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NON-EXTENDABILITY OF BOUNDED CONTINUOUS 
FUNCTIONS 

RONNIE LEVY 

If X is a dense subspace of F, much is known about the question of 
when every bounded continuous real-valued function on X extends to a 
continuous function on F. Indeed, this is one of the central topics of 
[5]. In this paper we are interested in the opposite question: When are 
there continuous bounded real-valued functions on X which extend to no 
point of Y — X? (Of course, we cannot hope that every function on X 
fails to extend since the restrictions to X of continuous functions on Y 
extend to F.) In this paper, we show^ that if F is a compact metric space 
and if X is a dense subset of F, then X admits a bounded continuous 
function which extends to no point of F — X if and only if X is com­
pletely metrizable. We also show that for certain spaces F and dense 
subsets X, the set of bounded functions on X which extend to a point of 
F — X form a first category subset of C*(X). Several examples relevant 
to these results are given. Some combinatorial consequences (all of which 
were earlier proven by Hechler using different methods) of the construc­
tion of one of these examples are given. Furthermore, one of the examples 
is used to prove that if X is not pseudocompact, then there is a space F 
which contains X as a proper dense subset and which has the following 
properties: (i) For each p Ç F — X, there is a continuous bounded 
function on X which does not extend to p, but (ii) for each continuous 
bounded function/ on X, there is a point p £ F — X such t h a t / extends 
to p. In the last section, we briefly discuss the vX analogue of the material 
in the earlier sections. 

I wish to thank Professor Stephen Hechler for many helpful comments. 

1. Preliminaries. We will use the notation and conventions of [5]. In 
particular, all given spaces are assumed to be completely regular and 
Hausdorff. N, Q, and R denote the sets (or spaces) of natural numbers, 
rational numbers, and real numbers respectively. If X is a space, C*(X) 
is the Banach space of real-valued continuous functions on X endowed 
with the uniform norm || -||. If X is dense in F, p £ F, a n d / £ C*(X), 
then the oscillation of / at p is defined by 

oscf(p) = inf {sup|/(x) -f(y)\:x,y £ UC\ X) 

where U ranges over all neighborhoods of p. 
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If X is a dense subset of F and A C F — X, then if/ G C (X), we say 
t h a t / extends to A (or to £ if A = {p}) if there is an / G C ( I U i ) such 
that the restriction f\X of / to X is / . We note that for p G F — X, / 
extends to p if and only if oscf(p) = 0. If X is dense in F, we write 
F H /3X = X for the statement "for each p G F — X, there is an 

/p G G*(X) such that / does not extend to p." If a single element of 
G*(X) serves as every fp, we write Y C\ fiX = X singly. Thus Y C\ 
I3X — X singly if and only if there is an element of G*(X) which extends 
to no point of Y — X. If F H f3X = X, but it is not the case that 
F CiPX = X singly, then we say that F P\ $X = X multiply. For 
example, R P\ /3Q = 0 multiply. To see this we note that if p G R — 0 , 
the function fv G C*(Q) defined by 

r / N _ X ~ p 
h[X) " | x - ^ | 

does not extend to p, so R P\ ^ 0 = 0- But since every continuous 
function on a subset of a space extends to a function defined on a Gs-set 
and since 0 is n ° t a Gs-set of R, every / G C*(Q) extends to some point 
of R — 0- Thus it is not the case that R Pi /3Q = 0 singly. 

We close this section with a simple and well-known proposition which 
was essentially used in the preceding example. 

1.1. PROPOSITION. / / F P\ (3X = X singly, then X is a Gs-set in Y. 

Proof. It is well-known (see [2], for example) that eve ry / G C*(X) 
extends to a function g G C*(G) where G is a Go-set in F. Therefore, if 
F Pi (3X = X singly, G = X, that is, X is a G5-set of F. 

2. Separable metric spaces. In this section, we prove the converse 
of 1.1 for the case that F is a compact metric space. We first handle the 
case where X is an open dense subset of F. 

