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ROBUSTNESS OF DELTA HEDGING
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Abstract

We consider the performance of the delta hedging strategy obtained from a local volatility
model when using as input the physical prices instead of the model price process. This
hedging strategy is called robust if it yields a superhedge as soon as the local volatility
model overestimates the market volatility. We show that robustness holds for a standard
Black–Scholes model whenever we hedge a path-dependent derivative with a convex
payoff function. In a genuine local volatility model the situation is shown to be less
stable: robustness can break down for many relevant convex payoffs including average-
strike Asian options, lookback puts, floating-strike forward starts, and their aggregated
cliquets. Furthermore, we prove that a sufficient condition for the robustness in every
local volatility model is the directional convexity of the payoff function.
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1. Introduction

One of the key features of local volatility models is their completeness: in the model world
every contingent claim admits a perfect hedge in terms of its delta hedging strategy. But what
is the performance of this delta hedge if we use as input the physical prices quoted at the stock
exchange instead of the model price process? Following El Karoui et al. [8], we will say that
the delta hedging strategy is robust if this physical delta hedge is a superhedge for the claim as
soon as the local volatility model overestimates the market volatility.

In the case of a European option, h(ST ), it was shown in [8] that the convexity of h is a
sufficient condition for the robustness of the delta hedge in any reasonable local volatility model.
This result is closely related to volatility comparison techniques as introduced by Hajek [15]
and El Karoui et al. [8]. These techniques have since been generalized to multivariate price
processes and processes with jumps; see [1], [7], [13], [17], [18], [19], and the references
therein. See also Lyons [21] for an analytic, ‘probability-free’ result. This result relies on a
setup for the physical price process, which is based on Föllmer’s pathwise Itô formula [9], and
thus, in this sense, is similar to ours. Volatility comparison techniques are also known to work in
the context of American options [8] and can be translated to drift comparison via the Girsanov
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transform [22]. While many authors have used this technique to obtain ordering results for
prices of contingent claims, our emphasis will rather be on hedging issues.

In this paper we study the robustness of the delta hedging strategy for general path-dependent
derivatives of the form h(St1 , . . . , Stn). In Corollary 2.1 we show that the convexity of h is a
sufficient condition for robustness if the local volatility does not depend on the stock, i.e. if
we are working with a Black–Scholes model. This positive result applies to a large number
of standard path-dependent options including average-strike and average-price Asian options,
lookback puts, floating-strike forward starts, and their aggregated cliquets. Perhaps this fact
might help to explain the good hedging performance of the Black–Scholes model, which is
sometimes reported by practitioners.

In a genuine local volatility model, however, the situation can be more complicated and less
stable. In Theorem 2.1 we consider a reasonable family of local volatility models, in which
robustness breaks down for many relevant path-dependent derivatives including average-strike
Asian options, lookback puts, floating-strike forward starts, and their aggregated cliquets, even
though they all correspond to convex payoff functions. The volatility functions for which our
result is valid include a frequently observed pattern of empirical local volatilities in many equity
markets.

In Theorem 2.2 we give a sufficient criterion on the payoff function h under which the
delta hedging strategy is robust for any reasonable local volatility model. This condition is the
directional convexity of h, which is also analyzed by Bergenthum and Rüschendorf [1] in a
multivariate though single-time setting. Directional convexity neither implies nor is implied by
convexity in the usual sense. It applies, for instance, to the payoff function of an average-price
Asian call.

In Section 2 we describe our setup and state our main results. Most proofs are deferred to
Section 3.

2. Statement of results

A common approach to valuing exotic derivatives is to use a diffusion process S = (St )t≥0
based on local volatility for modeling the risk-neutral evolution of the forward price of the
underlying stock. The term ‘local volatility’ means that the instantaneous volatility at time t is
given as a function σ(t, St ) of t and St alone. That is, S is a solution of the stochastic differential
equation

dSt = σ(t, St )St dWt

for a standard Brownian motion W . For simplicity, we will henceforth assume that the risk-
free interest rate and all dividend payments are 0, so that we need not distinguish between
the underlying stock and its forward price. This is possible, without loss of generality, if the
discount factor is deterministic.

