null
else f(elem)

}
}

}

The implementation of some other collection operators using these two methods

is given in Figure 5(b).

In order to remove the intermediate collections, the chain of intermediate generate

and destroy can be removed. This fact is shown in the following transformation rule:

Unfold-fusion rule:

generate(f1).destroy(f2) � f2(f1)

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


12 A. Shaikhha et al.

Table 1. Correspondence between query operators and collection operators

Operator category Query operator Collection operator

Producer Scan fromArray

Transformer

Selection filter

Projection map

OrderBy sortBy

Limit take

Join* flatMap*

Merge Join† zip†

Consumer Agg‡ fold‡

∗Nested loop join can be expressed using two nested flatMaps, but there is no

equivalent for hash-based joins. Also, flatMaps can express nested collections,

whereas in relational query engines every relation is considered to be flat.
†Both merge join and zip perform parallel traversal on two collections, even

though they are otherwise quite different.
‡An Agg operator representing a GROUP BY is a transformer, whereas the one

folds into only a single result is a consumer.

Figure 3 demonstrates how this rule fuses the previous example, list.map(f).map(g)

into list.map(f o g). Note that the null checking statements, which are for checking

the end of a list, are removed for brevity.

This approach introduces a recursive iteration for the filter operation. In practice,

such a recursive iteration, which is for finding the next satisfying element, can cause

performance issues, even though the deforestation is applied successfully (Hinze

et al., 2011). Also, this approach does not fuse operations on nested collections,

which is beyond the scope of this paper.

4 Loop fusion is operator pipelining

By chaining query operators, one can express a given (say, SQL) query. Similarly, a

given collection program can be expressed using a pipeline of collection operators.

The relationship between relational queries and collection programs has been well

studied. In particular, one can establish a precise correspondence between relational

query plans and a class of collection programs (Paredaens & Gucht, 1988).

Operators can be divided into three categories: (1) The operators responsible for

producing a collection from a given source (e.g., a file or an array), (2) the operators

which transform the given collection to another collection, and (3) the consumer

operators which aggregate the given collection into a single result.

The mapping between query operators and collection operators is summarized

in Table 1. Most join operators do not have a directly corresponding collection

operator, with two exceptions: Nested loop joins can be expressed using nested

flatMaps and the zip collection operator is very similar to the merge join query

operator. Both operators need to traverse two input sequences in parallel. For the

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 13

Table 2. Correspondence among pipelined query engines, object-oriented design patterns, and

collection programming loop fusion

Pipelined Object-oriented Collection

Query ngines Design pattern Loop fusion

Pull Engine Iterator
Unfold fusion (Svenningsson, 2002)

Stream fusion (Coutts et al., 2007)

Push Engine Visitor Fold fusion (Gill et al., 1993)

rest of join operators, we extend collection programming with join operators (e.g.,

hashJoin, semiHashJoin). A similar mapping between the LINQ (Meijer et al., 2006)

operators and Haskell lists is shown in Steno (Murray et al., 2011). Note that

we do not consider nested collections here, although straightforward to support

in collection programming, in order to emphasize similarity with relational query

engines.

Pipelining in query engines is analogous to loop fusion in collection programming.

Both concepts remove the intermediate relations and collections, which break

the stream pipeline. Also, pipelining in query engines matches well-known design

patterns in object-oriented programming (Vlissides et al., 1995). The correspondence

among pipelining in query engines, design patterns in object-oriented languages, and

loop fusion in collection programming is summarized in Table 2.

Push engine = Fold fusion. There is a similarity between the Visitor pattern and fold

fusion. On one hand, it has been proven that the Visitor design pattern corresponds

to the Church-encoding (Böhm & Berarducci, 1985) of data types (Buchlovsky &

Thielecke, 2006). On the other hand, the foldr function on a list corresponds to

the Church-encoding of lists in λ-calculus (Pierce, 2002; Shivers & Might, 2006).

Hence, both approaches eliminate intermediate results by converting the underlying

data structure into its Church-encoding. In the former case, specialization consists

of inlining, which results in removing (virtual) function calls. In the latter case, the

fold-fusion rule and β-reduction are performed to remove the materialization points

and inline the λ expressions. The correspondence between these two approaches is

shown in Figure 4 (compare (a) versus (b)). The invocations of the consume method

of the destination operators in the push engine correspond to the invocations of the

consume function, which is passed to the build operator, in fold fusion.

Pull engine = Unfold fusion. In a similar sense, the Iterator pattern is similar to

unfold fusion. Although the category-theoretic essence of the iterator model was

studied before (Gibbons & Oliveira, 2009), there is no literature on the direct

correspondence between the unfold function and the Iterator pattern. However,

Figure 5 shows how a pull engine is similar to unfold fusion (compare Figure 5(a)

versus (b)), to the best of our knowledge for the first time. Note the correspondence

between the invocation of the next function of the source operator in pull engines

and the invocation of the next function which is passed to the destroy operator in

unfold fusion, which is highlighted in the figure.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


14 A. Shaikhha et al.

Fig. 4. Correspondence between push-based query engines and fold fusion of collections. (a)

Push-based query engine. (b) Fold fusion of collections.

5 An improved pull-based engine

In this section, we first present yet another loop-fusion technique for collection

programs. Then, we suggest a new pull-based query engine inspired by this

fusion technique based on the correspondence between queries and collection

programming.

5.1 Stream fusion

In functional languages, loops are expressed as recursive functions. Reasoning about

recursive functions is very hard for optimizing compilers. Stream fusion tries to solve

this issue by converting all recursive collection operations to non-recursive stream

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 15

Fig. 5. Correspondence between pull-based query engines and unfold fusion of collections.

(a) Pull-based query engine. (b) Unfold fusion of collections.

operations. To do so, first all collections are converted to streams using the stream

method. Then, the corresponding method on the stream is invoked that results in a

transformed stream. Finally, the transformed stream is converted back to a collection

by invoking the unstream method.

The signature of the unstream and stream methods is as follows:
def unstream[T](gen: () => Step[T]): List[T]
class List[T] {
def stream(): Step[T]

}

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


16 A. Shaikhha et al.

Fig. 6. The operations of the Step data type.

For example, the map method is expressed in using these two methods as:
class List[T] {
def map[S](f: T => S): List[S] = unstream { () =>
this.stream().map(f)

}
}

The stream method converts the input collection to an intermediate stream, which

is specified by the Step data type. The function f is applied to this intermediate

stream using the map function of the Step data type. Afterwards, the result stream is

converted back to a collection by the unstream method.

As discussed before, one of the main advantages of the intermediate stream,

the Step data structure, is that its operations are mainly non-recursive. This

simplifies the task of the optimizing compiler to further specialize the program. The

implementation of several methods of the Step data structure is given in Figure 6.

Such transformations do not result in direct performance gain – they may even

degrade performance. This is because of the intermediate conversions between

streams and collections. However, these intermediate conversions can be removed

using the following rewrite rule:

Stream-fusion rule:

unstream(() => e).stream() � e

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 17

Figure 3 demonstrates how the stream fusion technique transforms

list.map(f).map(g) into list.map(f o g). Note that for the Step data type, the

step.map(f).map(g) expression is equivalent to step.map(f o g).

The idea behind stream fusion is very similar to unfold fusion. The main difference

is the filter operator. Stream fusion uses a specific value, called Skip, to implement

the filter operator. This is in contrast with the unfold fusion approach for which the

filter operator is implemented using an additional nested while loop for skipping the

unnecessary elements. Hence, stream fusion solves the practical problem of unfold

fusion associated with the filter operator.

Next, we define a new pipelined query engine based on the ideas of stream fusion.

