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Abstract

We have found a mistake in the proofs of Navarro (2008, Theorem 2.3(b) and 2.3(c)) due
to misapplication of properties of hazard rate and likelihood ratio orders. In this paper we
show with an example that the stated results do not hold. This example is interesting since
it proves some unexpected properties for these orderings under the formation of coherent
systems. The result stated in Navarro (2008, Theorem 2.3(a)) for the usual stochastic
order is correct.
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1. Introduction

Let T be the lifetime of a coherent (or mixed) system with n components having independent
and identically distributed (i.i.d.) lifetimes Xl, ... , Xn. Let (Sl, ... , sn) be the signature of
the system. Then the reliability function of the residual lifetime of the system can be written
(see [1]) as

n

JP>(T - t > x IT> t) = L Pi(t)JP>(Xi:n - t > x I Xi:n > t),
i=1

(1.1)

where Pi(t) = SiIfD(Xi:n > t)/ FT(t) and Xl:n, ... , Xn:n are the order statistics from
Xl, ... , Xn. The function Pi(t) may be identified as the probability of {T = Xi:n IT> t}.
Based on this representation, the following theorem was stated in [1] for the stochastic, hazard
rate, and likelihood ratio orders represented, respectively, by Sst, Shr and SIr; see [3] for their
definitions and basic properties.

Theorem 1.1. Let PI (t) andP2(t) be the vectors ofthe coefficients in (1.1), for ajixed t 2: 0,
of two mixed systems with i.i.d. component lifetimes X I, ... , Xn and YI, ... , Yn, distributed
according to common continuous distributions F and G, respectively. Let TI and T2 be their
respective lifetimes. Then:

(i) if F Shr G and PI (r) Sst P2(t), then (T, - t I Tl > t) Sst (T2 - t I T2 > t);

(ii) if F :Shr G and PI (t) :Shr P2(t), then (TI - t I TI > t) :Shr (T2 - t I T2 > t);
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(iii) ifF and G are absolutely continuous, F ::SIr G andp , (z) ::SIr P2(t), then (TI -t I TI > t)
::SIr (T2 - t I T2 > t).

We have realized that the proofs of Navarro (2008, Theorems 2.3(b) and 2.3(c)) are incorrect
because of a misapplication of [3, Theorems 1.B.14 and 1.C.17]. However, the result stated in
Navarro (2008, Theorem 2.3(a)) for the stochastic order is completely correct. Furthermore, the
following example shows that the results stated in (ii) and (iii) do not hold for system's lifetimes
(Le. t = 0) even when both systems have the same structure. That is, the example proves that if
two coherent systems have hazard rate (or likelihood ratio) ordered i.i.d. component lifetimes,
then the systems are not necessarily hazard rate (likelihood ratio) ordered. Therefore, this
counterexample is interesting since it shows these unexpected properties for coherent systems.
Conditions for the preservation of these orders under the formation of coherent systems were
given in [2].

Example 1.1. Let us consider the system structure shown in Figure 1. Let us consider two
coherent systems with this structure and i.i.d. component lifetimes Xl, X2, X3 and YI, Y2, Y3
with distribution functions F and G, respectively. Then the system lifetimes are

As the signature only depends on the structure, both systems have the same signature s
(0, ~, ~). Now let us assume that

Then the respective probability density functions are

Therefore.
g(t) 5e-t (1 - e-t )4 5

----- = _(1_e- t )3,
f(t) 2e-t (1 - e") 2

which is an increasing function for t ~ O. Hence, XI ::SIr YI, where ::SIr denotes the likelihood
ratio (lr) order. As the likelihood ratio order implies the hazard rate (hr) order, we also have
Xl ::Shr YI. The component hazard rate functions can be seen in Figure 2 (the dashed line is
the hr of Xl). However, the systems are not hazard rate ordered as can be see in Figure 3 (the
dashed line is the hr of TI). For example, if h I is the hazard rate of TI and h2 is the hazard rate
of T2, then we have

hl(l) ~ 0.6992632 > 0.1117465 ~ h2(1), hl(5) ~ 1.009475 < 1.016182~h2(5).

FIGURE 1: Structure of the systems studied in Example 1.1.
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FIGURE 2: Component hazard rate functions for the systems studied in Example 1.1.
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FIGURE 3: System hazard rate functions for the systems studied in Example 1.1.
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This proves that the statement in Theorem 1.1(b) does not hold. As they are not hr ordered,
then they are not lr ordered and, hence, Theorem 1.1(c) does not hold.

However, we would like to note that the result stated in Theorem 1.1(a) is completely correct.
Note that from (1.1), we have

n

JP>(TI - t > x I Ti > t) = L Pi (t)JP>(Xi:n - t > x I Xi:n > t)
i=1

and
n

JP>(T2 - t > x I T2 > t) = Lqi(t)JID(Yi:n - t > x I Yi:n > t),
i=1

where Pi(t) = JID(TI = Xi:n I Ti > t) and qi(t) = JID(T2 = Yi:n I T2 > t), for i = 1, ... , n.
Moreover, if we assume that X1 ~hr Yl, then we have

(Xi:n - t I Xi:n > t) ~st (Yi:n - t I Yi:n > t) for all t :::: 0,

where ~st denotes the (usual) stochastic (st) order, that is,

JID(Xi:n - t > x I Xi:n > t) ~ JID(Yi:n - t > x I Yi:n > t) for all t, x :::: o.
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Therefore,

FIGURE 4: System reliability functions for the systems studied in Example 1.1.

n

lP'(TI - t > x I Ti > t) = L Pi (t)lP'(Xi:n - t > x I Xi:n > t)
i=1

n

:s L Pi (t)lP'(Yi:n - t > x I Yi:n > t)
i=1

n

:s L qi (t)lP'(Yi:n - t > x I Yi:n > t)
i=1

= lP'(T2 - t > x I T2 > t) for all t , x ~ 0,

where the last inequality is obtained from [3, Theorem I.A.6, p. 7]. The reliability functions of
the systems considered in Example 1.1 can be seen in Figure 4 (the dashed line is the reliability
function of Tl). Of course, as X1 :Sst Yl, then T, :Sst T2, that is, the systems are st ordered
when they are new (t = 0) but the used systems with age t > 0 are not necessarily st ordered.
Furthermore, the ordering can be reversed when t -4 00. For example, for t = 5, we have

it, - 5 I Tl > 5) >st (T2 - 5 I T2 > 5).
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