In practice, the volatility function σ(t, x) is often chosen in such a way that the local volatility
model is calibrated to the market prices of liquid plain-vanilla options. Calibration can be
achieved by combining the Dupire formula [6] (see also [14]) with an appropriate interpolation
method. This approach guarantees that all European derivatives with payoff h(St ) are priced
consistently with all plain-vanilla instruments.

Once the local volatility model is set up, it is typically used for the analysis of path-dependent
exotic derivatives. In practice, the payoff of such a derivative is of the form

H(S) = h(St1 , . . . , Stn),
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where 0 = t0 < t1 < t2 < · · · < tn ≤ T and h ≥ 0. In this paper we will mainly—but not
exclusively—be interested in derivatives whose payoff function h is convex. Standard examples
include average-price Asian put and call options, with strike K ,

(
K − 1

n

n∑
i=1

Sti

)+
,

(
1

n

n∑
i=1

Sti − K

)+
, (2.1)

average-strike Asian options,

(
1

n

n∑
i=1

Sti − ST

)+
,

(
ST − 1

n

n∑
i=1

Sti

)+
, (2.2)

lookback put options,
max

i=1,...,n
Sti , (2.3)

floating-strike forward starting put and call options,

(KST0 − ST )+, (ST − KST0)
+, for 0 < T0 < T , (2.4)

and their aggregated cliquets,

n∑
i=1

(KSti−1 − Sti )
+,

n∑
i=1

(Sti − KSti−1)
+. (2.5)

In the sequel we will distinguish between the model St of the stock price and the actual data
quoted at the stock exchange. This physical price quoted at time t will be denoted by Xt . We
assume that such a price Xt is available at any time t ∈ [0, T ]. Since there is only a single
quote of the stock at a given time and no control experiment is possible, it is natural to think of
X = (Xt )0≤t≤T as a fixed function on the time interval [0, T ] and not as a stochastic process
involving additional randomization. In doing so, we follow the ideas of Föllmer [10], [11].
Thus, for a derivative with payoff function h, we denote its physical payoff by h(Xt1 , . . . , Xtn),
while it is modeled as the random variable h(St1 , . . . , Stn) in the local volatility model. It will
sometimes be convenient to write h(Xt1 , . . . , Xtn) = H(X) and h(St1 , . . . , Stn) = H(S).

So, let h : [0, ∞)n → [0, ∞) be the payoff function for the path-dependent claim H . At
times t ∈ [0, t1), the value function of H(S) will be of the form

v(t, x) = E[H(S) | St = x] = E[h(St1 , . . . , Stn) | St = x].
By taking t = 0 and x = X0, this gives the price of the derivative in the local volatility model:

v(0, X0) = E[H(S) | S0 = X0].
At a later stage, for t ∈ [tk, tk+1), the fixings Xt1 , . . . , Xtk of the observed market prices will
have been locked in as additional parameters of the value function:

v(t, Xt1 , . . . , Xtk , x) = E[H(S) | St1 = Xt1 , . . . , Stk = Xtk , St = x]
= E[h(Xt1 , . . . , Xtk , Stk+1 , . . . , Stn) | St = x].
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Here, the second identity follows from the Markov property of S. For t ≥ tn, we will finally
have

v(t, Xt1 , . . . , Xtn, x) = h(Xt1 , . . . , Xtn) = H(X) for all x.

In analogy to our notation H(X), we will use the shorthand notation

v(t, X) := v(t, Xt1 , . . . , Xtk , Xt ) for tk ≤ t < tk+1,

for the path-dependent value function. Similarly, we define v(t, S), and we will use the same
notation on other functions such as the derivatives of v.