2.1. LEMMA. Suppose Y is a compact metric space. If X is a dense open 
subset of F, then there is a continuous function F:X —> [0, 1] such that for 
each p G F — X, oscF(p) = 1. 

Proof. For each n G N, let {S±(yk
n):k = 1, . . . , rn) be a finite cover 

of F — X where Se(p) is the open e-sphere in F centered at p. For 
k = 1, . . . , ri, choose X/c1 G -SiC^1 P\ X) . If xk

m is chosen for m < n 
and & = 1, . . . , rm, choose 

xk
n € (Sin(:y/) - {***: m <n,l^k^rm))C\X. 

Let 

Z> = {**": n G N, fe = 1, . . . , r n } . 
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Then it is easy to show that D is a closed discrete subset of X and that 
ClYD - D = Y - X. Let f:D -> [0, 1] be defined by 

/o if n is even 
nxjc) - \ x i f w i s o d d • 

Since X is normal, / extends to a continuous function F\X —» [0, 1]. If 
£ £ F — X, then oscF(p) = 1. To see this, let F be an open neighbor­
hood of £. Then 

F 3 {£! = n ! C l r 5 1 / 2 „ ( V ) : 2> e S1/2„(y*2«)} 

so there is an even no and a &o such that 

• W W 0 ) Q V. 

Similarly there is an odd rt\ and a k\ such that 

Then 

F(x,/°) = Oand F ( x ^ ) = 1, 

so F assumes both the values 0 and 1 in F. But V is an arbitrary neigh­
borhood of p so oscF(p) = 1. 

Remark. The construction of Z) in the proof of 2.1 is basically just the 
well-known proof that every nowhere dense subset of a metric space is 
contained in the closure of a discrete subset of the metric space. 

2.2. LEMMA. Suppose X is a dense subset of the space F, and that 
X = On=i Un where { £/n}w=1

œ is a decreasing sequence of open sets. If for 
each n, there is a continuous fn: Un —> [0, 1] such that oscfn(p) = 1 for each 
p 6 F - Un, then Y P\ (3X = X singly. 

Proof. We may assume that U\ — X. Let/ ' .X —> [0, 1] be defined by 

71=1 à 

Then / Ç C*(X). We claim that if £ <E F - X, then osc,(£) > 0. Sup­
pose £> Ç £/Wo — f/Wo+i and F is a neighborhood of p. Each of the functions 
fi, . . . ,fno is continuous on UnQ so F contains a neighborhood F of p such 
that for each x, y £ F, 

m v !/*(*)-/* 601 ̂  i 

Now choose x, y £ F H Z such that /„0+i(x) g 1/8, fnQ+i(y) ^ 7/8. 
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Now 

k=l •) A=I o 6 fc=w.0+2 9 

A;=l O 6 À;=w0+2 Ù 

< y 4 M + _i_ + _J_ 
fc=l 

.) --JC ' 3* + s-s'^1 * 
Also 

J U J - Z-, Q* — Z-/ QÂ: "T Q-Wo+l i " Z_j - Q* 
A:=l O Ar=l ' J «J A-=^0 + 2 9 

> y 400 , __7_ 

Hence 

and so by (*) 

f(y) ~f(x) è ^ - ^ + ï . 

Thus, any neighborhood of /> contains elements x and ^ of X such that 
l/(#) - / (3 ; ) l ^ l/8-3Wo+1. Therefore, oscf(p) > 0 so / cannot be ex­
tended to p. But /> is an arbitrary element of Y — AT, and so F H /3X = X 
singly. 

Remark. A consequence of 2.2 is that if F Pi /3AT = X and Y — AT is 
countable, then Y C\ f5X = X singly. In Section 3 we give an entirely 
different proof of this result. In fact we show that in this case the elements 
of C*(Ar) which extend beyond X arc very rare. 

2.3. PROPOSITION, (i) If Y is a compact metric space and X is a dense 
sub space, then Y f) (3X = X singly if and only if X is completely metriz-
able. 