5.2 Stream-fusion engine

The proposed query engine follows the same design as the iterator model. Hence,

this engine is also a pull engine. However, instead of invoking the next method, this

engine invokes the stream method, which returns a wrapper object of type Step. We

refer to our proposed engine as the stream-fusion engine.

As we mentioned in Section 2.1, one of the main practical problems with a pull

engine is the case of the selection operator. In this case, an operator waits until the

selection operator returns the next satisfying element. The proposed engine solves

this issue by using the Skip object that specifies that the current element should

be ignored. Hence, selection operators are no longer a blocker for their destination

operator.

The correspondence between the stream fusion algorithm and the stream-fusion

engine is shown in Figure 7. Every query operator provides an appropriate

implementation for the stream method, which invokes the stream method of the

source operator to request the next element. Similarly, stream fusion uses the stream

method to fetch the next element. Then, by invoking the unstream method, the

generated stream is converted back to a collection.

From a different point of view, a push engine can be expressed using a while loop

and a construct for skipping to the next iteration (e.g., continue). By nature, it is

impossible for a push-based engine to finish the iteration before the producer’s while

loop finishes its job. In other words, the generated C code using a push-based engine

never uses the break construct.

In contrast, a pull engine is generally expressible using a while loop and a

construct for terminating the execution of the while loop (i.e., the break construct).

This is because of the demand-driven nature of pull engines. However, in a pull-

based engine there is no way to skip an iteration. As a result, skipping an iteration

should be expressed using a nested while loop that results in performance issues (c.f.

Section 2).

The stream-fusion engine combines the benefits of both engines by providing the

following two constructs for early termination of loops and skipping an iteration.

First, the Done construct denotes the termination of loops, and in essence has the

same effect as the break construct in an imperative language like C. Second, the

Skip construct results in skipping to the next iteration, and has an equivalent effect

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


18 A. Shaikhha et al.

Fig. 7. Correspondence between stream-fusion query engine and the stream fusion

technique. (a) Stream-fusion query Engine. (b) Stream fusion of collections.

to the continue construct in an imperative language like C. Table 3 summarizes the

differences among the aforementioned query engines.

Consider a relation of two elements for which we select its first element and the

second element is filtered out. The first call to the stream method of the selection

operator in the stream-fusion engine produces a Yield element, which contains the

first element of the relation. The second invocation of the same method returns a

Skip element, specifying that this element, which is the second element of the relation,

is filtered out and should be ignored. The next invocation of this method results in a

Done element, denoting that there is no more element to be produced by the selection

operator. The Done value has the same role as the null value in the pull engine.

The specialized version of the example query (which was introduced in Figure 1)

based on the stream-fusion engine is shown in Figure 8(a). The code is as compact

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 19

Table 3. The supported looping constructs by each pipelined query engine

Pipelined query engines Looping constructs

Push engine while + continue

Pull engine while + break

Stream-fusion engine while + break + continue

Fig. 8. Specialized version of the example query in stream-fusion engine and the corresponding

control-flow graph (CFG). (a) Inlined query in stream-fusion engine without further

specializations. (b) Inlined query in stream-fusion engine by inlining the visitor model of Step.

(c) The CFG of the inlined query in stream-fusion engine without further specializations. (d)

The CFG of the inlined query in stream-fusion engine by inlining the visitor model of Step.

as the push engine code. However, the CFG is similar to (or even more complicated

than) the one of a pull engine (c.f. Figure 8(c)). Furthermore, the specialized stream-

fusion engine suffers from more performance problems due to the intermediate

Step objects created. The next section discusses implementation aspects and the

optimizations needed for tuning the performance of the stream-fusion engine.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


20 A. Shaikhha et al.

QPlan QMonad

Scala

C

Pipelining & Fusion

Storage Layout

DSL
Embedding

Transformation
Framework

Generic
Optimizations

Pretty
Printers

DBLAB/LB query compiler Systems Compiler (SC)

Fig. 9. The architecture of the DBLAB/LB query compiler and Systems Compiler (SC).

6 Implementation

In this section, we discuss the implementation of the presented query engines. First,

we show the architecture of our query compiler. Then, we discuss how the fusion rules

are implemented for each approach. Finally, we show how the problem associated

with intermediate objects is resolved for the stream-fusion engine.

6.1 Architecture

We have implemented different query engines and the associated optimizations in

the DBLAB/LB query compiler (Shaikhha et al., 2016). This query compiler is a

component of DBLAB,2 a framework for building efficient database systems in the

high-level programming language Scala.

The DBLAB/LB query compiler uses the compilation facilities provided by

Systems Compiler (SC)3 in order to implement several intermediate languages

(through language embedding (Hudak, 1996)), the transformations inside and across

these languages (using the transformation framework), and finally unparsing the

transformed program into Scala or C code (using the pretty printers). Furthermore,

SC provides several generic optimizations out-of-the-box, which DBLAB/LB uses

during query compilation. These optimizations include Common-Subexpression

Elimination, Dead-Code Elimination, Partial Evaluation, and Scalar Replacement.

The architecture of DBLAB/LB and SC is shown in Figure 9. The input programs

can either be expressed using physical (relational algebra-style) query plans in the

QPlan language or collection programming using the QMonad language. Depending

on the input language, the query compiler performs either pipelining or loop fusion.

These transformations result in a low-level Scala program, which does not have

the high-level constructs of the QPlan and QMonad languages.4 In order to

transform this Scala program into a C program, the storage layout for records

should be specified. DBLAB/LB provides both row and columnar storage layouts

for relations (Shaikhha et al., 2016). Finally, the DBLAB/LB query compiler uses

the C pretty printer provided by SC to generate C code.

We have implemented the collection programming operations and the

corresponding loop fusion techniques described earlier in this article. Thanks to

2 http://github.com/epfldata/dblab
3 http://github.com/epfldata/sc-public
4 Note that DBLAB/LB defines more intermediate languages in its compilation stack (Shaikhha et al.,

2016), which we skipped for the sake of brevity.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 21

Fig. 10. Constructs and derivation of fold fusion and unfold fusion. (a) The constructs for

fold fusion. (b) The derivation of the fold-fusion rule. (c) The constructs for unfold fusion.

(d) The derivation of the unfold-fusion rule.

the equivalence which was shown in Section 4 between query engines and collection

programming, it is clear how different pipelining techniques can be implemented

for query engines. As a result, it is not surprising that the experimental results

presented in the next section for different fusion techniques match the results for

the corresponding pipelined query engines. Next, we discuss how the fusion rules for

different loop fusion algorithms can be expressed in this framework.

6.2 Fusion by inlining

As mentioned in Section 4, a fusion rule is expressed as a local transformation rule

which is applied as an extension to the host language compiler (which is the Glasgow

Haskell Compiler (GHC) (Jones et al., 1993) in the case of the mentioned papers). In

this section, we show how these fusion rules are implemented by only using inlining.

This was proposed for implementing fold fusion in Scala (Jonnalagedda & Stucki,

2015). Here, we use a similar approach for other fusion techniques.

Figure 10(a) shows the definition of the build operator. By inlining the definition

of this operator, an object of type QueryMonad is created. The foreach method of this

object applies the higher order function passed to the build method (f1) to the input

parameter of the foreach method (f2). By inlining this foreach method, we derive the

same rule as the fold-fusion rule which was introduced in Section 3. This derivation

is shown in Figure 10(a). The constructs and derivation of unfold fusion are shown

in Figure 10(c) and 10(d). Stream fusion follows a similar pattern which is given

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


22 A. Shaikhha et al.

Fig. 11. The constructs for stream fusion.