Note that the local volatility model is a complete market model. Thus, the option’s payoff
in the local volatility model can be represented in terms of the corresponding delta hedging
strategy:

H(S) = v(0, S0) +
∫ T

0
vx(t, S) dSt P-a.s. (2.6)

Here and in the sequel,

vx(t, S) = vx(t, St1 , . . . , Stk , St ) for tk ≤ t < tk+1, (2.7)

will be shorthand for the derivative of the value function v(t, x1, . . . , xk, x) with respect to its
final argument x, and we assume that this derivative is well defined for almost every (a.e.) t .
Similarly, we will use the notations vxx and vt .

The question we are interested in here is whether hedging with the delta obtained from the
local volatility model also works for the physical price process X. That is, can we hedge the
physical payoff H(X) by replacing in (2.6) and (2.7) the model process (St ) with the real-world
prices (Xt )0≤t≤T ?

The corresponding self-financing hedging strategy will then involve the price v(0, X0), and
the number of shares held at time t will be determined by vx(t, X). If trading occurs at finitely
many times s1 < · · · < sk taken from a partition ζn = {0, s1, . . . , sk} ⊂ [0, T ] then the
corresponding value process will be

v(0, X0) +
∑
si∈ζn

vx(si−1, X)(Xsi − Xsi−1). (2.8)

If we can pass to a limit in (2.8) for a fixed sequence ζ1 ⊂ ζ2 ⊂ · · · of partitions whose meshes
tend to 0 then the value process takes the form

v(0, X0) +
∫ T

0
vx(t, X) dXt,

where the integral on the right is the pathwise Itô integral defined in the sense of Föllmer [9]:∫ T

0
vx(t, X) dXt = lim

n↑∞
∑
si∈ζn

vx(si−1, X)(Xsi − Xsi−1).

According to Föllmer [9], this passage to the limit is possible if the path t 	→ Xt is continuous,
has a continuous pathwise quadratic variation,

〈X〉t := lim
n↑∞

∑
si∈ζn
si≤t

(Xsi − Xsi−1)
2,
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Robustness of delta hedging 869

and the value function v is sufficiently regular. Thus, we will henceforth assume that X satisfies
the above conditions, and we point out once more that no stochastic model for X is needed.
Note that the above conditions are always satisfied if we take for X a typical sample path of
a continuous semimartingale. Conversely, not every path X satisfying our assumptions has to
come from a continuous semimartingale (this follows, for example, from Theorem 1.7 of [4]
with H = 3

4 ).
The main regularity conditions for v can be deduced from the following regularity assump-

tions on the local volatility function and the payoff function h; see Proposition 2.1, below.
These assumptions are almost identical to the ones in [8]. Some of them can be relaxed at the
expense of tightening others; see the Remark at the end of this section. Since local volatility
functions, in practice, typically arise as the interpolation of discrete values obtained from a
discretized version of Dupire’s formula, there is no loss of generality from a practical point of
view in assuming smoothness and boundedness of our local volatility function.

Assumption 2.1. Throughout this paper we will assume that the local volatility function σ(t, x)

satisfies the following conditions:

(a) σ : [0, T ] × (0, ∞) → (0, ∞) is continuously differentiable, bounded, and bounded
away from 0;

(b) σ(t, x)x is Lipschitz continuous in x, uniformly in t ∈ [0, T ].
We will also henceforth assume that h denotes a continuous function from [0, ∞)n to [0, ∞)

that satisfies the polynomial growth condition

h(x) ≤ C(1 + |x|p), x ∈ [0, ∞)n,

for certain constants C, p ≥ 0. Such a function will be called a payoff function.

Remark. Assumption 2.1 has some immediate consequences. Firstly, the boundedness of σ

implies, via Novikov’s theorem, that S is a strictly positive martingale with finite moments
E[Sp

t | S0 = x] for all p ∈ [0, ∞). In particular, the value function associated with any payoff
function h is finite. Secondly, condition (b) ensures that the stochastic differential equation
dSt = σ(t, St )St dWt admits a strong solution, which is pathwise unique, a property which is
also important in practice to secure the convergence of numerical algorithms.

