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ISOMETRIC IMMERSIONS OF CONSTANT MEAN
CURVATURE AND TRIVIALITY OF THE
NORMAL CONNECTION*

JoserH ERBACHER

0. Introduction. In a recent paper [2] Nomizu and Smyth have
determined the hypersurfaces M™ of non-negative sectional curvature iso-
metrically immersed in the Euclidean space R™*' or the sphere S»*' with
constant mean curvature under the additional assumption that the scalar
curvature of M"™ is constant. This additional assumption is automatically
satisfied if M™ is compact. In this paper we extend these results to codi-
mension p isometric immersions. We determine the n-dimensional sub-
manifolds M™ of non-negative sectional curvature isometrically immersed in
the Euclidean Space R™? or the sphere S™*? with constant mean curvature
under the additional assumptions that M" has constant scalar curvature and
the curvature tensor of the connection in the normal bundle is zero. By
constant mean curvature we mean that the mean curvature normal is paral-
lel with respect to the connection in the normal bundle. The assumption
that M"™ has constant scalar curvature is automatically satisfied if M™ is
compact. The assumption on the normal connection is automatically sa-
tisfied if p = 2 and the mean curvature normal is not zero.

We then investigate isometric immersions of space forms into space forms
and obtain conditions that imply the vanishing of the curvature tensor of
the connection in the normal bundle. We make some applications of these
results and in particular determine the local nature of an isometric im-
mersion of the sphere S™ into the Euclidean space R*** for n=4.

1. Notation and some formulas of Riemannian geometry.
Let ¢ : M™»— M"*?(@) be an isometric immersion of an #z-dimensional

Riemannian manifold M" into an (n + p)-dimensional Riemannian manifold
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M™?(§) of constant sectional curvature & For all local formulas and com-
putations we may consider ¢ as an imbedding and thus identify z € M”
with ¢(x)eM™?. The tangent space T.(M") is identified with a subspace
of T.(M™*?). The normal space T3 is the subspace of T,(M"*?) consisting
of all Xe& T.(M"*?) which are orthogonal to T.,(M™") with respect to the
Riemannian metric g. Let I (respectively 7) denote the covariant different-
iation in M™ (respectively #"**) and let D denote the covariant differentiation
in the normal bundle. We will refer to F as the tangential connection and
to D as the normal connection.

To each &= T: is associated a linear transformation of 7T,(M") in the
following way. Extend ¢ to a normal vector field defined in a neighbor-
hood of z and define —A;X to be the tangential component of 7;y¢ for
XeT,(M"). AX depends only on & at # and X. Given an orthonormal
basis &, - - -,&, of T4 we write A, = A,, and call the A,/s the second
fundamental forms associated with &, -.,&,. If &, &, are now ortho-
normal normal vector fields in a neighborhood of z, they determine normal
connection forms s,; in a neighborhood of x, by

Dxé. = BZ Sap(X)zs

for X tangent to M".

Let R, B, and R? be the curvature tensors for ¥, ¥, and D, respectively,
and S the Ricci tensor (of type 1-1) for M™ as defined in[1]. If X, YeT,(M™)
we let X AY denote the skew symmetric endomorphism:

(XAY)Z =9V, 2) X—g(X, Z)Y.

Let X and Y be tangent to M"™ and &,---,£, orthonormal normal
vector fields. We then have the following relationships (in this paper Greek
indices run form 1 to p and Latin indices run from 1 to #, except when
noted) :

(1) 7XY:VXY+EQ(A¢1X9Y)E¢

(2) 9(AXY) = g(X, AY)
(3) 7,}' &a = —AaX_'_ DXEa = _AaX+ ; saﬂ(X)Eﬂ

(4) Saﬁ + sﬂa =0
(5) R(XY)=¢XAY)+ X A.X N AY—=Gauss equation
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(6) (FxAJY — %“ Sap(X)AgY = (Fy A X — BE Sap(Y)ApX
——Codazzi’s equation

(7)) (Pxsap)Y — (FPy Sap) X = 2(dsap)(X,Y)

= Xe50p(Y) = Y- 505(X) — 54X, Y]

= 9([ A0 ADX,Y) + 3 {8ar(X)$15(Y) — 5.(Y)575(X)} ——Ricci equation

T

8) R¥MX,Y)& = %] 9 A, AlX,Y)E,

= %‘. {2(ds.p)(X,Y) + %‘. {$2r(Y)815(X) — Sar(X)s:5(Y)} 145
(9) S=m—0cl+ 2 (tr A)A, — 2 A

(tr A, = trace A, = 3 9(A.E;, Ey), {E;} an orthonormal basis of T,(M"); I=

the identity transformation)
(10) tr S=nn—1¢+ X (tr AR — D tr A,

where #7 S is the scalar curvature.
The mean curvature normal 7 is defined by

7 =3 (tr A,

3

where the RHS (right hand side) is independent of our choice of ortho-
normal basis of 7;. Note that (10) may be written as

(10") tr S=nn—1¢+ 9(n,7) — X tr AL
Let /* denote the sum of the tangential and the normal connections.
7* is the connection in the Whitney sum of the tangent bundle of M" and

the normal bundle of M" induced by V and Dj; see proposition 6.3, pg. 82,
of Volume I of [1]. Then, letting F%A, denote (F%A)., we have

(11) P54, =T x Ac= 31 sul(X)4,
and Codazzi’s equation may be written as
(6") (F%A)Y = (P} A)X.

We note that (8) implies that R =0 at « if and only if A,4, = A;A.
at z for all «, 8; or, equivalently, the A,’s are simultaneously diagonalizable
at x. Also, R¥ =0 everywhere if and only if for each x =M™ there exists
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orthonormal normal vector fields &, - - -, &, defined in a neighborhood U of
2 such that D&, =0 in U, i.e., S;=0in U. If R¥=0 at x= M™ we will
say that the normal connection is trivial at «; if RY =0 for all xeM? we
will say that the normal connection is trivial.

Note that (10’) implies that 31¢7 A? is independent of our choice of
orthonormal basis of T4%. 3

For X, Y tangent to M", K(X AY) will denote the sectional curvature
in M" of the plane spanned by X and Y. ||T|*=g(7,7) for any tensor 7.
Let R* denote k-dimensional Euclidean space and S*(&), ¢ >0, will denote
the sphere in R**! of curvature ¢.