Fig. 12. The derivation of the stream-fusion rule.

in Figures 11 and 12. Figures B1 and B2 show the fusion process for the working

example using fold and unfold fusion, respectively.

Next, we discuss the problematic creation of intermediate objects by the stream-

fusion engine, as well as our solution.

6.3 Removing intermediate results

Although the stream-fusion engine removes intermediate relations, it creates

intermediate Step objects. There are two problems with these intermediate objects.

First, the Step data type operations are virtual calls. This causes poor cache locality

and degrades performance. Second, normally these intermediate objects lead to heap

allocations. This causes higher memory consumption and worse running times. This

is why the original stream fusion approach is dependent on optimizations provided

by its source language compiler (i.e., the GHC (Jones et al., 1993) compiler).

Implementing an effective version of it for other languages requires supporting

similar optimizations supported by the GHC compiler.

The first problem with virtual calls can be solved by rewriting the Step operations

by enumerating all cases for the Step object. This is possible because there are only

three possible concrete cases (1. Yield 2. Skip 3. Done) for this data type. To do so, one

can use if-statements. In functional languages, the pattern matching feature can be

used. Although this approach solves the first problem, still there are heap allocations

which are not removed.

The good news is that these heap allocations can be converted to stack allocations.

This is because the created objects are not escaping their usage scope. For example,

these objects are not copied into an array and not used as an argument to a

function. This fact can be verified by the well-known compilation technique of

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 23

Fig. 13. Step data type implemented using the Visitor pattern.

escape analysis (Choi et al., 1999). Based on that, the heap allocations can be

converted to stack allocations.

The compiler optimizations can go further and remove the stack allocations as

well. Instead of the stack allocation for creating a Step object, the fields necessary

to encode this type are converted to local variables. Hence, the Step abstraction is

completely removed. This optimization is known as scalar replacement in compilers.

From a different point of view, removing the intermediate Step objects is a similar

problem to removing the intermediate relations and collections in query engines and

collection programming. Hence, one can borrow similar ideas and apply it for the

Step objects in a fine-grained granularity.

To do so, we implement a variant of the Step data type using the Visitor pattern.

As we discussed in Section 4, this is similar to the Church-encoding of data types.

This encoding results in pushing Step objects down the pipeline. Hence, the stream-

fusion engine implements a pull engine on a coarse-grained level (i.e., relation level)

and pushes the individual elements on a fine-grained level (i.e., tuple level). The

Visitor pattern version of the Step data type is shown in Figure 13.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


24 A. Shaikhha et al.

The result of applying this enhancement to our working example is shown in

Figure 8(b). By comparing this code to the code produced by a push engine, we see

a clear similarity. First, there are no more additional virtual calls associated with

the Step operators. Second, there is no more materialization of the intermediate Step

objects. Finally, similar to push engines, the produced code does not contain any

additional nested while loop for selection. This leads to a simpler CFG, which is

shown in Figure 8(d).

As an alternative implementation, one can implement the Step data type as a

sum type, a type with different distinct cases in which an object can be one and

only one of those cases. Hence, the implementation of the Step methods can use the

pattern matching feature of the Scala programming language. However, it has been

proven that the Visitor pattern is a way to encode the sum types in object-oriented

languages (Buchlovsky & Thielecke, 2006). On the other hand, pattern matching

in Scala is a way to express the Visitor pattern (Emir et al., 2007). Hence, from a

conceptual point of view there is no difference between these implementations (Hofer

& Ostermann, 2010).

7 Experimental results

We use a server-type x86 machine equipped with two Intel Xeon E5-2620 v2 CPUs

running at 2 GHz each, 256 GB of DDR3 RAM at 1600 Mhz and two commodity

HDDs of 2TB. The operating system is Red Hat Enterprise 6.7.

Our query compiler uses the same set of transformations for different pipelining

techniques to allow for a fair comparison. These transformations consist of dead code

elimination, common subexpression elimination or global value numbering, and partial

evaluation (inlining and constant propagation). These transformations are provided

out-of-the-box by DBLAB (Shaikhha et al., 2016), which we use as our testbed. Also,

the scalar replacement transformation is always applied unless otherwise specified.

We do not use any data-structure specialization transformations or inverted indices

for these experiments. Finally, all experiments use DBLAB’s in-memory row-store

representation.

For compiling, the generated programs throughout our evaluation we use version

3.9.1 of the CLang compiler. We use the most aggressive optimization strategy

provided by the CLang compiler (the −O3 optimization flag).5 Finally, for C data

structures we use the GLib library (version 2.42.1).

Our evaluation consists of two parts. First, by using micro-benchmarks, we clearly

demonstrate the differences between different query engines. Then, for more complex

queries, we use the TPC-H (Transaction Processing Performance Council, 2017)

benchmark to demonstrate how different query engines behave in more complicated

scenarios.

5 We observed similar performance results with the −O1 optimization flag. The −O1 optimization flag
provides all the transformation passes used in HyPer (Neumann, 2011) except global value numbering
(GVN). This transformation is not needed in our case, as it is already provided by DBLAB (Shaikhha
et al., 2016).

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 25

Fig. 14. Single-pipeline queries compiled without any optimization flags specified for CLang.

Fig. 15. Single-pipeline queries compiled with the −O3 optimization flag for CLang.

7.1 Micro-benchmarks

The micro-benchmarks belong to three categories, (1) queries consisting of only

selection and aggregation without group by attributes leading to a single result, (2)

queries consisting of a limit operator, which return a list of results, and (3) queries

with selection and different join operators, such as hash join, merge join, and hash

semi-join, which are followed by an aggregation operator resulting to a single result.

All these queries use generated TPC-H databases at scaling factor 8, unless otherwise

specified. The corresponding SQL queries for all these micro-benchmarks are shown

in Table A1.

Aggregated single pipeline. Next, we measure the performance obtained by each

engine for queries with a single pipeline, which aggregate into a single result.

Figure 14 shows the performance of different engines when the generated C code

is compiled without any optimization flags. The push engine is behaving 2X better

than the pull engine in most cases. The visitor-based stream-fusion engine hides

this limitation of the pull engine, and has a similar performance to push engines.

However, the stream-fusion engines that use scalar replacement perform worse than

pull engines.

The difference is more obvious whenever there are chains of selection operations.

A similar effect was shown in HyPer (Neumann, 2011) in the case of using up to

four consecutive selection operations. Again the visitor-based stream-fusion engine

is resolving this practical limitation of pull engines. From a practical point of view,

as the query optimizer is merging all conjunctive predicates into a single selection

operator, the case in which a chain of several selection operators are followed by

each other never happens in practice.

The difference among all types of engines can be removed by using more

aggressive optimizations of the underlying optimizing compiler. Figure 15 shows

that using the −O3 optimization flag of CLang, the performance of all types of

engines is similar. This is mainly thanks to the CFG simplification performed by

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


26 A. Shaikhha et al.

Fig. 16. Compiled version of the take.sum query in pull and push engines. (a) Inlined query

in pull engine. (b) Inlined query in push engine.

CLang. However, queries with more complicated selection predicates (e.g., user-

defined functions or external functions such as strcmp) make the reasoning hard for

the underlying optimizing compiler. Hence, CFG simplification cannot be applied,

and push-based engine, and stream-fusion engine have a superior performance

in comparison with a pull-based engine. The impact of the optimizations

provided by an underlying optimizing compiler is discussed in more details in

Section 9.

Single pipeline with limit. Next, we examine the results for single pipeline queries

that have a limit operator at the end of the pipeline. In all three queries, the push

engine is performing worse than the pull-based engine and the stream-fusion engine.