As long as the intermediate arguments Xt1 , . . . , Xtk do not matter, we may only spell out
the dependence of v (and its derivatives) on its first and last arguments t and x by using the
shorthand notation

v(t, ·, x) := v(t, . , . . . , .︸ ︷︷ ︸
k arguments

, x) for tk ≤ t < tk+1.

We turn to a first result, which states the technical regularity properties of our value function
needed for the definition of the delta hedging strategy.

Proposition 2.1. (Regularity of the value function.) Suppose that h is a payoff function.
Then (t, x) 	→ v(t, ·, x) is continuous on [0, T ] × [0, ∞), continuously differentiable in
t ∈ ⋃

k(tk, tk+1), twice continuously differentiable in x ∈ (0, ∞), and satisfies the partial
differential equation

vt (t, ·, x) + 1

2
σ(t, x)2x2vxx(t, ·, x) = 0, t ∈

⋃
k

(tk, tk+1), x ∈ (0, ∞). (2.9)

https://doi.org/10.1239/jap/1197908810 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908810


870 A. SCHIED AND M. STADJE

Moreover, if ∫ T

0
|vxx(t, X)| d〈X〉t +

∫ T

0
|vt (t, X)| dt < ∞ (2.10)

then the pathwise Itô integral
∫ T

0 vx(t, X) dXt is well defined, and Itô’s formula holds:

v(T , X) = v(0, X) +
∫ T

0
vx(t, X) dXt + 1

2

∫ T

0
vxx(t, X) d〈X〉t +

∫ T

0
vt (t, X) dt. (2.11)

Condition (2.10) is clearly necessary to make sense of the right-hand side of (2.11) and in
turn of the delta hedging strategy. It is satisfied as soon as h belongs to C2.

Let us return to our problem of hedging the physical payoff H(X) of a path-dependent option
with the delta hedging strategy obtained from the local volatility model. The trader carrying
out the hedge will insert at each time t the market spot price Xt into the local volatility model.
In particular, σ(t, Xt ) will serve as an estimate for the short volatility at time t . Thus, we will
say that σ overestimates the market volatility if∫ t

s

σ 2(r, Xr)X
2
r dr ≥ 〈X〉t − 〈X〉s for all 0 ≤ s < t ≤ T . (2.12)

If the reverse inequality holds, we will say that σ underestimates the market volatility.

Remark. If inequality (2.12) holds then the function t 	→ 〈X〉t is absolutely continuous and
can hence be written as 〈X〉t = ∫ t

0 ςsX
2
s ds for some function ς ≥ 0, which can be interpreted

as the short variance of the market. In this case, (2.12) is equivalent to requiring that

σ(t, Xt ) ≥ √
ςt for a.e. t ∈ [0, T ] such that Xt > 0.

Definition. (Robustness of the delta hedging strategy.) Let H(X) = h(Xt1 , . . . , Xtn) be the
payoff of a path-dependent derivative satisfying (2.10). We will say that the delta hedging
strategy for H obtained from the local volatility model is robust if the following two conditions
hold. If σ overestimates the market volatility then there is a superhedge for the seller in the
sense that

v(0, X0) +
∫ T

0
vx(t, X) dXt ≥ H(X). (2.13)

If σ underestimates the market volatility then there is a superhedge for the buyer in the sense
that

v(0, X0) +
∫ T

0
vx(t, X) dXt ≤ H(X).

The preceding notion of robustness is due to El Karoui et al. [8]. If a delta hedging strategy
is robust then a trader can monitor its performance by comparing σ(t, Xt ) to the realized market
volatility.