(ii) If X is a separable metric space, then X is completely metrizable if and 
only if Y C\ fiX = X singly for every compact metric space Y such that X 
is a dense sub space of Y. 

Proof. Combine 1.1, 2.1, 2.2, and the fact that complete metric spaces 
coincide with absolute G& metric spaces. 
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Remarks, (i) We note tha t 2.3 does not s tate t ha t Y — X is the set of 
discontinuities of a bounded function / : F —» R. The characterization of 
sets of points of discontinuities of functions on compact metric spaces is 
given, for example, in [1]. For the non-metric case, there are compact 
spaces F and open dense subsets X such t ha t Y C\ fiX ^ X bu t such t ha t 
Y — X is the set of points of discontinuities of a function on Y (just take 
X = [0, coi), Y = [0, coi]). The characteristic function of X is con­
tinuous exactly on X, bu t fiX = Y. 

(ii) Proposition 2.3 (i) does not hold if Y is not metrizable even if X 
is separable and open in X. To see this, let Y = /3N and X = /3N — \p) 
where £ G £N - N. Then X is G*-embedded in Y and so Y C\ (3X ^ X. 
In Section 4 an example is given of a compactincation F of N such tha t 
F P / 3 N = N multiply. 

(iii) The referee has pointed out tha t the following is proven in [4], 
3.10(2): If F is locally connected and X is a dense intersection of count-
ably many cozero sets of F, then F Pi fiX = X singly. 

2.4. COROLLARY. Suppose Y is a separable metric space and X is a com­
pletely metrizable dense subset of Y. Then Y C\ fiX = X singly. 

Proof. Y has a metric compactincation F*. Since X is completely 
metrizable, X is a Gs-set in F*. By 2.3, F* Pi /5X = X singly. Therefore, 
Y DPX = X singly. 

3. Spaces w i t h c o u n t a b l e r e m a i n d e r s . In this section we show tha t 
if F Pi f3X = X and Y — X is countable, then the set of elements of 
G* (X) which extend to some point of F — X forms a first category subset 
of C*(X). The technique we use is much easier than the methods in 
Section 2 and gives more functions which fail to extend. 

T h e following lemma was proved by M. Rice in a private conversation. 

3.1. LEMMA. Suppose X is a dense subset of Y. Let 

A(X) = {f e C*(X):f extends to Y - X). 

If A(X) 7e G*PO, then A(X) is nowhere dense in C*(X). 

Proof. We first show tha t A (X) iŝ  closed in C*(X). If /„ Ç A(X) for 
each n G N a n d / n —>/ G C*(X), letfn G C*(Y) be an extension of fn for 
each n. Then the sequence { fn) converges to an e l e m e n t / of C*(Y). f is 
an extension o f / s o / Ç A (X). This shows tha t A (X) is closed in C*(X). 
Now suppose In t A (X) ^ 0. Then there is a n / G A (X) and e > 0 such 
tha t the open sphere S€(f) of C*(X) is a subset of A(X). Choose 
g £ G*(X). Since g is bounded, there is a 5 > 0 such tha t \\bg\\ < e. Then 

*g+ feSe(f)QA(X), 
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so there is an extension K C* (X) of 8g + / . Il f G C* ( F) is the extension 
of/, the function g = (h — /)/<5 is an element of C*(Y) and if x G X, 

g(x) = (h(x) -f(x))/8 = (8g(x) + / ( * ) - / ( x ) ) / ô = g(*), 

so g is an extension of g. Therefore, g £ A (X). But g is arbitrary. Hence, 
if lntA(X) ^ 0, then C*(X) = A(X). 

It is not difficult to show that if Y C\ @X = X singly, then {/ (: 

C*(X): f extends to a point of Y — X\ has dense complement in C*(Y). 
The next proposition shows that if Y — X is countable, then this set is 
a first category subset of the Banach space C*(X). 