All manifolds, immersions, vector fields, and functions are assumed C*
unless otherwise stated.

2. Isometric immersions of constant mean curvature.

Let ¢ : M™— M™P?() be as in Section 1. Let f = Yltr A2,

Simons [3] has established a formula for the Lapl.';cian of the second
fundamental form of a submanifold in a Riemannian manifold and has
made some applications to minimal hypersurfaces of spheres by means of
the Laplacian of the function f above. Nomizu and Smyth [2] have ob-
tained the same type of formula for the Laplacian of f for a hypersurface
M™ immersed with constant mean curvature in a space of constant sectional
curvature by a more direct route than Simons’, and derived a new formula
for the Laplacian of f involving the sectional curvatures of M". In Lemmas
1 and 2 below we extend the formulas of Nomizu and Smyth to codimension

2.
Lemma 1. If Dy =0, then

(12) af = enf —ESir A+ 3irlA, AT

1
P
+ D Adltr AAD — B(tr AA) + DIPALP

where 4 is the Laplacian.

Lemma 2. If in addition the normal connection is trivial and we let 2.4,
l<si<n, 1<a=<wp, be the eigenvalues of A, corresponding to eigenvectors E;
(recall RN =0 implies the A.s are simultaneously diagonalizable), then
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(13)

o[+

Af E E (Zza - )2(6 + Zillzjl + e+ Ziplsz) + ZHV*Aa“g

@ 1<j
where € 4+ 2udji+ ¢ 0+ F Aipdip = K(EANE)).

Proof of Lemma 1. Note that for X tangent to M"
Dy =3 (X(tr A+ 2 (tr A)Dxéq

[

= DX (tr A — 2 (sl X)tr At

Thus
(14) Dy =0 if and only if X(tr A,) %saﬂ Vir Ay =0

for each «. Remark: 7y :O for all XeT,(M") if and only if v =0. Let
fo=1tr A%, then 4f =314f,. If B is any tensor of type 1-1 on M", then

for F = tr B®* we have
(15) —%—AF = tr((4’B)B) + IV BI?,

where

(4'B) (%) = 2‘723( Ei; Ey),
{E,} an orthonormal basis of T,(M"™) and

V:B(;Y; X) =VxWy B) —VryyB.
Let K (X,Y) = ("F*A)(;Y; X). Then

(16) K.(XY)= K/, X)+[R(XY), Al

For X,YeT.M" and an orthonormal basis {E;} of T.(M" extend
X, Y, E; to vector fields in a normal neighborhood of « by parallel transla-
tion along geodesics with respect to the connection in M". Let &,---,§&,
be orthonormal normal vector fields defined in a neighborhood of z. Then

(17) FPX=rFY=FE;=0 at u.
Because of (17) we have at =z
Ka(Y7 X) = VY(VX Aa) - VVYXAa = VY (VX Aa)-

Similarly, at 2 we have
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(18) K.Y, X)Y =Vy (Fx AJY)
=Vy Py A)X) + Ty (‘Bﬂ (Sap(X)ARY — 5,4(Y)AsX))
where the last line is obtained by using Codazzi’s equation. Similarly, at
x we have
K.Y, ) X=Ty (Fy A)X)
= Ka(}(’ Y)Y - [R()(, Y)’ Aa]Y
—ry (ZB‘. (8ap(X)AgY — s44(Y) A, X))
where we have used (16) and (18) to get the last line. Thus, at x, we have
(19) DKU(E, ENX = KX, ENE; + 2 {R(E;, X), AE;
- ; VE,-(% (saﬁ(X)AﬂEi - Saﬂ(Ei)AﬂX))
We compute the second term on the RHS of (19):
DIR(E:, X)AE; = 21¢9(AE:;, X)E; — 2 C9(AE:, ENX
-+ Zﬂ g(AaEi) AﬂX)AﬁEt - Eﬁ g(AaEu AﬂEl)AﬂX
= E 5g(El; AaX)EZ - E Eg(AaEl, El)X
+ Z{]i A9(Es, ALAX)E; — 213 9(AGAE:, E)) A X
=CAX —C(tr Ap)X + ; ApA A X — % (tr ApA)AX.

Similarly we can compute 3!A.R(E,, X)E;. We find

(20) DR(E;, X), AJE; = ncA,X — E(tr A)X
+ A A AKX+ T (tr A)AAX ~ T (tr AA)AX.
To compute the first term on the RHS of (19),

D KX, ENE = 21V x (F5,AdEd),

note that A, symmetric implies that Fy A4, is also symmetric. Thus for an
arbitrary vector field Z on M", we have in a neighborhood of x
;g((VE‘-Aa)Ei, Z) = EQ(E“ VeANZ)
= ; 9(E:, Vz AJE;) — i% 9(Es, sap(Z) AGE)
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+ %g(Ei’ s«p(E1)A,Z)  (by Codazzi’s equation)

=Ztr A, — %‘.Sas(z)ti’ Ay + Z‘l 9(sap(ENAGE:, Z)

= izﬁg(saﬂ(Ei)AﬁEi: Z)
by using (14— here, and the use of (21) in (22) to get (23), are the .only
places in the calculation where we use Dy =0. Thus

(21) Z:‘.a (VEiAa)Ei = g Saﬂ(Ei)ApEi-

Thus the sum of the first and third terms on the RHS of (19) is
iEBVX (saﬂ(Ei)AﬂEi) - zZB‘ VE,-(Sa,e(X)A,eEi - Sap(Ei)A,aX>

which again by (17), is

(22) i,EB {Vx $ap)(ED) ApEs — (Vp,Sap) (X) ApEs
+ (Pr,Sap) (Fi) AsX + sip(E) (7 x ADE;
+ Sap(E) (V5,45 X — Saﬂ(X)(VfJ.-Aﬁ)Ei}-

If we now use the Ricci equation for the first two terms of (22) and Co-
dazzi’s equation for (FzA,)X in the fourth term and (21) for the last term
we find that (22) equals