Remark. (Volatility comparison for prices.) While our notion of robustness is understood in a
strictly pathwise sense, some other authors emphasize its impact on option pricing rather than
hedging. To this end, we assume that the market prices X are a particular realization of the
sample paths of a continuous-local martingale. Then, if σ overestimates the market volatility
almost surely and if the delta hedging strategy is a supermartingale, taking expectations in (2.13)
yields

v(0, X0) = E[H(S) | S0 = X0] ≥ E[H(X)].
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Robustness of delta hedging 871

This result can be interpreted as an ordering between the price computed in the local volatility
model and the ‘true’ market price of the derivative. This latter price, however, is not observable
unless the derivative is liquidly traded.

We can now state our first basic hedging result. It relates the robustness of the delta hedging
strategy to the positivity of the corresponding gamma, vxx . Note that the positivity of the
gamma will follow automatically if the function x 	→ v(t, ·, x) is convex for all t .

Proposition 2.2. (Positivity of the gamma implies robustness.) Suppose that h is a payoff
function such that the option’s gamma satisfies vxx(t, X) ≥ 0 for a.e. t and such that (2.10)
holds. Then the delta hedging strategy is robust.

Proof. The proof is short and instructive. It relies on arguments from [8]. By Proposition 2.1
and since v(T , X) = H(X),

v(0, X) +
∫ T

0
vx(t, X) dXt = H(X) − 1

2

∫ T

0
vxx(t, X) d〈X〉t −

∫ T

0
vt (t, X) dt. (2.14)

Now suppose that σ overestimates the market volatility. If vxx(t, X) ≥ 0 then we obtain∫ T

0 vxx(t, X) d〈X〉t ≤ ∫ T

0 vxx(t, X)σ(t, Xt )
2X2

t dt . The partial differential equation (PDE),
(2.9), then implies that the right-hand side of (2.14) dominates H(X), i.e. we have a successful
seller’s hedge. The argument for the buyer’s hedge is identical.

Our next result shows that the delta hedging strategy obtained from a Black–Scholes model
will be robust for all convex payoff functions. This class includes, in particular, all Asian
options, lookback puts, floating-strike forward starts, and their aggregated cliquets. Perhaps
this fact might help to explain the good hedging performance of the Black–Scholes model,
which is sometimes reported by practitioners.

Corollary 2.1. (Robustness in a Black–Scholes model.) Suppose that the local volatility
function σ(t, x) does not depend on x. Then the value function of any convex payoff function is
again convex. In particular, the corresponding delta hedging strategy is robust if (2.10) holds.

In a genuine local volatility model it is known, from [8], that all European-style derivatives
h(ST ) with a convex payoff function h have convex payoff functions and thus admit robust delta
hedges. For path-dependent derivatives, however, the situation is more complicated and less
stable. The value functions of a large number of fairly standard path-dependent derivatives may
not be convex and delta hedging may not be robust, even though they correspond to convex
payoff functions. This is illustrated by our next result. Its conditions in particular apply to
average-strike Asian options, lookback puts, floating-strike forward starts, and their aggregated
cliquets.

Theorem 2.1. (Nonrobustness for standard derivatives.) Suppose that h is a convex payoff
function that is not identically equal to a linear functional and is positively homogeneous:

h(zx1, . . . , zxn) = zh(x1, . . . , xn) for z ≥ 0.

Moreover, suppose that there exist constants 0 < c < C and 0 < x0 < x1 such that the local
volatility function σ(·) satisfies σ(t, x) ≥ C if 0 ≤ x ≤ x0 and σ(t, x) ≤ c if x1 ≤ x < ∞.
Then the corresponding value function is not convex and there exists a path X along which the
delta hedging strategy is not robust.
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In Theorem 2.1 the particular shape of σ(t, x) for x0 < x < x1 can be arbitrary. The
assumed property is in fact a frequently observed empirical pattern of local volatility functions
in many equity markets.

