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NON-EXTENDABILITY OF BOUNDED CONTINUOUS
FUNCTIONS

RONNIE LEVY

If X is a dense subspace of ¥, much is known about the question of
when every bounded continuous real-valued function on X extends to a
continuous function on Y. Indeed, this is one of the central topics of
[5]. In this paper we are interested in the opposite question: When are
there continuous bounded real-valued functions on X which extend to no
point of ¥ — X? (Of course, we cannot hope that every function on X
fails to extend since the restrictions to X of continuous functions on ¥
extend to Y.) In this paper, we show that if V is a compact metric space
and if X is a dense subset of ¥, then X admits a bounded continuous
function which extends to no point of ¥ — X if and only if X is com-
pletely metrizable. We also show that for certain spaces ¥ and dense
subsets X, the set of bounded functions on X which extend to a point of
Y — X form a first category subset of C*(X). Several examples relevant
to these results are given. Some combinatorial consequences (all of which
were earlier proven by Hechler using different methods) of the construc-
tion of one of these examples are given. Furthermore, one of the examples
is used to prove that if X is not pseudocompact, then there is a space ¥
which contains X as a proper dense subset and which has the following
properties: (i) For each p € ¥ — X, there is a continuous bounded
function on X which does not extend to p, but (ii) for each continuous
bounded function f on X, there is a point p € ¥ — X such that f extends
to p. In the last section, we briefly discuss the vX analogue of the material
in the earlier sections.

I wish to thank Professor Stephen Hechler for many helpful comments.

1. Preliminaries. We will use the notation and conventions of [5]. In
particular, all given spaces are assumed to be completely regular and
Hausdorff. N, Q, and R denote the sets (or spaces) of natural numbers,
rational numbers, and real numbers respectively. If X is a space, C*(X)
is the Banach space of real-valued continuous functions on X endowed
with the uniform norm ||-||. If X is dense in ¥V, p € ¥, and f € C*(X),
then the oscillation of f at p is defined by

osc,(p) = inf {sup|f(x) — f(M)|: x,y € UN X}

where U ranges over all neighborhoods of .
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If X isa dense subset of Yand 4 C V — X, thenif f € C (X), we say
that f extends to A (or to pif A = {p}) if thereisanf € C (X U 4) such
that the restriction f|X of f to X is f. We note that for p € ¥ — X, f
extends to p if and only if osc;(p) = 0. If X is dense in ¥, we write
YN BX = X for the statement ‘‘for each p € ¥V — X, there is an
f» € C*(X) such that f does not extend to p.”” If a single element of
C*(X) serves as every f,, we write YN X = X singly. Thus ¥M
BX = X singly if and only if there is an element of C*(X) which extends
to no point of ¥ — X. If YN BX = X, but it is not the case that
VN BX = X singly, then we say that VM BX = X multiply. For
example, R M BQ = Q multiply. To see this we note thatif p € R — Q,
the function f, € C*(Q) defined by

x—p
fr(x) = e — 7]
does not extend to p, so RM BQ = Q. But since every continuous
function on a subset of a space extends to a function defined on a G;-set
and since Q is not a Gs-set of R, every f € C*(Q) extends to some point
of R — Q. Thus it is not the case that R M gQ = Q singly.
We close this section with a simple and well-known proposition which
was essentially used in the preceding example.

1.1. ProrosiTiON. If VM BX = X singly, then X is a Gs-set in V.

Proof. 1t is well-known (see [2], for example) that every f € C*(X)
extends to a function g € C*(G) where G is a G;-set in V. Therefore, if
YM X = X singly, G = X, that is, X is a Gs-set of Y.

2. Separable metric spaces. In this section, we prove the converse
of 1.1 for the case that ¥ is a compact metric space. We first handle the
case where X is an open dense subset of V.

2.1. LEMMA. Suppose YV is a compact metric space. If X is a dense open
subset of Y, then there is a continuous function F:X — [0, 1] such that for
each p € ¥V — X, oscp(p) = 1.