(23) ;% 9([A,, A1X, Ei)AﬂEi

+ %(VEfsaﬁ)(E A

+ 2 S‘_,ﬁ Sas(E) Vg A X

- BE Sep(Ed)Ser(EDNA X
,P,7
Note: the first term in (23) is EﬁAﬂ[Aa, Az)X. Thus

(24) A A, =néA, —Eltr A)I + ; (tr ApALA,
— % (tr AsA)A; + %][Aﬁ, ALA,]
+ %; Al Ay Agl + Z‘; (V 5,Sas) (Ed)Ap
+223aﬁ W e Ap — ; Sap(Ed)Ser(E

and
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(25) 54 = Sr(@A)A) + D IP A
=nl Yl tr A2 —¢X(tr A%+ EB (tr Ap)(tr A 4,A,)

o

- ;}3 (tr ApA)? + ?ﬂ tr[ A4, AAA,

+ Etr AfA., 414, + iz:'}ﬁ(VEisaﬁ)(Ei)tr AA,
+ 21'% Bsap(Ei)tr(VE,.Aﬁ)Aa
~i’a%’rsaﬂ(Ei)sﬁ(Ei)tr AA, + jj 17 A,z

By properties of the trace the first six terms of the RHS of (25) reduce to
the first five terms of the RHS of (12). Since s, + s;. = 0, the seventh term
of the RHS of (25) is zero. And the sum of the last three terms of the
RHS of (25) is 3J}|[F*A,|* as is easily seen from (11) and

I7* Al = 33 ir (P A) EAL).-

Proof of Lemma 2. Nomizu and Smyth [2] have shown that for any
nXn symmetric matrix A4 with eigenvalues 2;, - - +, 2, that

intr A2 — E(tr A)? — (tr A2+ tr A tr A3
= DV — A,)4E + 2:24)

i<j
To prove Lemma 2 it suffices to show that for any zx#» commuting sym-
metric matrices A and B with eigenvalues 2; and p; respectively that

(26) tr A tr B2A+ tr B tr A*B — (tr AB)? — (tr BA)?
= 20— a0 e+ 20 (1 — p5)%dy
1<Jj i<J

Equation (26) is proved by simultaneously diagonalizing A and B and calcu-
lating the LHS (left hand side).

LemMmA 3. Suppose M" has non-negative sectional curvatures, Dy =0, and the
normal connection is trwial. If M™ has constant scalar curvature or M™ is compact,
then A4f =0 and |P*AM2=0. If M™ is compact then M™ has constant scalar
curvature,

Progf. If M" has constant scalar curvature, then since g¢(7,%) is constant
(10") implies that f is constant; hence 4/=0. Lemma 2 implies that 4f=0.
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Hence, if M™ is compact, then 4f =0 (cf. page 338, volume II of [1]) and
f is constant. Since g(5,7) is constant, (10') implies that M™ has constant
scalar curvature. Since all the terms on the RHS of (13) are non-negative
and 4f =0 we conclude that ||F*A4,]|2 = 0.

LemMmA 4. If the assumption of Lemma 3 are satisfied and M™*? = R"*?,
then for each x=M™ there exist orthonormal normal vector fields &, -+ -, &, defined
in a neighborhood U of x such that

(a) D&, =01in U, te., s,;=01in U

0 0 0
(b) A, = 0 Audn, 0
0 0 0

where I, is the m,Xm, identity matrix and the zero matrix in the upper left hand
corner is of degree my—+ + « + + m,_ and the A,'s are expressed with respect to their
common orthonormal eigenvectors Ey, « + -, E,. Note that A,=01f m+ -+« +mp1=n
and we may assume that A, =0 implies that A, =0 for 8> a

(¢) Each 2, is constant in U.

Proof. Since the normal connection is trivial there exist orthonormal
normal vector fields &, - - -,&, defined in a neighborhood U of x such that
D¢,=01in U. With such a choice of &, --,&, we have F'yA, =7y A, for
X tangent to M". By Lemma 3, |[F*A,|l=0 and thus |[FA.| =0. Hence
the eigenvalues of A, are constant. If & =330,&, [0.,] an orthogonal
matrix with constant entries, then D&} =0 in U aand A;=310,4, In what
follows we will begin with any &, -« «,&, such that D¢, =0 in U and show
that there exists an orthogonal matrix [O,] with constant entries such that
the second fundamental forms Aj; with respect to &; = 310,&, have the
desired property (b). The claim is clearly true if all the AZS =0 at 2 (and
therefore by constancy of the eigenvalues A, =0 in a neighborhood of z).
If this is not the case we distinguish three cases:

(i) all sectional curvatures of M" >0 at =z,
(ii) all sectional curvatures of M™ =0 at =,

(iii) at least one non-zero sectional curvature at x and at least one

sectional curvature that is zero at .
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Suppose &, + ++,&, and U have been chosen such that (a) is satisfied;
thus each A, has constant eigenvalues in U.

Case (i): Lemmas 2 and 3 imply that A,=2,/. We may assume
21 #0. Let

& = (B 2L/ 20

and
5_5 = (115,9 - 1551)/(1% + 1%)”2
for 8>1. Then A{=2I, 20, and A,=0 for >1, &1L ¢,. Use the
Gram-Schmidt orthogonalization process on &, - - +,&, to obtain &}, - -+, &.
Then A} =0 for §>1.
lla
Case (ii): Let A, =
Ana

when expressed with respect to the common eigenvectors Ej, - - «, E, of the
A,/s. We may assume 2j; 0. Let

E; = (%} llaEa)/(;zfa)llzs
E—a = (zlléa - llaé:l)/(zfa + 2%1)1/2 fOI‘ o > 1.

Again, &, 1 ¢{. Use the Gram-Schmidt orthogonalization process on &, - - -, §,
to obtain &}, - -,&5. Then, for a =2,

0|0- 0
0| =

Al = . .
0 *

and 2{; #0. Thus we may assume that 2,, =0 for a>1, 2;,;, #0. Since
0=K(E, AN E)) =X 2adje = Audj for j>1, we have 1;, =0 for j>1. If one
of the Als, for aa22, is not zero we may assume that it is A, and apply
the above argument to &, +--,&, and A, - -, A4, restricted to the span
{E; -+ -,E,;}. We obtain 1,, =0 for j>2 and 1,, =0 for @ >2. It is now
clear that an induction argument will work.
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Case (iii): Order E, --:,E, so that K(E, A E)>0 for 2<!<m,,
and K(E; A E;)) =0 for [ >m,. Then Lemmas 2 and 3 imply that 2,,=2,,
for 1<!/=<m,. Define & as in case (ii). We see that we may assume
that 2,,=0 for 1<!<m,, 2<a=<p. Then K(E, A E))=2132;=0 for [ > m,
and thus 2, =0 for I >m;. If K(E; A E;)+ 0 for some i,j> m,; we repeat
the above argument applied to &, - - +,&, and A,, -+, A, restricted to the
span {En, 0+, En}. If K(E; ANE;) =0 for all 4,7>m; we apply the
argument of case (ii) to &, ---,£&, and A, ---,A, restricted to the span
{En 1 ¢+ +,Eqs}. In either case we obtain the desired form for A, and A,.
It is clear that an induction argument will work.