3.2. PROPOSITION. Suppose Y — X is countable and Y C\ /3X = X. 
Then F H fiX = X singly. Furthermore, \f Ç C*(X): f extends to some 
element of Y — X\ is a meager subset of C*(X). 

Proof. Write Y - X = {yk: K N). For each k G N, let 

^ = {/€ C* (X) : / extends to yk}. 

Since Y r\$X = X, Fk ^ C*(X) for each k. Hence, by 3.1, each Fk is 
nowhere dense in C*(X). By the Baire Category Theorem, 

CO 

C*(X) - U Fk ^ 0-

Therefore, Y n/3X = X singly. 

3.3. COROLLARY. If YC\ pX = X, then (X U A) P\ /3X = X sing/y 
/or ez/ery countable subset A of Y. 

4. Some examples. In this section we present several applications and 
examples relevant to the material of Sections 2 and 3. One of the examples 
(4.2) will then be used in Section 5. 

4.1. Example. (3Q C\ /3(f3Q - Q) = 0Q - Q singly. In fact, the set of 
elements of C*(/3Q — 0 ) which extend to any point of 0 is a n r s t cate­
gory subset of C*(fiQ ~ 0 ) - This is immediate from the fact that 
PQ ^ P(PQ - Q) = PQ - Q ([5], 60.4) and Proposition 3.2. 

We will need the following theorem of Magill to construct the next 
example. 

THEOREM. ([7]). Suppose A is locally compact and f: (f3A — A) —> C is 
a continuous surjection. Then the quotient topology on A U C induced by 
the map g:pA —» A VJ C defined by 

gix) = \f(x) t l t ^ A - A * (compact) Hausdorff. 

https://doi.org/10.4153/CJM-1980-065-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-065-9


NON-EXTENDABILITY 873 

4.2. Example. There is a scattered compactification BN of N, such 
tha t £ N H 0N = N multiply. This should be compared to 2.3. The com­
pactification 2?N will be constructed as a quotient of $N using Magill 's 
theorem. Let {Cf: f G C*(N)} be a family of pairwise disjoint non-empty 
open-and-closed subsets of 0N — N. (We can index any family of 2Xo 

pairwise disjoint clopen subsets of /3N — N by C*(N) since |C*(N) | = 
2Ko.) For each / Ç C*(N) let Kf be a proper non-empty open-and-closed 
subset of Cf such tha t the restriction of/ to Kf is constant . Let 

L = (0N-N) - Uf,cHN)Kf. 

Let 5 be the quotient of 0N — N obtained by identifying L to a single 
point / and each i£ r to a single point kf. Let J3N be the induced quotient 
of 0N; t ha t is, BN is obtained from 0N by identifying L and each Kf 

to a single point. The space B is Hausdorff; in fact, it is the one point 
compactification of the discrete space of cardinal 2Xo. Hence, by Magill 's 
theorem, BN is a compact Hausdorff space. Clearly, N is dense in BN. 
We first show tha t BN H 0 = N. Suppose y Ç BN - N ( = 5 ) . Then y 
is obtained from j3N — N identifying a set S to a point ; 5 is either L or i£ r 

for s o m e / . Let £0, £i be distinct elements of 5. Let g Ç C* (/3N) be a func­
tion such tha t g(po) = 0, g(£i) = 1. If g is the restriction of g to N, then 
g does not extend to y. Hence BN H /3N = N. On the other hand, if 
/ 6 C*(N), the extension /^ of / to /3N is constant on Kf, so we may 
d e f i n e / : N U {kf\ -> [0, 1] by 

f( N = //(*) i f * € N 

; W l f ( p ) if* = i f e / a n d ^ e i f / . 

T h e n / Ç C*(7V KJ {kf}) a n d / i s an extension of/. Therefore, it is not the 
case t ha t BN C\ 0N = N singly. 

4.3. Example. If Z> is an infinite discrete space, Z) has a scattered com­
pactification ,52) such tha t BD C\ $D = Z> multiply. 