Proof. For each n € N, let {St(y"):k =1,...,r,} be a finite cover
of ¥ — X where S.(p) is the open e-sphere in Y centered at p. For
k=1,...,r, choose x;' € Si(yi' M X). If x™ is chosen for m < n
and k =1,...,r,, choose

X0 (S, () —{lemm < n,1 2k =r,))NX.
Let
D={x"necNk=1,...,n}

https://doi.org/10.4153/CJM-1980-065-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-065-9

NON-EXTENDABILITY 869

Then it is easy to show that D is a closed discrete subset of X and that
ClyD — D =Y — X. Let f:D — [0, 1] be defined by

IO if n is even

T = i s odd -

Since X is normal, f extends to a continuous function F:X — [0, 1]. If
p € ¥V — X, then oscp(p) = 1. To see this, let 17 be an open neighbor-
hood of p. Then

VD {p} = N {CIS) o ) £ € S1yea (96}

so there is an even 5, and a kg such that
Stim (") S V.

Similarly there is an odd #; and a k; such that
Stm (") & V.

Then
Fxp) = 0 and F(x,,*) = 1,

so F assumes both the values 0 and 1 in V. But 17 is an arbitrary neigh-
borhood of p so oscp(p) = 1.

Remark. The construction of D in the proof of 2.1 is basically just the
well-known proof that every nowhere dense subset of a metric space is
contained in the closure of a discrete subset of the metric space.

2.2. LEMMA. Suppose X is a dense subset of the space Y, and that
X = Mzt U, where { U} 1™ s a decreasing sequence of open sets. If for
each n, there is a continuous f,: U, — [0, 1] such that osc,,(p) = 1 for each
p €Y — U, then YN BX = X singly.

Proof. We may assume that U, = X. Let f: X — [0, 1] be defined by

fx) = > fL.gﬁxl
n=1 3

Then f € C*(X). We claim that if p € ¥ — X, then osc,(p) > 0. Sup-
posep € U, — U, 1and T is a neighborhood of p. Each of the functions
fu ..., fa, is continuous on U, so 7 contains a neighborhood 17 of p such
that for each x,y € 1,

N G I C) | I

® 3" S g g

Now choose x,y € VN X such that f, 1(x) = 1/8, f, 11(y) = 7/8.
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Now
S SRULCH I SO/ €O R EETC) N SR C))
flx) = A; o AZ1 ar T g + ZH P
My N n“ a 1
<> i (ic) +j‘—7701—£1x'>'+ > o
k=1 3 ; k=ny+2 &
il x 1 1
= Z_: '( ) (, 37104—'? + 9. 37!(,+I
fi(x) 5
—1 ]\3}( + S - 3ot
Also
NN ‘/( ) V ‘710 . = f
10y = 30 = 5 D L)y 3 L)
— . f=1 3} k=ng+2 v
< fk(y) 7
= /_Zl “gk" + < S _?JH .
Hence

il fe
f(y) - j(x) g IZ (y) .,,x (x) 4 . :;"o%—l

and so by (*)

Thus, any neighborhood of p contains elements x and y of X such that
[flx) — F(»)] = 1/8-3%+, Therefore, osc,(p) > 0 so f cannot be ex-
tended to p. But p is an arbitrary clementof V' — X ,andso Y M X = X
singly.

Remark. A consequence of 2.2 is that if YN BX = X and ¥V — X is
countable, then ¥/ BX = X singly. In Section 3 we give an entirely
different proof of this result. In fact we show that in this case the elements
of C*(X') which extend beyond X are very rare.

2.3. ProposiTioN. (1) If Vis a compact metric space and X 1s « dense
subspace, then Y M BX = X singly if and only if X is completely metriz-
able.

(i1) If X 1s @ separuble metric space, then X is completely metrizable if and
only if VM BX = X singly for every compact metric space YV such that X
1s a dense subspace of V.