LemMA 5. Let M™ be isomeirically immersed in S™*? such that
(a) f=Xtr A% is constant on M™
o«

(b) Dyp=0, and

(c) the normal connection is trivial.

Then, if we consider S™? as isometrically immersed in R****', conditions (a), (b),
and (c) are also satisfied. (Of course f, u, and the normal connection are now taken
with respect to M™ immersed in R"*P*1),

Progf. Let ¢ be the inward normal on S"*? and let &, :--,&, be
orthonormal normal vectors to M" but tangent to S**?. Let A, be the
corresponding second fundamental forms for M” immersed in S**?. Let A’
and A, be the second fundamental forms for ¢ and &, for M™ considered
as immersed in R"***. Let D (respectively D’) be the covariant differentia-
tion in the normal bundle for M" immersed in S™*? (respectively R"*?*1)
Then it is easy to show that A, = A, A’ =1, D¢=D'¢, and D'¢=0, from
which the conclusion readily follows.

Consider the following example. Let M™ = S™ <—712—> be isometrically
T

immersed in R%*! by ¢; for i =1,--.,1—1. For n; =1 we assume ¢,(S")
is a circle; for #; =2, ¢; is unique up to an isometry of R™*'. Let & be
the inward normal to M™. Let M™ = R™ and let R™ be isometrically im-

mersed in R™*?*1"! such that the image is of the form S‘( ,,12 >>< cee X
1

St 1 X R™~!, where each S! 1 is a circle of radius 7, in some Eu-
742 72

clidean plane N,, N; L N,, for k# m, and N, L R Let &..; be the
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inward normal to S‘( 712 ) in N, and let &4, +++,&, be normal to R“*
k

and N, and constant. Let M" = M"1x ... xM™ and let ¢ be the product
immersion. We may consider &, as normal to M" immersed in R**?. Let
A, be the corresponding second fundamental forms. Then the normal con-
nection is trivial, Dy =0, f = constant, all sectional curvatures of M"=0,
Dé, =0 on M", and the A,/s have the form of (b) in Lemma 4.

Let ¢ be as in Lemma 4. We will show that M" is locally a product
of spheres and possibly a Euclidean space, in the manner of the example

above.
Let &, -+ -,&, be chosen as in Lemma 4. We may assume 1,70 for

l=a<l—1, 2,=0 for a=1! (if all 2, =0 then the immersion is totally
geodesic). Define distributions Ty, Ty, + + -, T3 by

T (y) ={XeT,(M")|AX=2,X} for a<!—1
T(y) ={XeT,(M"|A,X =0, 1<a=p}

Let n,=dim T, (n, may be 0). Assume M" is connected, simply connected,
and complete. Then each T, is globally defined (for éeT; parallel trans-
lation of & with respect to the normal connection is independent of path if
RY =0 everywhere and M" is simply connected). Each 7, has constant
dimension and is differentiable (the eigenspaces of the A, have constant
dimension and thus we may find differentiable orthonormal eigenvector
fields). The T,’s are orthogonal to each other and

27) T (M") =Tyx)+ +++ +Tx) (orthogonal direct sum)

Lemma 6. FEach T, is involutive, totally geodesic (X,Y €T, implies that
VyYeT,), and parallel YT, X tangent to M" implies that VxYET,).

Proof. 0=y A)Y =V (AY)— A, (FxY) for X, Y tangent to M" since
FA,=0. If Y is an eigenvector field of A, belonging to the eigenvalue 2,
(a constant) we have

AV xY —AFxY)=0.
Thus FyY is an eigenvector field of A, with eigenvalue 2,. Thus each
T, is totally geodesic and therefore, because of (27), each T, is parallel.

Let zeM™ and let M™ be the maximal integral submanifold of T,

through ». From Lemma 6 we conclude that

M"= M™"x-.-xM" (Riemannian product)
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If n, =1, then M" = R (we are assuming M" is simply connected, com-
plete). If »n,=2, then the curvature tensor of M"« is the restriction of the
curvature tensor of M" since M"< is totally geodesic in M". Therefore the
sectional curvature of M"« is constant and equals 22. Also, M™ = R™. Thus
M" is a product of spheres and possibly a Euclidean space. Clearly, the
corresponding local result is true if we do not assume completeness since
we only used completeness to obtain M"« as the entire sphere or Euclidean
space.

The second fundamental forms and the normal connection forms of our
isometric immersion ¢ with respect to &, - - -,£, chosen as in Lemma 4,
are the same as those of our example ¢. Thus by the classical rigidity
theorem (see [1], volume 2, page 45, for the case p =1) ¢ =co¢ where =
is an isometry of R"*?. If M" is complete and connected but not simply
connected, let M" be its simply connected Riemannian covering manifold
and let = be the covering map. Define ¢ by ¢ =¢ox. Then ¢ satisfies
the assumptions of Lemma 4 and by the above there exists an isometry =
of R"*? such that  =cog¢. If ¢ is 1-1, so is . If ¢ is 1-1, then = and
¢ are 1-1. Also, ¢ is 1-1 except possibly when ¢(M") contains an S' as one
of its products.

If M™*? = S™*? and the hypothesis of Lemma 3 are satisfied then con-
sider M™ as immersed in R"*?*'., Lemma 5 implies ¢(M") is of the form
#(M™") and hence a product of spheres, assuming M" is complete.

We summarize our results as follows. -

THEOREM 1. Let ¢ be an isometric immersion of an n-dimensional, connected,
complete Riemannian manifold M™ of non-negative sectional curvatures into R™*? or
S™+?. Suppose that the mean curvature normal is parallel with respect to the normal
connection and that the curvature tensor of the normal connection ts zero. If either

M*" is compact or has constant scalar curvature, then
GM™) = M™MX oo XM™M

where each M™ is an n,-dimensional sphere of some radius contained in some Eucli-
dean space N\ of dimension n; + 1, N™*' | N™*' for i+ j; except possibly one
of the M™ is a Euclidean space = N™ (this can only occur if M"*? = R™*?).
Furthermore, the immersion ts an imbedding except possibly when some M"4=S‘<%>,

a circle of radius r in some Euclidean plane. The corresponding local result is true
with the assumption of constant scalar curvature.
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We also have:

TueoreM 1. The assumption on the normal connection in Theorem 1 is not

necessary in the following cases:

(a) p=2 and 7+0,

(b) M™ has constant sectional curvature &, p=2, =0, and M"**()=S"**{).