This is because the standard push engine cannot perform early loop-termination

when using the limit query operator (c.f. Section 2.2).

To better illustrate the mentioned behavior, Figure 16 shows the generated code

for the take.sum query for pull and push-based query engines. The pull engines do

not require traversing all the elements and can stop immediately after reaching the

limit operator (c.f. line 18 of Figure 16(a)). However, the push engine should wait

until all elements are produced to be able to finish the execution (c.f. Figure 16(b)).

A more detailed explanation on a similar query is given in Section 9. A similar

behavior has been observed for pull-based and push-based fusion techniques for

Java 8 streaming API in Biboudis et al. (2015).

Single join. Finally, we investigate the performance of different join operations,

which is demonstrated in Figure 17. In the case of hash join and left-semi hash-join

operators, there is no obvious difference among the engines. However, in the case

of merge join, there is a great advantage for pull engines in comparison with the

push engine. This is mainly because the push engine cannot pipeline both inputs

of a merge join. Hence, it is forced to break the pipeline in one of the inputs (c.f.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 27

Fig. 17. Single-join queries using hash join (hJoin), left-semi hash join (sJoin), and merge

join (mJoin) operators.

Fig. 18. The impact of inlining and low-level optimizations of CLang on a pull-based engine

for TPC-H queries.

Section 2.2).6 A more detailed investigation of the merge join operator is given in

Section 9.

7.2 Macro-benchmarks

In this section, we investigate scenarios that are happening more often in practice.

To do so, we use the larger and more complicated analytical queries defined in

the TPC-H benchmark. First, we investigate the difference between an inlined and

an uninlined version of a pull-based query engine on 12 TPC-H queries. Then, we

show the impact of fine-grained optimizations as well as a inline-friendly way of

implementing pull engines on one of the TPC-H queries. Finally, we demonstrate

the performance difference among different types of query engines for 12 TPC-H

queries. The remaining 10 TPC-H queries require features, which are not supported

by all our query engines. All these experiments use 8 GBs of TPC-H generated data.

The impact of inlining on pull engine. As it was explained in Section 2.3, we

expect inlined (compiled) query engines to perform better than their corresponding

uninlined (interpreted) version. Figure 18 demonstrates the normalized execution

time for 12 TPC-H queries for interpreted and compiled pull-based query engines.

The compiled query engine inlines the next function invocations of a pull-based

query engine, whereas the interpreted query engine invokes the (virtual) functions

during run time. Performing aggressive compilation of the interpreted query using

the −O3 flag of the CLang compiler, improves the performance of the interpreted

6 The stream-fusion engine should have a special case for handling merge joins followed by filter
operations. By skipping, the elements in the main loop of merging, many CPU cycles are wasted for
retrieving the next satisfying element. However, accessing them by using a similar approach to the
Iterator model (keep iterating until the next satisfying element is found in a tight loop) gives a better
performance.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


28 A. Shaikhha et al.

Table 4. The performance comparison of several variants of different engines on TPC-H

query 19

Type of engine Run time (ms)

Pull (Interpreted) 3,486

Pull (Näıve) 2,405

Pull (Inline-Friendly) 2,165

Stream (Scalar replacement for Step objects) 2,447

Stream (Visitor model for Step objects) 2,217

Stream (No removal of Step objects) 6,886

query. However, the best performance is achieved by generating C code using

query compilation, and then compiling the generated code using the −O3 flag

of the CLang compiler. On average, inlining the pull-based engine gives 67%

improvement. In particular, for TPC-H query 2, we observe a 4 times speedup. This

considerable performance improvement is the result of the removal of intermediate

object allocations, which is achieved after inlining the operators of the query

by DBLAB/LB. One exception is TPC-H query 4, which we see a negligible

performance improvement after inlining. This query uses a semi hash join operator

for implementing the functionality required for the EXISTS clause. The cost required

for building the intermediate hash table (which is implemented using the GLib

library) dominates the cost of (virtual) function calls. Hence, we do not see a

significant improvement by inlining those function calls. The absolute execution

times for all these queries can be found in Table 5. Note that, the performance

difference with LegoBase (Klonatos et al., 2014a; Shaikhha et al., 2018) and

DBLAB/LB (Shaikhha et al., 2016) is due to the lack of additional optimizations

provided by these systems such as data-structure specialization.

Inline-Friendly pull engine implementation. A näıve implementation of the selection

operator in a pull-based query engine, invokes the next method of its source operator

twice. This can exponentially grow the code size in the case of a chain of selection

operators. This case is not frequent in practice, since the selection operator is

mainly used right after the scan operator. However, in the case of TPC-H query 19

the selection operator is used after a join.7 Table 4 shows that the inline-friendly

implementation of the selection operator in pull engines, improves performance by

15%. One of the main reasons is that the inline-friendly implementation generates

around 40% less query processing code in comparison with the näıve implementation

for query processing in these two queries. This improves instruction cache locality,

as a larger part of the code can fit into the instruction cache.

Removing intermediate object allocations. Table 4 shows the impact of intermediate

object allocations on performance. Overall, removing heap allocations of

7 An alternative implementation is to fuse the selections happening after joins in the join operator itself.
The experiments performed in (Schuh et al., 2016) are based on this assumption for join operators.
This means that the join operator is not a pure join operator, but a super operator containing a join
operator followed by a selection operator. For the purposes of this paper, we do not consider this case.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


P
u
sh

versu
s

p
u
ll-b

a
sed

lo
o
p

fu
sio

n
2
9

Table 5. Execution times (in milliseconds) of different compiled query engines for TPC-H queries

Query engine Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10 Q12 Q14 Q19 Q20

Pull uninlined -O0 10,249 3,872 9,022 14,574 6,925 1,748 19,918 5,155 3,039 4,205 6,882 2,674

Pull uninlined -O3 5,911 2,949 7,371 12,042 5,947 919 15,420 4,055 1,652 2,271 3,486 1,338

Pull -O0 8,344 1,907 8,810 14,834 6,528 1,470 16,655 4,979 2,788 2,749 6,853 2,378

Push -O0 6,982 1,166 7,521 13,690 5,460 868 15,045 3,994 2,326 2,097 6,022 1,605

Stream (visitor) -O0 7,287 1,314 7,730 13,560 5,827 1,077 15,278 4,087 2,188 2,358 6,168 1,833

Pull -O3 3,540 769 6,387 11,474 3,970 338 10,612 2,588 921 1,263 2,165 869

Push -O3 3,652 622 6,429 11,557 3,927 359 10,809 2,742 1,121 1,447 2,218 868

Stream (visitor) -O3 3,552 704 6,652 11,260 4,640 376 10,703 2,659 928 1,334 2,217 881

https://doi.org/10.1017/S0956796818000102 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956796818000102


30 A. Shaikhha et al.

Fig. 19. Performance of different compiled query engines for TPC-H queries, when using the

−O0 flag with the CLang compiler.

intermediate Step objects improves the performance of a stream-fusion engine

up to three times. More specifically, the visitor model for Step objects improves

performance by 50% in comparison with the case in which Scalar Replacement is

used for removing intermediate heap allocations (c.f. Section 6.3). Furthermore, our

experiments show that removing intermediate Step objects (either by visitor model

or Scalar Replacement) decreases the memory consumption from 14 GBs to 11 GBs

for TPC-H query 19.

Different engines on analytical queries. Figures 19 shows the performance of several

TPC-H queries using different engines, when they are not using any optimizations

provided by CLang. Overall, this figure shows that the difference between engines is

not in terms of “orders of magnitude;” in most cases, improvements are minor. This

is because the comparison is performed in a fair scenario in which specialization is

performed on all engines, in contrast with previous work in which operator inlining

was not applied to pull engines (Klonatos et al., 2014a).