Proof. If JD = N, we may take BD to be the space BN of Example 4.2. 
For the general case, write D as a disjoint union UXÇA N\ where each N\ 
is a copy of N. Let BD be the one-point compactification of the topo­
logical union UÀÇA BNX. Then clearly BD C\ /3D = D multiply. 

Remark. The construction of 4.3 actually gives tha t each / £ C*(D) 
extends to a point pf which is an isolated point of BD — D. Since 
BD — D has 2Xo- \D\ isolated points, and since isolated points of BD — D 
correspond to open-and-closed subsets of fiD — D, we get the following: 

4.5. COROLLARY. Suppose D is the discrete space of infinite cardinal y. 
Then there is a collection *$ of y • 2Ko pairwise disjoint non-empty open-and-
closed subsets of (3D — D such that for each f £ C*((3D), there is a Cf Ç ^ 
such that the restriction of f to Cf is constant. 
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5. Some combinatorial consequences. In this section we use the 
technique of Example 4.3 to obtain some combinatorial results which 
were first obtained by Hechler [6] by entirely different methods (see also 
[3].) If A and B are subsets of N, then A C * B (A is almost contained in 
B) if A — B is finite. If <o is an infinite family of infinite subsets of N, 
then S is almost-disjoint if dist inct elements of <§ have finite intersec­
tions. If <o is a maximal almost-disjoint family, we denote by ^s the 
version of SF constructed from the family $ where \F is the space des­
cribed in problem 51 of [5]. 

5.1. LEMMA. The following statements are equivalent for a maximal 
almost-disjoint family (f of subsets of N : 

(i) If f (z C*(N) and | / ( N ) | ^ n (where n G N ) , then f extends to a 
point of ^fg — N . 

(ii) For every partition {A\, . . . , An) of N , there is an E G S and a 
k ^ n such that E Ç * Ak. 

Proof, (i) => (ii). Let {Ai, . . . , An) be a part i t ion of N and define 
/ G C*(N) b y / \Ak = k. By a s s u m p t i o n / e x t e n d s to a point coE G ^ — 
N. Call the ex tens ion / . If f(œE) = k0, then since E U {co#} is the one-
point compactification of E and s i nce / assumes only finitely many values, 
f\E must be k0 except on a finite subset of £ so £ Ç * ^4fc0. 

(ii) => (i). If / : N —» {1, . . . , n) is any function, let Ak = f~l(k) for 
& = 1, . . . , n. By hypothesis, there is a & ^ w and an £ G <̂  such tha t 
£ ^ * ^ 4 * . I f / : N U {cô } -> R i s defined b y / | N = / a n d / ( w * ) = fe, then 
/ is a continuous extension of/. 

For A CN, let ,4* = (Cl^N/4) - N. Let {Kf:f G C*(N)} be as in 
4.2 and expand this family to a maximal disjoint family of clopen subsets 
of (3N — N. This maximal family can be wri t ten {£*: E G <o} where <# 
is a maximal almost-disjoint family of subsets of N . We can obtain a 
compactification 7N of N from /3N by identifying each set £ * to a point 
and 0N - N - U {£*: £ G ^ ) t o a point 00 . Then 7N still contains all 
of the points kf and 7N — {GO} = ^g. Since for each / G C*(N), / 
extends to a point of ^ — N, we get, by 5.1, the following: 

5.2. T H E O R E M . ([6]). There is a maximal almost-disjoint family éû of 
subsets of N such that for every finite partition {A\, . . . , An\ of N , there is 
an E G <% such that E Ç * Akfor some k ^ n. 

Remark. I t is easy to construct families S which do not have the 
proper ty described in 5.2. Let S x and é\ be maximal almost-disjoint 
families of subsets of the even integers Ax and of the odd integers A 2 

respectively. If 

<f = {E1UE2:Ei G é%], 
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then S is a maximal almost-disjoint family of subsets of N but it is not 
the case tha t for some E Ç ê, either E C * A\ or £ Ç * ^ 2 . A more 
interesting example of the failure of 5.2 for families <D is given in 5.4. 