Proof. The proof will follow from Lemmas 7 and 8 below.

LemMa 7. Let ¢ : M»— M***¢E). If Dyp=0 and n+ 0, then the normal
connection s trivial.

Progf. Let & and & be orthonormal normal vector fields defined in a
neighborhood U of # such that & = —IT;L]I— Now D7 = 0 implies Dg, = 0 and

hence s, =0 in U. This implies the normal connection is trivial, as re-
marked in Section 1.
Note that if M» is compact and M=**? = R**», then 7 # 0.

LemmaA 8. Let M™ have constant sectional curvature ¢ and isometrically immersed
as a minimal submanifold of M%), then the immersion is totally geodesic.

Proof. The relative nullity is =» —2 (see [1]). Thus, if

"0 0 0

when represented with respect to the eigenvectors Ej, - - -, E, of A, we have
KENE)=¢—2—a*— b ="

Thus 2 =a=5=0 and the immersion is totally geodesic.
Our results clearly imply the following Corollary to Theorem 1.

COROLLARY. Let ¢ : M™— M"?@) be as in Theorem 1. Further assume
that the sectional curvatures of M™ are strictly greater than zero. Then M™ has
constant sectional curvature and is isometric to a sphere, and $(M™) is the usual sphere
in some R™1,
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3. Isometric immersions of space forms into space forms.

Let ¢ : M™(c)— M"**(¢) be an isometric immersion of a Riemannian
manifold M"(c) of constant sectional curvature ¢ into a Riemannian manifold
M™+2(¢) of constant sectional curvature é.

THEOREM 2. Let p =2, n=3.

(a) If ¢ @&, then the curvature tensor of the normal connection is zero.

(b) If c=¢, then for each x€ M™ the curvature tensor of the normal connection
s zero at % or the relatively nullity (see [1]) at x is n— 2.

TaeoreM 3. If p=3, n=4, Dyp=0, 70, then we have (a) and (b)
of Theorem 2.

To prove Theorems 2 and 3 we will show that the second fundamental
forms A, commute. The proof is quite algebraic.

LemMA 9. Let B be a symmetric linear transformation defined on an inner

product space V of dimension n. Let E, - - -, E, be an orthonormal basis of V and

[B;;] the matrix representing V with respect to this basis. If BE;ANBE;=0;;E,\E;
then

(28) BiiBij— BBy =0 for (k1) # (i,7), k<l, i<<j.
Proof.
oi;Es NE,=BE, N\ BE; = %BMBUE,C A E,
= 3 (BriBij — BuBi )E: N E..

k<l

But {E; A E, : k< !} are linearly independent in the space of skew symmetric
endomorphisms of V, from which the lemma follows.

Lemma 10. Let B be as in Lemma 9. Then for even n,

[k MY

(29a) Det B = (1)

B (Bot2k-ater-DBoterroter) — Bor-otr)

where o 1s any permutation of 1, -+ «,n, and (—1)° denotes the sign of o.
For odd n,

n—1

2
(29b) Det B = ("1)” LHI (Ba(Zk —l)n(Zk—l)Ba(2k)Ba(2k) - B2a(2k—l)u(Zk))}Bn(n)a(n)
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Proof.
BE,»y A BE,o» A+« + A BE,@w
= (—1)(Det B)E; A E; AN+ + N\ En.
But by Lemma 9
BE; AN BE; = (ByB;; — BY;) (E: \ E)).
Lemma 11. Let n=3. Let B be as in Lemmas 9 and 10. If B is dia-

gonal when expressed with respect to Ei, » + +, E, and the rank of B is n, then B
is diagonal when expressed with respect to E,, « + +, En.

Proof. Let gy, « ++, p, be the eigenvalues of B and (B?;; = 125;; where
0:;=0 for i+ j, and 4;;,=1. Suppose n is even. Then, since Det B= I_Il;zi
and by Lemma 10,

" -
(30) 0 ?’zigllu% = kl_Tl (Boter-1ot2r-1Boterroter) — B2oar-noter))?
And
(31) Zk} Bl = p}
(32) Mt = 10 (51 BL)
1 F=1 %
(33) pipt = (; Bh)(; B?,) = (B}, + B:,) (B, + B%,)

= B%,B}, + (B}, + B},) B}, + B},
ZBer.gs - ZBrrBsngs + Bﬁs = (BrrBss - st)z for » Eal

Comparing (30) and (32) we see that all the inequalities in (33) are equalities

and hence
(34) #3/13 = BrrBss - B?’s for r#FESs
(35) B, By =0for k#r or s, [+ 7r or s.

Thus if =3 we conclude that B;; =0 for i#j. For odd » a similar
argument holds.

Proof of Theorem 2, Choose orthonormal normal vectors & and & at
x€M" such that tr A, =0 (If =0, any & and & will do; if %0, let
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& :TZI—I) Let A,=A and A, = B. Diagonalize A with respect to its
eigenvectors E,, - - -, E, with eigenvalues 2, - + +, 1, respectively and express
B with respect to Ey, +++,E, Then the Gauss equation and the Ricci
tensor imply that

BE,; /\ BEJ = (BiiBjj "‘BEJ)EI /\ Ej
for i <j and B? is diagonal. If rank B=n then we may conclude that

B is diagonal and hence AB = BA. If rank B<n, then one of its eigen-
values is zero, say g, =0. But g!= %‘,B%k. Thus By, =0 for all k. Since

K(ENE)=C+212;=¢

we get 41, =c—¢& for j>1. If ¢+ ¢ then 2; = C;E for j=2. Hence
1

AB = BA, proving (a). If ¢=¢ we can obtain (b) by noting that the
relative nullity =» — 2, and therefore both A and B have rank <2. Recall
that p? = %}B%k. Thus if rank B=1, then B is diagonal. If rank A=1

and rank B=2, say gy =p=—p, 0, then

c=K(E,NE,) =¢— pt

Thus ¢ =0, contradicting rank B =2 If rank A =rank B =2 we may
suppose g = p = —p, 7 0. Then

K(E, N Ep) =€+ do — 1 = C.
We conclude that 2170, 22+0. Thus A and B have the same null space.
We may also prove (b) without appealing to the above fact on the relative
nullity by a somewhat longer algebraic argument.