Proof. Combine 1.1, 2.1, 2.2, and the fact that complete metric spaces
coincide with absolute G; metric spaces.
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Remarks. (i) We note that 2.3 does not state that ¥ — X is the set of
discontinuities of a bounded function f: ¥ — R. The characterization of
sets of points of discontinuities of functions on compact metric spaces is
given, for example, in [1]. For the non-metric case, there are compact
spaces Y and open dense subsets X such that ¥ M X # X butsuch that
¥ — X is the set of points of discontinuities of a function on ¥ (just take
X =1[0,w;), Y =10,w]). The characteristic function of X is con-
tinuous exactly on X, but X = Y.

(ii) Proposition 2.3 (i) does not hold if ¥ is not metrizable even if X
is separable and open in X. To see this, let ¥ = gN and X = N — {p}
where p € BN — N. Then X is C*-embedded in YV and so ¥ N X = X.
In Section 4 an example is given of a compactification ¥ of N such that
YN BN = N multiply.

(iii) The referee has pointed out that the following is proven in [4],
3.10(2): If Vis locally connected and X is a dense intersection of count-
ably many cozero sets of ¥, then ¥'M X = X singly.

2.4. COROLLARY. Suppose Y is a separable metric space and X 1s a com-
pletely metrizable dense subset of Y. Then ¥V M BX = X singly.

Proof. ¥ has a metric compactification Y*. Since X is completely
metrizable, X is a Gs-set in Y*. By 2.3, Y* M X = X singly. Therefore,
Y N BX = X singly.

3. Spaces with countable remainders. In this section we show that
if YMBX =X and YV — X is countable, then the set of elements of
C*(X) which extend to some point of ¥ — X forms a first category subset
of C*(X). The technique we use is much easier than the methods in
Section 2 and gives more functions which fail to extend.

The following lemma was proved by M. Rice in a private conversation.

3.1. LEmmA. Suppose X 1s a dense subset of V. Let
AX) = {f € C¥(X): fextends to ¥ — X}.
If A(X) # C*(X), then A(X) s nowhere dense in C*(X).

Proof. We first show that 4 (X) is closed in C*(X). If f, € A(X) for
eachn € Nand f, —»f ¢ C* (X) let f, € C*(Y) be an extension of f, for
each n. Then the sequence { f,} converges to an clement [ of C*(V). f is
an extension of fso f € A (X). This shows that 4 (X) is closed in C*(X).
Now suppose Int 4 (X) # 0. Then thereisan f € A(X) and ¢ > 0 such

that the open sphere S.(f) of C*(X) is a subset of 4 (X). Choose
g € C*(X). Since g is bounded, there is a > 0 such that ||6g|| < e. Then

0 + fES(f) € 4X),
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so there is an extension & € C*(X) of 6g + f. If} € C*(Y) is the extension
of f, the function § = (b — f)/é is an element of C*(Y) and if x € X,

§w) = (@) = J@))/6 = (g(x) + f(x) = f(x))/6=g(x),
so § is an extension of g. Therefore, ¢ € A (X). But ¢ is arbitrary. Hence,
if Int 4(X) # 0, then C*(X) = 4(X).

[t is not difficult to show that if ¥\ BX = X singly, then {f ¢
C*(X): f extends to a point of ¥ — X} has dense complement in C*( V).
The next proposition shows that if ¥ — X is countable, then this set is
a first category subset of the Banach space C*(X).

3.2. PROPOSITION. Suppose V — X is countable and YV M BX = X.
Then Y M BX = X singly. Furthermore, {f ¢ C¥*(X): [ extends to some
element of Y — X} is a meager subset of C*(X).

Proof. Write ¥V — X = {vy;: k € N}. For each £ € N, let
Fr = {f € C¥(X): f extends to y;}.

Since YN X = X, F, # C*(X) for each k. Hence, by 3.1, each F; is
nowhere dense in C*(X). By the Baire Category Theorem,

CHX) = U B # 0.

Therefore, VM BX = X singly.

3.3. CoroLLARY. If YN BX = X, then (X \J A) N BX = X singly
for every countable subset A of V.

4. Some examples. In this section we present several applications and
examples relevant to the material of Sections 2 and 3. One of the examples
(4.2) will then be used in Section 5.