5.3. PROPOSITION. Suppose w ^ N . 77zen? is a compactification 5N 0/ N 
with the following properties: (i) For every j Ç C*(N) such that | / ( N ) | ^ w, 
//^re w a poiiz/ £>/ G ôN — N such that f extends to pf. (ii) There is a func­
tion /o £ C*(N) such that | /o(N) | = n + 1 and fo extends to no point of 
ôN — N. Furthermore, 5N may be chosen to be the one-point compactification 
of a version of \F. 

Proof. Let {Ai, . . . , An+\] be any parti t ion of N into pairwise disjoint 
infinite subsets. Def ine / 0 £ C*(N) b y / o M * = k. Write each set Ak* as 
Bk° W i V where Bk° and 2 V are disjoint non-empty clopen subsets of 
Ak*. The pigeon-hole principle implies tha t for e a c h / £ C*(N) such tha t 
| / ( N ) | S n, there are two distinct integers ki, k2 G {1, . . . , w + 1} and 
points x / , x / with 

x / e Bkl\ x / G 2 V a n d / ' ( * / ) = / " ( * / ) . 

For & = 1, . . . , n + 1, let {Cf
k:f G C*(N)} be a family of non-empty 

pairwise disjoint clopen (in /3N — N) subsets of Bk°. For e a c h / G C*(N), 
let i £ , be a clopen (in 0N - N) subset of C/1 KJ C / 2 such that fe\Kf is 
constant and 

Kfr\ c/i ^ 0 ^ Kfr\ c/> 
(for example, such that ft\Kf = f(xf

1)). For fe = 1, . . . , n + 1, let 

Dk = Ak*-U{K,:fe C * ( N ) , | / ( N ) | è n\. 

Then in t ^N-N^ 9^ 0 since Bk
l C Dk. For & = 1, 2, . . . , n + 1, let 

{R\k: X < c} be a pairwise disjoint family of non-empty disjoint clopen 
and \Dk - t^x<cR\k\ ^ 2 (in 0N - N) subsets of D* such tha t U x < A 1 ' 
is dense in Dk. For each X < c, let 

i?x = U #x*. 
A ; = l 

Let <5N be obtained from 0N by identifying each R\ to a point r\, each i£ r 

to a point &/, and /3N — N — Ux<c ^x — U/ÇC*CN) K/ to a point 00. 
I t follows from Magill 's theorem tha t ôN is a Hausdorff compactification 
of N. Then / £ C*(N), | / ( N ) | g » imply / extends to ft, since p\Kf is 
constant . On the other h a n d , / 0 extends to no point of <5N — N because for 
each y £ ôN - N, 

l/^fo^Oy))! ^ 2 
where q:(3N —> <5N is the Stone extension of the identity. Also, since 
f<7-1(£) : £ # N U {00 j} is a maximal pairwise disjoint family of clopen 
subsets of /3N — N, <5N — {00 } is a version of \F. 
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Combining 5.1 and 5.3, we get the following. 

5.4. COROLLARY. ([6].) Given n G N, there is a maximal almost-disjoint 
family S of subsets ofN such that (i) given a partition \A\, . . . , An) o/N, 
there is an E G $ such that E Q* Akfor some k ^ n, but (ii) there is a 
partition [A\, . . . , An+i) of N such that there is no k :g n + 1 and no 
E G (f SWC/Ê / t o £ Ç* ,4fc. 

Remark. The proof of 5.3 actually shows that the partition 
{Ai, . . . , An+\) can be taken to be any partition of N into n + 1 infinite 
subsets. Of course, different partitions will yield different families S. 

We close this section with a modification of the construction of 5.3. 

5.5. PROPOSITION. ([6]). There is a compactification 7N of N such that 
7N H jSN = N siwgZy but every f G C*(N) ^c/£ that | / ( N ) | < No extends 
to a point of 7N — N. 