Based on this figure we make the following observations. First, in all cases, the

push-based engine is outperforming both pull-based engines. This is justified by the

simplified control flow produced by push-based engines. Second, the visitor-based

stream-fusion engine has a similar performance to a push-based engine, thanks to

the simplified control flow offered by its visitor-based tuple-level implementation.

Finally, even for queries with limit and merge join the pull-based engine is not

performing better than the push-based engine. For queries with limit, as the limit

operator is followed by an ordering operator, the cost of sorting outweighs the

cost of the final scan. As a result, pipelining the limit operator does not have a

considerable impact. For TPC-H query 12, which has a merge join operator, the

performance penalty caused by the complicated CFG of pull-based engine hides the

improvement of pipelining this join operator. However, the stream-fusion engine has

a better performance than both pull- and push-based engines, thanks to pipelining

the merge join operator, while keeping the control flow simple.

Now, we answer the following question: to which extent the underlying optimizing

compiler can hide the limitations of each engine? Figures 20 shows the performance

of several TPC-H queries using different engines, when the CLang compiler is used

with the −O3 flag. Overall, this figure shows that for most queries all types of engines

have a similar performance. This means that the underlying optimizing compiler

(CLang) successfully optimizes the code generated by pull-based engines, to the

extent that the generated machine code behaves similarly to the generated machine

code for push-based engines.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 31

Fig. 20. Performance of different compiled query engines for TPC-H queries, when using the

−O3 flag with the CLang compiler.

However, there are still some cases for which CLang cannot compensate the

limitation of a particular engine. Query 12 falls into this category because of its

use of the merge join operator. This query has an average 70% speed up for a

pull engine in comparison with a push engine. It is important to note that in this

query, the query plan that uses a merge join is almost two times faster than the one

that uses hash join. This is because both input relations are already sorted on the

join key. Hence, the merge join implementation can perform the join on the fly, as

opposed to the hash join implementation which needs to construct an intermediate

hash table while joining the two input relations.

The stream-fusion engine always uses the Visitor pattern throughout this

experiment. Interestingly, it is performing as well as push engines and significantly

better than pull engines, whenever one does not rely on an underlying optimizing

compiler to simplify the control flow. Furthermore, in the cases where push engines

require to break the pipeline (the limit and merge join operators) the stream-fusion

engine is as efficient as pull engines.

In this section, we have shown the experimental results for different design choices

for building complied query engines. Although in realistic workloads there is no

considerable advantage for either form of query engine, in certain edge cases each

of the pull- and push-based engines have their own advantages. We have seen how

the stream-fusion engine combines the individual advantages of both approaches

in such edge cases, while avoiding their weaknesses. This makes the stream-fusion

engine a good alternative choice for building compiled query engines.

8 Discussion: Column stores and vectorization

Column stores. For analytical workloads, there is merit in column-store

databases (Idreos et al., 2012; Stonebraker et al., 2005). The PL community is

using a similar representation (Peyton Jones et al., 2008), known as structs of arrays.

Furthermore, database systems can leverage the compression opportunities provided

by the column-stores that can improve performance and space consumption (Abadi

et al., 2006; Zukowski et al., 2006; Binnig et al., 2009).

As it was explained in Section 6.1, DBLAB/LB supports both row layout and

columnar layout representations. The columnar layout representation is achieved by

translating the array of records coming from a row layout representation, each one

containing N fields, into N arrays, where each array corresponds to the values of a

particular column. Figure 21 shows the generated code of our running example for

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


32 A. Shaikhha et al.

(a) (b)
Fig. 21. Specialized version of the example query in column-store pull and push engines. (a)

Inlined query in a column-store pull engine. (b) Inlined query in a column-store push engine.

push and pull-based engines. Lines 12 and 14 of this figure show how the accesses

to the fields A and B of a record of the relation R are transformed into the accesses to

the corresponding column arrays R A and R B in the columnar layout representation.8

Although the experiments shown in this paper use row layout, we have

found similar results when comparing different engines using columnar layout

representation. More specifically, Figure 22 shows the performance of the single-

pipeline aggregated queries for different types of compiled columnar and row

layout query engines. The performance of column-store engines is better than the

performance of the row-store counterparts. Furthermore, the relative speedup of

different engines over a pull-based engine using the columnar layout representation

is similar to the speedup of the corresponding engines over a pull-based engine for the

row layout representation. The only considerable difference is the first query, which

counts the number of the filtered elements. This query gives a better performance for

column-store push and stream-fusion engines, thanks to the automatic vectorization

performed by CLang. However, the generated code of a column-store pull-based

engine cannot be automatically vectorized by the compiler due to the existence of

data-dependent exit conditions (Park et al., 2012).

Supporting hash-based join operators for column-stores requires careful

consideration of where to construct the tuples (a.k.a. the materialization

strategies (Abadi et al., 2007)), and even implementing other join operators (such as

JIVE join (Li & Ross, 1999)), which we leave for future work.

Vectorization. Using SIMD operations for implementing query operators has been

extensively investigated by the DB community (Zhou & Ross, 2002; Chhugani et al.,

2008; Polychroniou et al., 2015). MonetDB (Zukowski et al., 2005) implemented a

8 Note that in most real-world database systems a column-store consists of other abstractions such as
pages. However, for the purposes of this paper, we have presented a simplified form which only uses
column arrays. Furthermore, as the column arrays have a primitive type (i.e., cannot have a null value),
the check for termination in a pull-based engine (i.e., checking the equality to null) is handled through
the intermediate boolean variable recNull.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 33

Fig. 22. Performance of different compiled query engines with columnar layout and row

layout representations (denoted by [C] and [R], respectively), when using the −O3 flag with

the CLang compiler.

vectorized query engine by performing block-wise data processing instead of tuple-

wise processing, through transferring a block of elements in the iterator model instead

of a single element. Generalized stream fusion (Mainland et al., 2013) followed a

similar idea and showed how, by exploring vectorization opportunities, a high-level

functional language can beat handwritten C code for collection programs. We can

follow a similar idea to perform vectorization for the stream-fusion engine. On the

other hand, push engines can also benefit from vectorization by pushing a block of

elements and processing them using SIMD operations as explained in (Neumann,

2011).

9 Conclusion

If one effects a fair comparison of push and pull-based query processing – particularly

if one attempts to inline and optimize code in both approaches as much as possible

– neither approach clearly outperforms the other. We have discussed the reasons

for this, and indeed, when considered closely how each approach fundamentally

works, it should seem rather surprising if either approach dominated the other

performance-wise.

We have also drawn close connections to three fundamental approaches to loop

fusion in programming languages – fold, unfold, and stream fusion. As it turns out,

there is a close analogy between pull engines and unfold fusion on one hand and

push engines and fold fusion on the other.

Finally, we have applied the lessons learned about the weaknesses of either

approach and propose a new approach to building query engines which draws its

inspiration from stream fusion and combines the individual advantages of pull and

push engines, avoiding their weaknesses.

References

Abadi, D., Madden, S. & Ferreira, M. (2006) Integrating compression and execution

in column-oriented database systems. In Proceedings of the 2006 ACM SIGMOD

International Conference on Management of Data. ACM, pp. 671–682.