Proof of Theorem 3. Choose orthonormal normal vector fields &, £,
and &; defined in a neighborhood U of x such that & = W%Il— Since Dy=0
implies that D& =0 we have s;,=s, =0 in U. The Ricci equation then
implies that A, and A, commute. Let A, = A4, 4, =B, and 4, =C. If we
simultaneously diagonalize A and B, then the Gauss equation implies that

CE, ACE; = (CuC,;, — CI)E; N E, for i <j

where E,, - .., E, are the common eigenvectors of A and B corresponding
to eigenvalues 2;, + - +,2, and gy, * -, pz,, respectively. Let oy, +++,0, be
the eigenvalues of C; thus ¢}, -+ +,62 are the eigenvalues of C* with the
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eigenvectors E,, - --,E, above by the equation for the Ricci tensor. If
one of B or C has rank =3 we may suppose it is C and apply Lemma 11
to C = C restricted to the image of C, say the span {E;., - - -, E,}. Noting
that

when represented with respect to Ey, -+ -, E, we obtain the desired result.
If one of B or C has rank =<1, then we may suppose it is C. Then C?
diagonal implies C is diagonal. Thus we are left to consider the case when
both B and C have rank 2. Suppose B and C have rank 2. Let o, 0; be
the non-zero eigenvalues of C. Let

c=| "t —¢ (recall ¢tr C =0)

Since AC = CA we have 2,6 =20. If =0 we are done. If 5+ 0 then
=2 Let ;=2 =2 Then K(E, ANE;)=K(E, NE;) for j=3 implies
that pp; = ;. Since rank B =2, we see that g, =0 if and only if #,=0.
If #; = p, =0 then BC = CB. Thus we are reduced to considering the case
that B and C have rank 2, the same null space, and 2, =1, =21. For c¢#¢
we will show that this does not occur. From

K(EIAEj)—5=21j=C—€,

we get 2, = C;E for j=3. Also

(c—2¢)p

K(EJ/\E,C)-E=2]2,6=L‘——E= 12

for j>k=3. Here we use n=4. Thus 2=c—¢ But

KENE)—C=2—p—a=c—¢

where gy =p=—p, and ¢, =0=—0,. Thus z=0¢=0 contradicting rank
B=rank C=2 If ¢=¢ then a2; =0 for j>2. Hence 2,=0 for j>2.
Also 22— p2—¢2=0. If2=0then g=0¢=0. Hence BC = CB or the rela-
tive nullity is n — 2.

Theorems 1 and 2 imply:
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TrEOREM 4. For n=3 the real projective space P™ <%> of curvature —712—,
r # 1, cannot be isometrically immersed as a minimal submanifold of S™+*(1).
Lemma 8 implies Theorem 4 is also true for n =2, »=1. Theorems

1 and 3 also imply:

ProposiTioN 1. Let n=4. Let M"(c) be compact and have constant sectional
curvature ¢ >0 and isometrically immersed in R™* by ¢ such that Dy =0. Then
M"(c) = S™(c), ¢ is an imbedding and ¢(M™) is the usual n-dimensional sphere in
some R™1,

ProrosiTioN 2. Let n=4. Let M"(c) be compact and have constant sectional
curvature ¢==0 and isometrically immersed in S™**(é), € # ¢, such that Dp=0, 5+0.
If ¢>0, then ¢ is an imbedding and ¢(M™) = S"™"*NR™' for some Euclidean
space R™'. If ¢ =0, then ¢(M™) is a product of circles, said circles lying in per-
pendicular Euclidean planes.

In the next section we characterize the isometric immersions of M"(1)

into R™?,

4. Codimension two isometric immersions of spheres into
Euclidean space.

Consider the following example. Let ¢ be an isometric immersion of
R™! into R™*? and let ¢ be the restriction of ¢ to S*(1). Then ¢ is an
isometric immersion of S™ into R"*?. Let M"*! be the image of R"*! under
#; M is locally smooth and flat. Let & be the inward pointing normal
on S"cR™! and let & = ¢,&. Let & be normal to M**'. Let A; and A,
be the second fundamental forms associated with & and & and s, the nor-
mal connection forms; let s;;=s. Then an easy calculation shows that
A; =1 and A, has at most one non-zero eigenvalue g. If E,, ..., E, are
orthonormal eigenvectors of A, with A,E, = pE,, then s(E;) =0 for i =2.

In the rest of this section let n=4 and let ¢ : M"(1)—> R"** be an iso-
metric immersion of an n-dimensional Riemannian manifold M™(1) of con-
stant sectional curvature 1 into (z + 2)-dimensional Euclidean space. From
Theorem 2 we conclude that the normal connection is trivial.

LEMMA 12.

(a) For each xM™ there exist orthonormal normal vectors & and & at
such that A, =1 and A, has at most one non-zero eigenvalue p. If E,, -+ -, E, are
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the common orthonormal eigenvectors of A, and A, with AE, = pE,, then

Y]
0

Ai=1 and A, =
0
when represented with respect to Ey, « « +  En.  p is clearly uniquely determined up
to sign.

(b)Y If p(x)#0 or £ =0 in a neighborhood of x, then & and & may be
chosen continuously in a neighborhood of x such that A, and A, are as in (a).
Furthermore, since the eigenvalues of A, are continuous and have constant multiplicities
we may find continuous orthonormal eigenvector fields in this case.