4.1. Example. BQ M B(BQ — Q) = BQ — Q singly. In fact, the set of
elements of C*(8Q — Q) which extend to any point of Q is a first cate-
gory subset of C*(8Q — Q). This is immediate from the fact that
BO N BEO — Q) =BQ — Q (5], 60.4) and Proposition 3.2.

We will need the following theorem of Magill to construct the next
example.

TuEOREM. ([7]). Suppose A 1is locally compact and f: (BA — A) — C is
a continuous surjection. Then the quotient topology on A \J C induced by
the map g:BA — A \J C defined by

glx) = {}C(x) ;ffz E gA 4 is (compact) Hausdorff.
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4.2. Example. There is a scattered compactification BN of N, such
that BN M BN = N multiply. This should be compared to 2.3. The com-
pactification BN will be constructed as a quotient of BN using Magill's
theorem. Let {C,: f € C*(N)} be a family of pairwise disjoint non-empty
open-and-closed subsets of SN — N. (We can index any family of 2%°
pairwise disjoint clopen subsets of N — N by C*(N) since |C*(N)| =
280y For each f € C*(N) let K, be a proper non-empty open-and-closed
subset of C,such that the restriction of f to K, is constant. Let

L = (BN - N) - UfGC*(N) Kf.

Let B be the quotient of SN — N obtained by identifying L to a single
point / and each K, to a single point k,. Let BN be the induced quotient
of BN; that is, BN is obtained from N by identifying L and each K,
to a single point. The space B is Hausdorff; in fact, it is the one point
compactification of the discrete space of cardinal 2%°. Hence, by Magill’s
theorem, BN is a compact Hausdorff space. Clearly, N is dense in BN.
We first show that BN M 8N = N. Suppose y € BN — N (=B). Then vy
is obtained from BN — N identifying a set S to a point; Sis either L or K,
for some f. Let py, p1 be distinct elements of S. Let g € C*(BN) be a func-
tion such that g(py) = 0, g(p1) = 1. If ¢ is the restriction of ¢ to N, then
2 does not extend to y. Hence BN M BN = N. On the other hand, if
f € C*(N), the extension f# of f to SN is constant on K, so we may
define f:N \U {k,} — [0, 1] by

) = {f(x) ifxeN

: ) ifx =kyand p € K.
Thenf' € C*(N\U {k,) andf'is an extension of f. Therefore, it is not the
case that BN M BN = N singly.

4.3. Example. If D is an infinite discrete space, D has a scattered com-
pactification BD such that BD M BD = D multiply.

Proof. If D = N, we may take BD to be the space BN of Example 4.2.
For the general case, write D as a disjoint union (Uxca Ny where each NV,
is a copy of N. Let BD be the one-point compactification of the topo-
logical union Uxea BNy, Then clearly BD M 8D = D multiply.

Remark. The construction of 4.3 actually gives that each f € C*(D)
extends to a point p, which is an isolated point of BD — D. Since
BD — D has 2% |D| isolated points, and since isolated points of BD — D
correspond to open-and-closed subsets of 3D — D, we get the following:

4.5. COROLLARY. Suppose D is the discrete space of infinite cardinal v.
Then there is a collection € of v- 28 pairwise disjoint non-empty open-and-
closed subsets of BD — D such that for each f € C*(8D), thereisa C, € €
such that the restriction of f to C, 1s constant.
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5. Some combinatorial consequences. In this section we use the
technique of Example 4.3 to obtain some combinatorial results which
were first obtained by Hechler [6] by entirely different methods (see also
[3].) If 4 and B are subsets of N, then 4 C* B (4 is almost contained in
B) if A — B is finite. If ¢’ is an infinite family of infinite subsets of N,
then & is almost-disjoint if distinct elements of ¢” have finite intersec-
tions. If & is a maximal almost-disjoint family, we denote by ¥, the
version of ¥ constructed from the family ¢ where ¥ is the space des-
cribed in problem 51 of [5].

5.1. LEMMA. The following statements are equivalent for « maximal
almost-disjoint family & of subsets of N:

(i) If f € C*(N) and | f(N)| £ n (where n € N), then f extends to «
point of ¥, — N.

(ii) For every partition {A,, ..., A,} of N, there is an E € & and «a
k £ n such that E C* 4,.