Abadi, D. J., Myers, D. S., DeWitt, D. J. & Madden, S. R. (2007) Materialization strategies

in a column-oriented DBMS. In Proceedings of the IEEE 23rd International Conference

on Data Engineering, ICDE 2007. IEEE, pp. 466–475.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


34 A. Shaikhha et al.

Ahmad, Y. & Koch, C. (2009) DBToaster: A SQL compiler for high-performance delta

processing in main-memory databases. PVLDB 2(2), 1566–1569.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T.,

Franklin, M. J., Ghodsi, A. & Zaharia, M. (2015) Spark SQL: Relational data processing

in spark. In Proceedings of the SIGMOD ’15. New York, NY, USA: ACM.

Biboudis, A., Palladinos, N., Fourtounis, G. & Smaragdakis, Y. (2015) Streams à la carte:

Extensible pipelines with object algebras. In Proceedings of the 29th European Conference

on Object-Oriented Programming, p. 591.

Binnig, C., Hildenbrand, S., & Färber, F. (2009) Dictionary-based order-preserving string

compression for main memory column stores. In �Proceedings of the SIGMOD ’09. ACM,

pp. 283–296.

Böhm, C. & Berarducci, A. (1985) Automatic synthesis of typed λ-programs on term algebras.

Theor. Comput. Sci. 39, 135–154.

Breazu-Tannen, V. & Subrahmanyam, R. (1991) Logical and Computational Aspects of

Programming with Sets/Bags/Lists. Springer.

Breazu-Tannen, V., Buneman, P. & Wong, L. (1992) Naturally Embedded Query Languages.

Springer.

Buchlovsky, P. & Thielecke, H. (2006) A type-theoretic reconstruction of the visitor pattern.

Electron. Notes Theor. Comput. Sci. 155, 309–329.

Chhugani, J., Nguyen, A. D., Lee, V. W., Macy, W., Hagog, M., Chen, Y.-K., Baransi, A.,

Kumar, S. & Dubey, P. (2008) Efficient implementation of sorting on multi-core SIMD

CPU architecture. PVLDB 1(2), 1313–1324.

Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V. C. & Midkiff, S. (1999) Escape analysis for

java. ACM SIGPLAN Notices 34(10), 1–19.

Coutts, D., Leshchinskiy, R. & Stewart, D. (2007) Stream fusion. From lists to streams to

nothing at all. In Proceedings of the ICFP ’07.

Crotty, A., Galakatos, A., Dursun, K., Kraska, T., Çetintemel, U. & Zdonik, S. B. (2015)

Tupleware: “Big” data, big analytics, small clusters. In Proceedings of the CIDR.

Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal, P., Stonecipher, R., Verma, N. &

Zwilling, M. (2013) Hekaton: SQL server’s memory-optimized OLTP engine. In Proceedings

of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD

’13. New York, NY, USA: ACM, pp. 1243–1254.

Emir, B., Odersky, M. & Williams, J. (2007) Matching objects with patterns. In Proceedings

of the ECOOP’07. Berlin, Heidelberg: Springer-Verlag.

Fegaras, L. & Maier, D. (2000) Optimizing object queries using an effective calculus. TODS

25(4), 457–516.

Gedik, B., Andrade, H., Wu, K.-L., Yu, P. & Doo, M. (2008) SPADE: The system S seclarative

stream processing engine. In Proceedings of the SIGMOD.

Gibbons, J. & Oliveira, B. C. d S. (2009) The essence of the iterator pattern. J. Funct. Program.

19(3–4), 377–402.

Gill, A., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. In

Proceedings of the FPCA. ACM.

Graefe, G. (1994) Volcano–an extensible and parallel query evaluation system. IEEE Trans.

Knowl. Data Eng. 6(1), 120–135.

Graefe, G. (1993) Query evaluation techniques for large databases. CSUR 25(2), 73–169.

Grust, T. & Scholl, M. (1999) How to comprehend queries functionally. J. Intell. Inform. Syst.

12(2–3), 191–218.

Grust, T., Mayr, M., Rittinger, J. & Schreiber, T. (2009) FERRY: Database-supported program

execution. In Proceedings of the SIGMOD 2009. ACM.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 35

Grust, T., Rittinger, J. & Schreiber, T. (2010) Avalanche-safe LINQ compilation. PVLDB

3(1–2), 162–172.

Hellerstein, J. M., Stonebraker, M. & Hamilton, J. (2007) Architecture of a database system.

Found. Trends R© Databases 1(2), 141–259.

Hinze, R., Harper, T. & James, D. W. H. (2011) Theory and practice of fusion. In Proceedings

of the 22Nd International Conference on Implementation and Application of Functional

Languages, IFL’10. Berlin, Heidelberg: Springer-Verlag, pp. 19–37.

Hirzel, M., Soulé, R., Schneider, S., Gedik, B. & Grimm, R. (2014) A catalog of stream

processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34.

Hofer, C. & Ostermann, K. (2010) Modular domain-specific language components in scala.

In Proceedings of the 9th International Conference on Generative Programming and

Component Engineering, GPCE ’10. New York, NY, USA: ACM, pp. 83–92.

Hudak, P. (1996) Building domain-specific embedded languages. ACM Comput. Surv. 28(4es),

196.

Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, S. K., Kersten, M. L., (2012)

MonetDB: Two decades of research in column-oriented database architectures. IEEE Data

Eng. Bull. 35(1), 40–45.

Jones, S. L. P., Hall, C., Hammond, K., Partain, W. & Wadler, P. (1993) The glasgow Haskell

compiler: A technical overview. In Proceedings of the UK Joint Framework for Information

Technology, Technical Conference, vol. 93. Citeseer.

Jonnalagedda, M. & Stucki, S. (2015) Fold-based fusion as a library: A generative

programming pearl. In Proceedings of the 6th ACM SIGPLAN Symposium on Scala.

ACM, pp. 41–50.

Karpathiotakis, M., Alagiannis, I., Heinis, T, Branco, M. & Ailamaki, A. (2015) Just-in-time

data virtualization: Lightweight data management with ViDa. In Proceedings of the CIDR.

Karpathiotakis, M., Alagiannis, I. & Ailamaki, A. (2016) Fast queries over heterogeneous data

through engine customization. In Proceedings of the VLDB Endowment 9(12), 972–983.

Klonatos, Y., Koch, C., Rompf, T. & Chafi, H. (2014a) Building efficient query engines in a

high-level language. PVLDB 7(10), 853–864.

Klonatos, Y., Koch, C., Rompf, T. & Chafi, H. (2014b) Errata for “Building efficient query

engines in a high-level language” PVLDB 7(10):853-864. PVLDB 7(13), 1784–1784.

Koch, C. (2010) Incremental query evaluation in a ring of databases. In Proceedings of the

PODS 2010. ACM.

Koch, C. (2014) Abstraction without regret in database systems building: A manifesto. IEEE

Data Eng. Bull. 37(1), 70–79.

Koch, C., Ahmad, Y., Kennedy, O., Nikolic, M., Nötzli, A., Lupei, D. & Shaikhha, A. (2014)

DBToaster: Higher-order delta processing for dynamic, frequently fresh views. Vldbj 23(2),

253–278.

Krikellas, K., Viglas, S. & Cintra, M. (2010) Generating code for holistic query evaluation. In

Proceedings of the ICDE, pp. 613–624.

Li, Z. & Ross, K. A. (1999) Fast joins using join indices. VLDB J. 8(1), 1–24.

Lorie, R. A. (1974) XRM: An Extended (N-ary) Relational Memory. IBM.

Mainland, G., Leshchinskiy, R. & Peyton Jones, S. (2013) Exploiting vector instructions with

generalized stream fusion. In Proceedings of the ICFP ’13. New York, NY, USA: ACM.

Meijer, E., Beckman, B. & Bierman, G. (2006) LINQ: Reconciling object, relations and XML

in the .NET framework. In Proceedings of the SIGMOD ’06. ACM.