Progf. Let & and & be any differentiable orthonormal normal vector
fields defined in a neighborhood U of x. Let A, and A, be the associated
second fundamental forms. Then the eigenvalues of A; and A, are con-
tinuous. Let 2, +-+,4, and py, + -+, 2, be the eigenvalues of A, and A4,
respectively with corresponding eigenvectors Ey, - « -, E,. We do not know
vet that E;,-.-,E, can be chosen continuously; as remarked, when the
eigenvalues of A, have constant multiplicity, this will follow. Since

1=K(E;NE)) =2d;+ pup; for ie+j,

we may assume 1,7 0. Letting

NE

&l = (& + #152)/(121’ + ¢3)

and

L
2

&) = (& — &) (A% + 2d)
we see that we may assume that we have continuous & and & with g =0
in U. Since

1=K(E, ANE) = Mdj;+ papry; = 42

1

for j=2, we have 1; = 3
1

for j=2. Let 2=2. We now distinguish
three possibilities:

(i) all g(x)#0 for i =2 (and therefore by continuity of the g, this
is so in a neighborhood of z),
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(ii) at least one p;(x) =0 for i =2 but not all g(x) =0 for i =2, and
(iii) all p(z) =o0.
Case (i): We have

1 =%+ Bt =—;112~+m#k

for k=j>i=2. Thus all p; are equal for i =2. Let ¢ be their common
value. Let &] = —/11—61 + g€, and ¢} = asl—m% &. Then &/ and &, have the
properties in (a) and (b) with #=g62%0.

Case (ii): We may suppose u(x)# 0, and therefore, by continuity of
#s, #2 70 in a neighborhood of x; and we may suppose p;(x) =0. Then

at z for j>3. Hence 2(z) = +1; we may suppose i(z) =1. Since
1=22; + papr; =1+ pap;

at « for i+ j, at most one g; is non-zero at x. We now claim that 21=1
and ;=0 for i #+ 2 in neighborhood of . By continuity of the eigenvalues
there exists an €>0 and a neighborhood V of 2 such that |x(y)] <e for
i=3 and |m(y)| >¢ for all yeV. But the argument in case (i) and the
above applied to such y imply that either all g,(y) are equal for i=2 or
at most one of them is non-zero. Clearly we must have the latter case and
# =¥+ 0. Reorder the eigenvalues to obtain the desired result.

Case (iii): If all g;(x)=0 then 2(z)=+1 and we may suppose 2(z)=+1.
It remains to prove (b) when z =0 in a neighborhood V of 2. If & and
& chosen as above with g, =0 and 2, = 2 =71; for i=2 in a neighbor-
hood U of z, UcV, with a(z) =1 and pz(x) =LO for i=2, then we claim
2=1and pg;=01in U. For if p;(y) +0 for some yeV and some i, then
(i) and (ii) applied to y imply p(y) # 0, a contradiction. This completes
the proof of Lemma 12.

Lemma 138. If p(x)#0 or =0 in a neighborhood of =, then we may choose
& end & differentiably in a neighborhood of = such that A, and A, are as in Lemma
12, Since the eigenvalues of A; have constant multiplicities p is differentiable and
we may find differentiable orthonormal eigenvector fields Ey, « - +, E, of A,.
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Proof. Let & and & be continuous orthonormal normal vector fields
defined in a neighborhood of 2 such that

2
O .
Al = I and Ag =
0
when represented with respect to continuous orthonormal eigenvector fields
E,--+,E, of A;. Let & and & be any differentiable orthonormal normal
vector fields defined in a neighborhood of x such that & =a& + b& and

& = — b&, + a&, with a(@) = b(x) = % and @, b continuous since a = g(&, &)
and b= g(Eg, 51). Then
a+ by —b+ap
_ a _ —b
A = . and A, = .
a —b
when represented with respect to E, - -, E,. Thus by the assumptions
on g the eigenvalues of A, and A; have constant multiplicities in a neigh-
borhood of # and are therefore differentiable in this neighborhood. Thus

e and b are differentiable. But &, = a&, — &, and &, = b, + af,. Hence &
and &, are differentiable.

Lemma 14, If p(@) 0 and & and & chosen differentiably in a neighborhood
U of x such that p+ 0 in U,

A1 =7 dnd Ag =
0
when represented with respect to orthonormal differentiable eigenvector fields E, - - -,
E, of A, then

(a)  The distribution &7 (y) defined by 7 (y) = span{Es(y), « - +, En(y)} is
integrable,

(b)  The normal connection 1-form s satisfies s(E;) = 0 for i=2.
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Progf. Codazzi’s equation applied to E; and E; for i > j=2 implies
that

— AP E; —V5,E) + S(E)E,; — s(E;)E; = 0.

Since g(A.X, E;) =0 for k> 1 we conclude that s(E;) = s(E;) =0 for i >j=
2. Since VzpE; — Vg E; =[E;, E,;] we conclude that g(E,, [E;, E,]) =0.

Lemma 15. If =0 in a neighborhood of = and &, &, Ay, Ay Eyy -« -, E,
as in Lemma 13, then s(E;) =0 for all i.

Proof. Codazzi’s equation implies that s(E,)E; — s(E,)E; = 0 for all i, j.
Note that the set of x such that pg(@) #+0 or g identically zero in a
neighborhood of 2 is a dense open subset of M™".

ProrosiTioN 3. If g =0 in a neighborhood of w, then there exists a neighbor-
hood U of x such that ¢(U) is part of a sphere S™ in some R™*!.

Proof. Choose differentiable orthonormal normal vector fields & and
&, defined in neighborhood U of z such that 4, =1, 4, =0, and s=0. From
the classical rigidity theorem (see [1], volume 2, page 45 for the rigidity
theorem in codimension 1) we conclude the desired result.

Suppose z(x,) # 0. Choose & and & as in Lemma 13. Let yy, « ««, yn
be local coordinates defined in a neighborhood U of 2, with y; =0 for all ¢
at @, and such that 3/dy,, - - -, /0y, span the distribution & (y) for yeU.
Let P(y) be the hyperplane in R**? spanned by T,(M") + span {&(y)} and
passing through y. Thus we have an n-parameter family of (# 4 1)-dimen-
sional hyperplanes given by

—>
g(X9 $Z(y19 tt yn)) + p(yl) . °yy7L) = 0’

where X is the position vector, and, putting ¥ =5§, P(Yy, + + 5 Yu) 1S given
by
(36) g(f(yly R Y yn)y 52(1/17 C oty yn)) + p(y!) e, yn) = 0-

Since Vg =0 (F is covariant differentiation in R**?) for k=2, & depends

only on y,. Differentiating (36) we have

(37) g(g—fk—, &)+ 9(3, aj: )+ aayi =0.
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35
&

M". For k=2 the second term is zero. Thus aap =0 for k=2 and we
k

really have a one-parameter family of hyperplanes. For k=1 (37) is

is tangent to

The flrst term on the left hand side of (37) is zero since

= 06 —
(38) o7 Sy +2 <o
Since p(x) =0 we also have near x:
(39) g(ﬁElsb El) 5& Oo

Since g(E,, 8/dy,) #+ 0 and by (39) we have near x:
(40) 73/31,152 # 0 and 9(73/31/152, 3/0y.) = 0.