Proof. (i) = (ii). Let {44, ..., 4,} be a partition of N and define
f € C*(N) by f |4x = k. By assumption f extends to a point wz € ¥, —
N. Call the extension f. If f(wgz) = k¢, then since £ \U {wz} is the one-
point compactification of £ and since f assumes only finitely many values,
f|E must be k, except on a finite subset of £ so £ C* 4,,.

(i) = ). If AN —>{1,...,n} is any function, let A, = f~1(k) for
B =1,...,n By hypothesis, there isa k# < # and an E ¢ & such that
E C* 4. If N U {wg} — Ris defined by f [N = fand f(wgz) = k, then
f is a continuous extension of f.

For 4 C N, let A* = (ClgnA4) — N. Let {K,;: f € C*(N)} be as in
4.2 and expand this family to a maximal disjoint family of clopen subsets
of BN — N. This maximal family can be written {£*: £ ¢ & | where &
is a maximal almost-disjoint family of subsets of N. We can obtain a
compactification YN of N from N by identifying each set E* to a point
and BN — N — U {E*: E ¢ &'} to a point 00. Then N still contains all
of the points k, and YN — {0} = V.. Since for each f & C*(N), [
extends to a point of ¥, — N, we get, by 5.1, the following:

5.2. THEOREM. ([6]). There is a maximal almost-disjoint family & of
subsets of N such that for every finite partition {Ay, . .., 4,} of N, there is
an E € & such that E C* A, for some k < n.

Remark. 1t is easy to construct families ¢ which do not have the
property described in 5.2. Let ¢, and &, be maximal almost-disjoint
families of subsets of the even integers 4, and of the odd integers 4.
respectively. If

& = B\ By By € 6@1'},
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then ¢ is a maximal almost-disjoint family of subsets of N but it is not
the case that for some E € &, either E C* 4; or E C* 4,. A more
interesting example of the failure of 5.2 for families & is given in 5.4.

5.3. ProrositioN. Suppose n € N. There is a compactification SN of N
with the following properties: (i) For every f € C*(N) such that | f(N)| £ n,
there is a point p, € SN — N such that f extends to p,. (i1) There is a func-
tion fo € C¥*(N) such that |fo(N)| = n + 1 and fo extends to no point of
0N — N. Furthermore, SN may be chosen to be the one-point compactification
of a version of V.

Proof. Let {44, ..., A1} be any partition of N into pairwise disjoint
infinite subsets. Define fo € C*(N) by fo|4; = k. Write each set 4,* as
B \J B! where B,® and B;! are disjoint non-empty clopen subsets of
A*. The pigeon-hole principle implies that for each f € C*(N) such that
| f(N)| < n, there are two distinct integers ki, k2 € {1,...,n + 1} and
points x,!, x> with

xs € By x2 € By and ff(x,') = fP(x?).
For k=1,...,n 41, let {C/:f € C*(N)} be a family of non-empty
pairwise disjoint clopen (in BN — N) subsets of B;’. For each f € C*(N),

let K; be a clopen (in BN — N) subset of C/1\U C/2 such that f#|K, is
constant and

K, N Cf# 0 KN Cle

(for example, such that f8|K, = f8(x)). Fork =1,...,n + 1, let
Dy = A — UK fe C(N), [f(N)] = n}.
Then intsgy_nDi # 0 since B! C Dy For B =1,2,...,n+ 1, let

{R\*: X < ¢} be a pairwise disjoint family of non-empty disjoint clopen
and |D;, — MR\ = 2 (in BN — N) subsets of D; such that U< R\
is dense in D;. For each A < ¢, let

n+1

Ry = U R
=1

Let 6N be obtained from 8N by identifying each R\ to a point 7\, each K,
to a point k;, and SN — N — Ui<ce Ry — U seeran K, to a point o0.
It follows from Magill’s theorem that 6N is a Hausdorff compactification
of N. Then f € C*(N), | f(N)| £ n imply f extends to k, since f#|K, is
constant. On the other hand, f, extends to no point of N — N because for
each vy € 6N — N,

[ ff@™ )| = 2
where ¢:BN — 6N is the Stone extension of the identity. Also, since
{g71(p): p ¢ N\U {0 }} is a maximal pairwise disjoint family of clopen
subsets of BN — N, 6N — {0} is a version of V.
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Combining 5.1 and 5.3, we get the following.