Murray, D. G., Isard, M. & Yu, Y. (2011) Steno: Automatic optimization of declarative

queries. In Proceedings of the PLDI ’11. New York, NY, USA: ACM.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


36 A. Shaikhha et al.

Nagel, F., Bierman, G. & Viglas, S. D. (2014) Code generation for efficient query processing

in managed runtimes. PVLDB 7(12), 1095–1106.

Neumann, T. (2011) Efficiently compiling efficient query plans for modern hardware. PVLDB

4(9), 539–550.

Padmanabhan, S., Malkemus, T., Jhingran, A. & Agarwal, R. (2001) Block oriented processing

of relational database operations in modern computer architectures. In Proceedings of the

ICDE, pp. 567–574.

Paredaens, J. & Gucht, D. V. (1988) Possibilities and limitations of using flat operators

in nested algebra expressions. In Proceedings of the Seventh ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, March 21–23, 1988, Austin, Texas,

USA, pp. 29–38.

Park, Y., Seo, S., Park, H., Cho, H. K., & Mahlke, S. (2012) SIMD Defragmenter: Efficient

ILP realization on data-parallel architectures. In Proceedings of the ACM SIGARCH

Computer Architecture News, vol. 40. ACM, pp. 363–374.

Peyton Jones, S., Leshchinskiy, R., Keller, G. & MT Chakravarty, M.. (2008) Harnessing

the multicores: Nested data parallelism in Haskell. In Proceedings of the LIPIcs-Leibniz

International Proceedings in Informatics, vol. 2. Schloss Dagstuhl-Leibniz-Zentrum für

Informatik.

Pierce, B. C. (2002) Types and Programming Languages. MIT press.

Polychroniou, O., Raghavan, A. & Ross, K. A. (2015) Rethinking SIMD vectorization for in-

memory databases. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’15. New York, NY, USA: ACM, pp. 1493–1508.

Schuh, S., Chen, X. & Dittrich, J. (2016) An experimental comparison of thirteen relational

equi-joins in main memory. In Proceedings of the SIGMOD ’16. New York, NY, USA:

ACM, pp. 1961–1976.

Shaikhha, A., Klonatos, Y. & Koch, C. (2018) Building efficient query engines in a high-level

language. Trans. Database Syst. 43(1).

Shaikhha, A., Klonatos, Y., Parreaux, L., Brown, L., Dashti, M. & Koch, C. (2016) How to

architect a query compiler. In Proceedings of the SIGMOD’16.

Shivers, O. & Might, M. (2006) Continuations and transducer composition. In Proceedings

of the PLDI ’06. ACM.

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin,

A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N. & Zdonik, S. (2005) C-store: A

column-oriented DBMS. In Proceedings of the VLDB ’05. VLDB Endowment.

Svenningsson, J. (2002) Shortcut fusion for accumulating parameters & zip-like Functions. In

Proceedings of the ICFP ’02. ACM.

Tibbetts, R., Yang, S., MacNeill, R. & Rydzewski, D. (2011) StreamBase LiveView: Push-based

real-time analytics. In Proceedings of the StreamBase Systems (Jan 2012).

Transaction Processing Performance Council. (2017) TPC-H, a Decision Support Benchmark.

http://www.tpc.org/tpch.

Trinder, P. (1992) Comprehensions, a query notation for DBPLs. In Proceedings of the 3rd

DBPL Workshop, DBPL3. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc,

pp. 55–68.

Veldhuizen, T. L. (2014) Leapfrog triejoin: A simple, worst-case optimal join algorithm. In

Proceedings of the 17th International Conference on Database Theory (ICDT), Athens,

Greece, March 24–28, 2014.

Viglas, S., Bierman, G. M., & Nagel, F. (2014) Processing declarative queries through

generating imperative code in managed runtimes. IEEE Data Eng. Bull. 37(1), 12–21.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 37

Vlissides, J., Helm, R., Johnson, R. & Gamma, E. (1995) Design patterns: Elements of reusable

object-oriented software. Reading: Addison-Wesley 49(120), 11.

Wadler, P. (1988) Deforestation: Transforming programs to eliminate trees. In Proceedings of

the ESOP’88. Springer, pp. 344–358.

Wadler, P. (1990) Comprehending monads. In Proceedings of the 1990 ACM Conference on

LISP and Functional Programming, LFP ’90. New York, NY, USA: ACM, pp. 61–78.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,

Shenker, S., & Stoica, I. (2012) Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proceedings of the NSDI’12. USENIX Association.

Zhou, J. & Ross, K. A. (2002) Implementing database operations using SIMD instructions.

In Proceedings of the SIGMOD ’02. New York, NY, USA: ACM.

Zukowski, M., Boncz, P. A., Nes, N., & Héman, S. (2005) MonetDB/X100 – A DBMS In

The CPU Cache. IEEE Data Eng. Bull. 28, 17–22.

Zukowski, M., Heman, S., Nes, N., & Boncz, P. (2006) Super-scalar RAM-CPU cache

compression. In Proceedings of the 22nd International Conference on Data Engineering,

ICDE ’06. Washington, DC, USA: IEEE Computer Society, p. 59.

Appendix A. MicroBenchmark Queries

In this section, we present the corresponding SQL queries for the micro-benchmarks

used in Section 7. These queries are presented in Table A1. All these queries are

using the LINEITEM and ORDERS tables of TPC-H.

Table A1. SQL queries of micro-benchmark queries

Name SQL Query

filter.count
SELECT COUNT(∗) FROM LINEITEM
WHERE L SHIPDATE >= DATE ’1995−12−01’

filter.sum
SELECT SUM(L DISCOUNT ∗ L EXTENDEDPRICE) FROM LINEITEM
WHERE L SHIPDATE >= DATE ’1995−12−01’

filter.filter.sum
SELECT SUM(L DISCOUNT ∗ L EXTENDEDPRICE) FROM LINEITEM
WHERE (L SHIPDATE >= DATE ’1995−12−01’) AND
(L SHIPDATE < DATE ’1997−01−01’)

filter.filter.filter.sum
SELECT SUM(L DISCOUNT ∗ L EXTENDEDPRICE) FROM LINEITEM
WHERE (L SHIPDATE >= DATE ’1995−12−01’) AND
(L SHIPDATE < DATE ’1997−01−01’) AND (L SHIPMODE = ’MAIL’)

filter.take.sum
SELECT SUM(L DISCOUNT ∗ L EXTENDEDPRICE) FROM LINEITEM
WHERE L SHIPDATE >= DATE ’1995−12−01’ LIMIT 1000

filter.map.take
SELECT L DISCOUNT ∗ L EXTENDEDPRICE FROM LINEITEM
WHERE L SHIPDATE >= DATE ’1995−12−01’ LIMIT 1000

take.sum
SELECT SUM(L DISCOUNT ∗ L EXTENDEDPRICE) FROM LINEITEM
LIMIT 1000

filter.XJoin(filter).sum

SELECT SUM(O TOTALPRICE) FROM LINEITEM, ORDERS
WHERE O ORDERDATE >= DATE ’1998−11−01’
AND L SHIPDATE >= DATE ’1998−11−01’
AND O ORDERKEY = L ORDERKEY

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


38 A. Shaikhha et al.

Appendix B. Example: Fusion Process

This section demonstrates the transformations applied for performing push- and

pull-based loop fusion on the working example. Note that, here, inlining a

particular definition is always assumed together with β-reduction (inlining) of the

accompanying function values. As an example, in Figure B1, inlining fold means

that we also inline the function value passed as the input parameter to fold.