Our final result gives a sufficient condition on a payoff function h guaranteeing that the
corresponding value function is convex in its final argument for any local volatility model.
Thus, the delta hedging strategy of such a payoff will be robust. Our condition is the directional
convexity of h, that is, all marginal functions xi 	→ h(x1, . . . , xi, . . . , xn) are convex and all
right-hand derivatives

h+
xi

(x1, . . . , xn) := lim
δ↓0

1

δ
(h(x1, . . . , xi + δ, . . . , xn) − h(x1, . . . , xi, . . . , xn))

are increasing with respect to each component xj . Within our example class (2.1)–(2.5), this
condition is satisfied by the average-price Asian call options,

(
1

n

n∑
i=0

Sti − K

)+
.

Note that directional convexity neither implies nor is implied by convexity in the usual sense:
there are nonconvex but directionally convex payoff functions such as the one corresponding
to a ‘geometric Asian call’, ( n∏

i=0

Sti − K

)+
.

Theorem 2.2. (Directional convexity implies robustness.) Let h be a directionally convex
payoff function. Then, for tk−1 ≤ t < tk , the value function v(t, x1, . . . , xk) is also directionally
convex in x1, . . . , xk . In particular, x 	→ v(t, ·, x) is convex and the corresponding delta
hedging strategy is robust as soon as (2.10) holds.

Remark. (On the standard definition of directional convexity.) The standard definition of
directional convexity of a function f : R

n → R requires that

xj 	→ f (x1, . . . , xi + ε, . . . , xn) − f (x1, . . . , xi, . . . , xn)

is an increasing function whenever ε > 0 and i, j ∈ {1, . . . , n}; see [1] and the references
therein. Taking j = i implies that the function g(xi) := f (x1, . . . , xi, . . . , xn) is Wright
convex, i.e. x 	→ g(x + ε) − g(x) is increasing for each ε > 0. As observed by Wright [24],
this immediately implies that

g(x) + g(y) ≥ 2g

(
x + y

2

)
.

It is well known that the preceding inequality implies convexity if g is continuous; see, e.g. [16,
Theorem 86]. Hence, we can conclude that our definition of directional convexity coincides
with the usual one as soon as xi 	→ f (x1, . . . , xi, . . . , xn) is continuous for each i. However,
Hardy et al. [16, p. 96] constructed a discontinuous function g such that g(x+y) = g(x)+g(y).
Such a discontinuous but additive g is clearly Wright convex but not convex in the usual sense.
Thus, our definition of directional convexity is generally stronger than the standard one.
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Robustness of delta hedging 873

Remark. (Positive homogeneity excludes directional convexity.) Combining Theorems 2.1
and 2.2 shows that every convex payoff function h that is both positively homogeneous and
directionally convex must be linear. In fact, the additional assumption of convexity can be
dropped as is shown by the following direct argument. For n = 2 and x1, x2 > 0, positive
homogeneity yields

h(x1 + t, x2) − h(x1, x2)

t
= h(x1/x2 + t/x2, 1) − h(x1/x2, 1)

t/x2
.

Letting t ↓ 0 yields

h+
x1

(x1, x2) = h+
x1

(
x1

x2
, 1

)
.

Since h is directionally convex, the left-hand side is increasing and the right-hand side is
decreasing in x2. Thus, h+

x1
(x1, x2) is independent of x2, and the continuity and positive

homogeneity of h imply that

h(x1, x2) = h(0, x2) +
∫ x1

0
h+

x1
(u, x2) du

= h(0, x2) + h(x1, 0) + h(0, 0)

= x2h(0, 1) + x1h(1, 0),

i.e. h is linear. For n > 2, we can use induction and Lemma 3.3, below.

Remark. (Recalibration.) Our approach assumes that the local volatility model is set up at
time t = 0 and not altered in the sequel. In practice, market models sometimes undergo a
recalibration process during which model parameters are refitted at intermediate times. In our
case, this would mean that the volatility function σ(t, x) would become dependent in a highly
nontrivial way on the prices of the underlying and all plain-vanilla options observable at time t .
Recalibration will therefore considerably complicate the situation. It is interesting to note that
recalibration may in fact destabilize pricing and hedging of derivatives; see [2] and [3] for a
recent analysis of parameter recalibration in stochastic volatility models.