5.4. CoroLLARY. ([6].) Given n € N, there is a maximal almost-disjoint

family & of subsets of N such that (i) given a partition { A, . .., 4.} of N,
there is an E € & such that E C* A, for some k < n, but (ii) there is a
partition {41, ..., Awa} of N such that there is no k = n + 1 and no

E € & such that E C* A,.

Remark. The proof of 5.3 actually shows that the partition
{Ay1, ..., Ay} can be taken to be any partition of N into #» + 1 infinite
subsets. Of course, different partitions will yield different families & .

We close this section with a modification of the construction of 5.3.

5.5. ProrosiTiON. ([6]). There is a compactification YN of N such that
yN M BN = N singly but every f € C*(N) such that | f(N)] < Ry extends
to a point of YN — N.

Proof. Let {A;: B € N} be a partition of N into infinite subsets. Let
fo € C*(N) begiven by f |4, = 1/k. Foreach k € N, let {C/: f ¢ C*(N),
[ f(N)| < No} be a collection of pairwise disjoint non-empty clopen (in
BN — N) non-empty subsets of A;*. By the pigeon-hole principle, if
f € C*(N) and F(N) is finite, there are distinct ky, k2 € N and x,,”, 2,7
such that x;,” € C/fifor i = 1,2 and f(xy,)) = f(xx,"). Now let K, be
a clopen (in BN — N) subset of C/\JU C*2 such that

K,NCos s KN Ce

and f | K, is constant (say f |K,; = f(x:,”)). Let YN be obtained from gN
by identifying each K, to a point and

BN — UK f & CXN), | f(N)] < No}

to a point. Then ¥N has the required properties. The proof is analogous
to the proof of 5.3.

Remark. Proposition 5.5 is not explicitly stated in [6] but follows easily
from Hechler's Theorem 10.2 or 3.2. A result which is stronger than 5.2
in which “C*” is replaced by “C"" is given in [6].

6. Non-pseudocompact spaces. We do not know of a large class of
spaces X which admit compactifications ¥V such that VYN gX = X
multiply. However, we can find a large class (which includes all non-
pseudocompact spaces) of spaces X which are contained as proper dense
subsets of spaces ¥ with ¥ /M X = X multiply.

6.1. PROPOSITION. Suppose X contains a closed C*-embedded copy of N.
Then X 1s a dense proper subset of a space Y such that VM BX = X
multiply.
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Proof. Let N be a closed C*-embedded copy of N in X. Let W = X —
(BN — N). Then W — W = BN — N. Let BN be the compactification
of N constructed in Example 4.2. Let ¢:8N — N(=8W — W) —
BN — N be the natural quotient map, that is, ¢ is the restriction to
BN — N of the Stone extension of the injection of N into BN. By Magill’s
theorem, the quotient topology on W '\U (BN — N) induced by the map

G:86W —>W\U (BN — N)
where

A()_Ix ifxc W
&) =) ifxcgw—w

is (compact) Hausdorff. Let ¥ = XU (BN — N). We claim ¥ N
BX = X multiply. We first show V' BX = X. Suppose p € ¥V — X =
BN — N. Let f € C*(N) be a function which does not extend to p.
Since N is C*-embedded in X, the function f extends to a function
7 € C*(X). Then [ does not extend to p. We now show that it is not the
case that ¥ M X = X singly. Suppose f € C*(X). Then the restriction
S IN extends to the point k;n € BN — N. Let DX be the quotient of
BX which identifies K, x to a point and let r:8X — DX be the quotient
map (so 7 is given by

=4, R

Let f #:8X — R be the Stone extension of f. Define g: DX — R by
glx) = fP(r1(x)).