Proof. Let {4*: & G N} be a partition of N into infinite subsets. Let 
/o G C*(N)begivenby/ | ,4* = 1/fc. For each k G N, let {C/: / G C*(N), 
| / ( N ) | < Ko} be a collection of pairwise disjoint non-empty clopen (in 
/3N — N) non-empty subsets of Ak*. By the pigeon-hole principle, if 
/ G C*(N) and F(N) is finite, there are distinct ki, k2 G N and x*/, xkJ 
such that x*/ G Cf

ki for z = 1, 2 and f(xkl
f) = f(xk/). Now let i£/ be 

a clopen (in 0N - N) subset of C / 1 U C*2 such that 

^ n ĉ  ̂  0 ^ Krn c/2 

and/ \Kf is constant (say/ |i£r = f(xkl
f)). Let 7N be obtained from /3N 

by identifying each i£ r to a point and 

/ 3 N - U { X / : / G C*(AO,|/(AO|<No} 

to a point. Then 7N has the required properties. The proof is analogous 
to the proof of 5.3. 

Remark. Proposition 5.5 is not explicitly stated in [6] but follows easily 
from Hechler's Theorem 10.2 or 3.2. A result which is stronger than 5.2 
in which U C * " is replaced by " Ç " is given in [6]. 

6. Non-pseudocompact spaces. We do not know of a large class of 
spaces X which admit compactifications Y such that Y P (3X = X 
multiply. However, we can find a large class (which includes all non-
pseudocompact spaces) of spaces X which are contained as proper dense 
subsets of spaces Y with Y P /3X = X multiply. 

6.1. PROPOSITION. Suppose X contains a closed C*-embedded copy of N. 
Then X is a dense proper subset of a space Y such that Y P f3X = X 
multiply. 
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Proof. Let N be a closed C*-embedded copy of N in X. Let W = PX — 
(pN - N ) . Then pW - W = /3N - N. Let BN be the compactification 
of N constructed in Example 4.2. Let q:pN — N ( = PW — W) —> 
i?N — N be the natural quotient map, tha t is, q is the restriction to 
PN — N of the Stone extension of the injection of N into BN. By Magill 's 
theorem, the quotient topology on W U (BN — N) induced by the map 

q:pW-> WU (BN - N) 

where 

A , x _ )x if x £ W 
g W ~ \ g ( x ) i f x Ç / 3 W - IF 

is (compact) Hausdorff. Let Y = XU (BN -N). We claim F H 
pX = X multiply. We first show Y C\ pX = X. Suppose p £ Y - X = 
BN — N. Let / G C*(N) be a function which does not extend to p. 
Since N is C*-embedded in X, the function / extends to a function 
/ G C*(X). T h e n / does not extend to p. We now show tha t it is not the 
case tha t Y(~\ pX = X singly. S u p p o s e / G C*(X). Then the restriction 
/ |N extends to the point kf\N Ç 5 N — N. Let DX be the quotient of 
PX which identifies Km to a point and let r : £ X —» P X be the quotient 
map (so r is given by 

, v J x if x G /3A~ — X / I N 
r(x) = S ., _̂ 

l^/liv it x t A / IN 

L e t / ^ : / 3 X -> R be the Stone extension of/. Define g:DX —> R by 

Then g is well-defined and 

g o r = /*<= C*( /^0 

so (since r is a quot ient map) , g Ç C*(DX). But g|X = / and g\X \J 
{&/IN! is continuous so / extends to a point of BN — N = F — X. 
Therefore Y C\ pX = X multiply. 

6.2. COROLLARY. If X is not pseudocompact, there is a space Y which 
contains X as a proper dense subset such that Y C\ pX = X multiply. 

Remark. We do not know if F can be taken to be pseudocompact, or 
even compact, in 6.2, even in the case of X = R. However, by Remark 
(iii) following 2.3, in the case of R, no such F can be locally connected. 