Fig. B1. Transformations needed for applying fold fusion on the example query.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 39

Fig. B2. Transformations needed for applying unfold fusion on the example query.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


40 A. Shaikhha et al.

6

12

10

3-5

12

16

7,8

13

1,2

12

14

(a)

3-5

12

16 14

6-13

13

1,2

(b)

1,2

16

14

12,13

6-13

3-5

(c)

Fig. C1. Control flow graph of the specialized pull-based engine for the filter.sum

query, compiled with different optimization flags in the CLang compiler. (a) Without any

optimization flags. (b) With the memory to reference promotion and CFG simplification

optimizations. (c) With the most aggressive optimization flags.

Appendix C. Impact of the Underlying Optimizing Compiler

In Section 2.3, we have seen that the control flow of pull engines is more complicated

than push engines. However, a careful examination of the optimized machine code

generated by the CLang compiler shows that the optimizing compiler partially

compensates this limitation of pull engines.

Figure C1 shows the CFG of the specialized pull-engine for the filter.map.sum

query. These graphs are obtained by using the opt −dot−cfg command for the

generated LLVM code, which is generated by compiling C code using clang

−emit−llvm.

The CFG of the generated machine code when one does not use any optimization

is shown in Figure C1(a). This CFG is as complicated as the one shown in Section 2.3.

Figure C1(b) shows the CFG of the generated machine code after performing the

following two optimizations, which are both enabled by using the −O1 and −O3

optimization flags. First, the −mem2reg optimization is responsible for promoting

memory references to register references. Second, the −simplifycfg is responsible for

simplifying the CFG. The generated machine code has a much more simplified CFG

than the machine code without any optimizations. Finally, Figure C1(c) shows the

CFG of the generated machine code by using the −O1 or −O3 optimization flags. We

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 41

Fig. D1. Push-based query engine and fold fusion of collections for the Limit operator. (a)

Push-based query engine. (b) Fold fusion of collections.

observed that adding the −jump−threading optimization flag, which is responsible for

further simplification of CFG, to the existing set of optimization flags (−mem2reg

−simplifycfg) achieves a similar CFG. This CFG is as simple as the CFG of the

specialized push engine presented in Section 2.3.

Appendix D. Translating the limit operator

In this section, we investigate in more detail the translation of the limit operator in

pull and push-based engines. The implementation of the limit operator for a pull-

based engine is presented in Figure 5(a). If the limit threshold was not reached,

the limit operator returns the next element of its source operator. Otherwise,

if the limit threshold was reached, the limit operator produces a null value,

specifying that the end of stream is reached. However, in a push-based engine

there is no straightforward way for the destination operator to send a signal

to the source operator specifying that the limit was reached. Hence, the limit

operator is implemented by not passing the element to the destination operator if

the limit was reached. This means that the source operator continues producing more

elements, even though these elements will be ignored by the subsequent operators (c.f.

Figure D1(a)).

Consider a query similar to the take.sum presented in Section 7. This query for

a given collection of numbers (array of a thousand integers), returns the sum of

the first five elements. The corresponding C code for pull- and push-based engines

can be found in Figure D2(a) and D2(b), respectively. In a pull-based engine, when

the fifth element is reached, no further element is processed thanks to the break

expression in line 10 of Figure D2(a). However, a push-based engine ignores the

elements after the fifth element, without early termination of the loop, as it can be

observed in Figure D2(b).

One could argue that a smart enough compiler can compensate the mentioned

limitation of a push-based engine. However, examining the generated assembly code

by CLang 3.9.1, when the −O3 optimization flag is used, shows that this claim is not

necessarily true. Figure D2(c) demonstrates the generated assembly code for a pull-

based engine. This figure shows that the optimizing compiler successfully unrolled

the loop to process the sum of the first elements in five assembly instructions.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


42 A. Shaikhha et al.

Fig. D2. The generated C and assembly code for a simple query which returns the sum of

the first five elements of an array of a thousand elements in pull and push-based engines.

(a) C code for pull engine. (b) C code for push engine. (c) Generated assembly code for pull

engine. (d) Generated assembly code for push engine.

However, the generated assembly code for a push-based engine is not as elegant as

the one for a pull-based engine. The generated assembly code processes the elements

of the array two-by-two, however, it does not perform the early termination that is

happening in a pull-based engine. The 12th line of Figure D2(d) corresponds to the

7th line of Figure D2(b), which continues iterating the main loop, until all elements

of the array have been processed (without terminating it early).

Appendix E. Translating the Merge Join Operator

In this section, we investigate in more detail the merge join operator in pull- and

push-based engines. The implementation of this operator for these engines is given

in Figure E1.

Figure E1(a) presents the implementation of the merge join operator in a pull-

based engine. The elements of both relations are iterated in parallel until either the

elements of both relations can be joined or one of the relations reaches the end.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 43

Fig. E1. Pull and push-based query engines for Merge Join operator. (a) Pull-based query

engine for Merge Operator. (b) Push-based query engine for Merge Operator.

The local variables leftProceed and rightProceed are introduced in order to have only

one invocation for the next method of the source operators (c.f. lines 10 and 11 of

Figure E1(a)). This is in essence similar to the trick we used in the inline-friendly

implementation of the Selection operator.

In a push-based engine, as opposed to a pull-based engine, one has to materialize

the left relation. This is because there is no way for the destination operator to

control which source operator should produce the next element. Hence, the merge

join operator materializes the elements of the left source operator, when it is

consuming those elements (c.f. line 8 of Figure E1(b)). This way, the merge join

operator can control how to consume the (materialized) elements of the left source

operator.

Consider the following query, which is similar to the filter.mJoin(filter).sum query

presented in Section 7:

SELECT SUM(R.B ∗ S.B) FROM R, S WHERE R.B > 10 AND R.A = S.A

The corresponding generated code for pull and push-based engines is presented in

Figure E2. In a pull-based engine the elements of each relation are processed on the

fly, without materializing the elements of any of the two relations (c.f. Figure E2(a)).

However, in a push-based engine the filtered elements of the left relation are

materialized into an intermediate collection (c.f. lines 6-11 of Figure E2(b)). The

creation of this intermediate collection justifies the performance gap observed

in Section 7 for the micro-benchmark of the merge join operator and TPCH

query 12.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


44 A. Shaikhha et al.

Fig. E2. Complied version of a query with a merge join operator in pull and push engines.

Note that both versions are derived after several optimization passes. (a) Inlined query in pull

engine. (b) Inlined query in push engine.

Appendix F. Experimental Results for Query Compilation Time

In this section, we show the query compilation times for the TPC-H queries that we

have used in Section 7. The overall query compilation time consists of the time for

DBLAB to generate C code, and the time CLang needs for compiling the generated

C code into machine code. Figure F1 shows the results for the stream-fusion engine

with the visitor model for individual tuples. We do not include the results for other

types of engines, as all these engines show a similar behavior when it comes to

compilation times. Based on this figure, the overall compilation time never exceeds

1.5 sec, which makes our compilation-based analytical processing system usable in

practice, even for complicated, multi-way join queries. Moreover, the compilation

time is equally divided between the C code generation time by DBLAB and C

code compilation by CLang. We can further reduce the overall compilation time

by directly generating LLVM code and invoking the necessary optimization passes

manually from the LLVM framework. Furthermore, by porting our query compiler

implementation from Scala to C++ and using the LLVM framework to implement

transformation passes, the compilation time should improve even more. We leave

both of these directions for future work.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102


Push versus pull-based loop fusion 45

Fig. F1. Compilation time for generated C code of TPC-H queries for the stream-fusion

(visitor) engine.

https://doi.org/10.1017/S0956796818000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000102