We claim that the envelope (see below) of this one parameter family

of hyperplanes is a smooth flat manifold near z.

LemmaA 16. Let 7(y) be a smooth curve in R*** and P(y) a one-parameter
Samily of hyperplanes with normals &(y) such that P(y) passes through 7(y) and con-
tains the tangent vector 3/dy to T at 7(y). Suppose g( , )=# Oaty=0. Then
the envelope of P(y) (see below) is a smooth flat (n +1) dzmenszonal Riemannian
manifold near 7(0).

Proof. We may choose Euclidean coordinates 2, « « +, 2,4, such that
2; =0 for all ¢ at 7(0), 9/ox, = £(0), and 9/dw, is in the direction of —35(0).
The family of hyperplanes P(y) is given by
(41) oX, &) + ply) =0
9 . . . . _) . .
where X is the position vector, and, putting ¥ = Oy, p(y) is given by
(42) 9(&@(y), &) + »(y) =0.

Differentiating (42) with respect to ¥ we obtain

(43) 9@7_ +92 _

oy

since RiA is tangent to 7. Since ¥ = 0 at 7(0) we have

0y

p(0) = 320) = 0.

We also consider the (z + 1)-dimensional planes defined by
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¥ 0¢ op
(40 o(X Sew)+-Ew =

The characteristics of the family of hyperplanes P is defined to be the
family of n-dimensional planes defined by (41) and (44). We define the
envelope to be the set of characteristic planes.

If one writes out (41) and (44) in terms of the coordinates i, « « *, Tns2,
and y, the assumptions that £0) = 6/dx, and that 3—5(0) is in the direction

of 3/ox, imply that we may solve for 2, and #, as functions of , « + +,%nss,

and y:
xl = F(xliv MY xn+29 y)
Ty = G(&, * * +, Tnsa, Y)
If we calculate —03%( , +++,0,0) we find that
oG . —8273 / 0
(45) O'y ( ’ 0’0 ( ’ 6902)
Differentiating (43) we obtain
_ "zp
(5o 55)+o(m 22 =0

which evaluated at ¥ =0 is

(46) g( 2% a” )+ P _ o,

Since the first term on the LHS of (46) is not zero, a S 9D 0)#0. Thus we may

solve for y as a differentiable function of ,, « « +, #.., near y = 0. Hence
we obtain x;, as a differentiable function of #,, - - -, x,,» on the envelope
near ¥y = 0. Thus near y =0 the envelope is a smooth manifold with P(y)
as its tangent plane. It is clear that it is also flat.

Let us return to the immersion ¢ : M"(1)—> R**2, Let 7(y;) be an inte-
gral curve of 9/dy, through (0,-.-, 0. Using this for 7 in the previous
lemma we see that we have proved our claim. Call this envelope M"*,
It is clear that for yeM", y near z, yc M.

Thus we have proved:

THEOREM 5. Let n=4. Let ¢ : M"(1) — R™** be an isometric immersion of
an n-dimensional Riemannian manifold M™ of constant sectional curvature 1 into
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(n + 2)-dimensional Euclidean space. Then there exists a dense open set VCM™
such that each point x<V has a neighborhood U and an isometric imbedding g of U
into SM(1)CR** and an isometric immersion f of an open set W of R™*' into R™*?
such that ¢y = fog.

5. Remarks. Compact hypersurfaces of R**! of constant mean curva-
ture # O satisfy a variational principle. Namely, a compact hypersurface
M™ of R™*' has constant mean curvature # 0 if and only if its z-dimensional
area [ is stationary with respect to (# + 1)-dimensional volume preserving
variations; where the above (n + 1)-dimensional volume is the volume in
R™*! enclosed by M". More precisely: Let {¢,} be a l-parameter family
of immersions of a compact M™ into R"™*, defined for te(—e¢, &), with ¢,
= ¢ and such that the map ¥ :M" X (—¢, ¢) > R*"! defined by ¥(m, ¢) =
¢, (m) is C*. Then ¥ is called a variation of ¢. Let &7 (¢) be n-dimensional
area of ¢,(M") and V(¢) (n + 1)-dimensional volume enclosed by ¢,(M"). We
are assuming that ¢,(M") is a simple closed hypersurface of R™*!; i.e.,
¢,(M™) is a manifold—no self intersections. An (% + 1)-dimensional volume
preserving variation is one for which V{(¢) = V(0) for all ¢. Now, ¢ : M" —
R™*! has constant mean curvature if and only if %}(0) =0 for all (n 4 1)-

dimensional volume preserving variations.

A fundamental question seems to be: Do z-dimensional submanifolds
of R™? of constant mean curvature # 0 satisfy a variational principle?

If M' is a compact connected 1-dimensional submanifold of R?*! such
that Dy =0, then it is quite easy to show that M'is a circle that les in
some 2-dimensional Euclidean plane. Bryan Smyth has communicated to
me that he has shown that if M? is a compact "2-dimensional submanifold
of R* such that Dy =0 and M? is topologically a sphere, then M? is isometric
to S? and lies in some 3-dimensional Euclidean space. The above result of
Bryan Smyth and our results Theorem 1’ and Proposition 1 suggest the
following question: How necessary are our assumptions on the triviality of
the normal connection and the sectional curvatures in Theorem 1? Can we
replace one or both of them by some topological condition or some other
condition ?

Bryan Smyth has also pointed out to me that by considering the La-
placian of tr A} one can show that a connected compact submanifold M
of R™? of positive curvature and constant mean curvature is a minimal
submanifold of some sphere S**#-!,
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Cartan (Oeuvres Completes, partie I1I, vol. 1, p. 417) has shown that if
an n-dimensional space form M"(c) is isometrically immersed in an (# + p)-
dimensional space form M"'?(&), ¢<¢, then p=#n—1; and if p=n—1,
then the normal curvature tensor is zero. John Moore has used this result
in his Berkeley Thesis to show that in the case p = » —1, if in addition
Dy =0, then M" is flat, i.e. ¢ = 0.

Do Theorems 2 and 3 have analogues for higher codimension? Do the
algebraic lemmas used in the proof of Theorems 2 and 3 extend? Finally,

is Theorem 5 true for n =37
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