7. U n b o u n d e d f u n c t i o n s . In this section we briefly discuss the 
vX analogue of the material of the earlier sections. If X is a proper dense 
subset of F, we write F Pi vX = X if for each p £ F — X, there is a 
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function fp £ C{X) such t h a t / docs not extend to p. If a single function 
serves as every fp, we say Y C\ vX = X singly. If Y C\ vX = X bu t it is 
not the case t ha t Y C\ vX = X singly, then we say Y C\ vX = X mul­
tiply. We will be concerned here with the case where Y = (3X. We first 
note an easy fact. 

7.1. PROPOSITION. The following statements are équivalent for a space 
X: (i) QX H vX = X. (ii) vX H (3X = X. (iii) X is realcompact. 

Proof. The first s ta tement says tha t for each p Ç fiX — X, there is a 
function fv Ç C(X) which does not extend to p, t ha t is, X is realcompact. 
T h e second s ta tement says t ha t for each p Ç vX — X, there is a function 
fp Ç C*(X) such t ha t / p does not extend to p. This can happen if and only 
if vX - X = 0. 

7.2. LEMMA. Suppose X is normal and f Ç C(X) . Then f extends to no 
point of fiX — X if and only if f^l([ — n, n]) is compact for each n Ç N. 

Proof. Suppose first tha t for some nQ (~ N , / _ 1 ( [ - W o , no]) is not com­
pact. Let Z\ = f~1([ — no, no]) and let Z 2 = f~1([ — n0 — 1, w0 + 1]). 
Then Z 2 is not compact . Choose p £ ( C l ^ Z i ) — X. We c l a i m / extends 
to p. Since Z 2 is C*-embedded in X, the res t r ic t ion / |Z2 extends to a func­
tion g Ç C * ( Z 2 U {£}). D e f i n e / : Z U {£} -> R by 

/ | Z - Z ! = / and f\Z2U\p] = g. 

T h e n / is a well-defined extension of/. We c l a i m / is continuous. 
/ is continuous on X — Z\. If 

U= [ ( l / l A ( « + i ) ) 3 ] - i ( _ i ) M o + i ) , a n d 

F = t / n (ZVJ jpj), 

then F is an X U {£>} neighborhood of p such tha t 

Z x U {p\ C F C Z 2 U {£}. 

Then / | F = g | F which is continuous. X \J [p] = F U (X - Z i ) . 
Therefore, since each of the sets F and X — Z is open in I U {£>}, / 
is continuous. For the converse, suppose f"l([ — n, n]) were compact 
for each n ^ N and suppose there were a p £ /3X — X and an 
/ Ç C ( Z U {/>}) such tha t / | X = / . Suppose f(p) £ [ -w 0 , «o] where 
wo G N. Let 

*" = / - 1 ( [ - W o - l , W o + I])-

By assumption i£ is compact . But if U is any X V) {p) neighborhood of 
p, then U — K is an X KJ \p) neighborhood of p each of whose elements 
x 7e p satisfies | / ( x ) — f(p)\ ^ 1. This contradicts the cont inui ty of/. 
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7.3. COROLLARY. Suppose X is normal, realcompact, but not a-compact. 
Then I3X H vX = X multiply. 

Proof. By 7.1, pXC\vX = X. If / G C{X), there is an n G N such 
that j~l{[ — n, n]) is not compact; otherwise X would be cr-compact. 
By 7.2, / extends to a point of (3X - X. 

7.4. COROLLARY. Suppose D is an infinite discrete space. Then 
fiD r\ vD = D singly if and only if D is countable. 

Proof. If D is countable, then D = N and the injection C.N —* R 
extends to no point of fiD — D. For the converse, suppose flD C\ vD — D 
singly. By 7.1, D has non-measurable cardinal. By 7.3, since an uncount­
able discrete space is not o--compact, D must be countable. 

Added in proof. Eric van Douwren has proved that there is a compactifi-
cation Y of R such that Y C\ /£R = R multiply. He has also proved that 
for metric X and a dense subset G of X, G is a GÔ in X if and only if 
X C\(3G = G singly. This extends 2.4. 
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