Then g is well-defined and
gor = ff € C*(BX)

so (since 7 is a quotient map), ¢ € C*(DX). But ¢g|X = f and g|X U
{k;n} is continuous so f extends to a point of BN — N = ¥V — X,
Therefore ¥ M X = X multiply.

6.2. COROLLARY. If X is not pseudocompact, there is « space Y which
contains X as a proper dense subset such that Y (M BX = X multiply.

Remark. We do not know if ¥V can be taken to be pseudocompact, or
even compact, in 6.2, even in the case of X = R. However, by Remark
(ii1) following 2.3, in the case of R, no such ¥ can be locally connected.

7. Unbounded functions. In this section we briefly discuss the
vX analogue of the material of the earlier sections. If X is a proper dense
subset of ¥V, we write Y M vX = X if for each p € ¥ — X, there is a
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function f, € C(X) such that f does not extend to p. If a single function
serves as every f,, we say ¥V M uvX = X singly. If ¥ M vX = X butitis
not the case that VM vX = X singly, then we say VM vX = X mul-
tiply. We will be concerned here with the case where V = 8X. We first
note an easy fact.

7.1. PROPOSITION. T'he following statements are equivalent for « space
X: (1) X MuX = X. (i) v X N BX = X. (ii1) X is realcompact.

Proof. The first statement says that for each p € 8X — X, there is a
function f, € C(X) which does not extend to p, that is, X is realcompact.
The second statement says that for each p € vX — X, there is a function
fp € C*(X) such that f, does not extend to p. This can happen if and only
ifvX — X = 0.

7.2. LEMMA. Suppose X s normal and f € C(X). Then [ extends to no
point of BX — X if and only if f~([—mn, n]) is compact for each n ¢ N.

Proof. Suppose first that for some 1y € N, f~1(| —#n,, 10]) is not com-
pact. Let Z; = f~3([—mno, no]) and let Zy = f~Y([—ny — 1, no + 1]).
Then Z, is not compact. Choose p € (ClgxZ:) — X. We claim f extends
to p. Since Z, is C*-embedded in X, the restriction f |Z, extends to a func-
tion g € C*(Z2\U {p}). Define [: X U {p} — R by

fIX =2z =f and [|Z,\U {p} = ¢

Thenf is a well-defined extension of f. We claim J is continuous.
f is continuous on X — Z;. If

U=[(fIA (m+1))f]7 (=1, m + %), and
V=UNn X\ i{p}),

then Visan X \U {p} neighborhood of p such that
ZiJpy SV C Z,\J {p}.

Then f'H’ = ¢g|V which is continuous. X U {p} = "U (X — Z)).
Therefore, since each of the sets I” and X — Z is open in X \U {p}, |
is continuous. For the converse, suppose f~'([—mn, n]) were compact
for each » € N and suppose there were a p € X — X and an
fe Cc(xX U {p}) such that f|X = f. Suppose [(p) € [—no, no] where
no € N. Let

K =f[—=no— 1, n + 1]).

By assumption K is compact. But if U is any X \J {p} neighborhood of
p, then U — K is an X \U {p} neighborhood of p each of whose elements
x #% p satisfies | f(x) — f(p)| = 1. This contradicts the continuity of /.
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7.3. COROLLARY. Suppose X 1s normal, realcompact, but not s-compact.
Then BX MvX = X multiply.

Proof. By 7.1, BX MNvX = X. If f € C(X), there is an n € N such
that f~1([—n, n]) is not compact; otherwise X would be ¢-compact.
By 7.2, f extends to a point of X — X.

7.4. COROLLARY. Suppose D 1is an infinite discrete space. Then
8D M vD = D singly if and only if D is countable.

Proof. If D is countable, then D = N and the injection ¢:N — R
extends to no point of BD — D. For the converse, suppose 8D M vD = D
singly. By 7.1, D has non-measurable cardinal. By 7.3, since an uncount-
able discrete space is not o-compact, D must be countable.

Added in proof. Eric van Douwen has proved that there is a compactifi-
cation ¥ of R such that ¥/ R = R multiply. He has also proved that
for metric X and a dense subset G of X, G is a G5 in X if and only if
X M BG = G singly. This extends 2.4.
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