Remark. (Alternative conditions on σ and h.) Instead of Assumption 2.1 we could also work
with the following set of conditions:

(i) σ : [0, T ] × (0, ∞) → (0, ∞) is continuous, bounded, locally Hölder continuous in
(t, x), and continuously differentiable with respect to x;

(ii) ∂σ(t, x)/∂x is locally Hölder continuous in (t, x), and there exists some constant A > 0
such that ∣∣∣∣ ∂

∂x
σ(t, x)

∣∣∣∣ ≤ A
log(1 + x)

1 + x
.

Moreover, suppose that the payoff function h(x1, . . . , xn) is continuously differentiable and its
partial derivatives grow at most logarithmically. If these conditions are satisfied then variants
of Proposition 2.1 and Theorem 2.2 hold. In addition, the option’s delta vx(t, ·, x) grows at
most logarithmically in x; see [23].
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Remark. (Possible extensions.) It is an interesting question whether robustness or nonrobust-
ness of hedging strategies hold for other classes of price processes than the ones studied here.
For multivariate local volatility models, Bergenthum and Rüschendorf [1] provided sufficient
conditions on the local volatility matrix under which prices of European-style derivatives
H(S) = h(ST ) with h convex are again convex functions of S0. Ekström et al. [7], conversely,
singled out a class of volatility matrices for which prices of European-style derivatives may not
be convex and robustness fails. If we stay within the class of complete Itô diffusion models, but
allow volatility to be path-dependent in a general way, then prices of standard European call
options may not be convex, as is shown by a one-dimensional example in [8, Section 4]. Other
model classes used in practice are often incomplete. So, while Bergenthum and Rüschendorf [1]
established convexity of European option prices in certain models based on Lévy processes,
there is typically no associated hedging strategy for which robustness could be investigated.
A similar situation occurs in classical stochastic volatility models such as the Heston model:
since volatility is not a traded asset, delta hedging is usually not sufficient to replicate an option.
In practice, stochastic volatility models are therefore often completed by adding liquidly traded
derivatives such as variance swaps or call options. This leads to multivariate models of local
volatility-type in which options admit so-called delta-vega hedges; see, e.g. [2], [3], and [5].
However, the completed models normally do not satisfy the assumptions of [1] or [7], so that
even the robustness of delta-vega hedges for European-style derivatives is not a priori clear.

3. Proofs

We recall that we work under the conditions of Assumption 2.1. The following lemma relies
on standard facts of parabolic partial differential equations.

Lemma 3.1. Let h : [0, ∞) → (0, ∞) be a payoff function. Then v(t, x) := E[h(ST ) | St =
x] belongs to C([0, T ] × [0, ∞)) ∩ C1,2([0, T ) × (0, ∞)), satisfies a polynomial growth
condition uniformly in t ∈ [0, T ], and solves the Cauchy problem

vt (t, x) + 1
2σ 2(t, x)x2vxx(t, x) = 0 in (0, T ) × (0, ∞),

and
v(T , x) = h(x).

Proof. According to [19, Theorem A.14], the above Cauchy problem has a unique solution
v ∈ C([0, T ] × [0, ∞)) ∩ C1,2([0, T ) × (0, ∞)) with polynomial growth. Thus, the assertion
follows from [20, Theorem 5.7.6].

Proof of Proposition 2.1. The idea is to apply Lemma 3.1 and backward induction. To this
end, let us introduce the dummy variables x1, . . . , xn−1 ∈ (0, ∞) and the function h1(x) :=
h(x1, . . . , xn−1, x). For tn−1 ≤ t < tn, we can directly apply Lemma 3.1 and conclude that
v(t, x1, . . . , xn−1, x) = E[h1(Stn) | St = x] satisfies the regularity conditions and the PDE in
question.

For the case in which tn−2 ≤ t < tn−1, we define

h2(x) := E[h(x1, . . . , xn−2, x, Stn) | Stn−1 = x].
Then by the Markov property of S we have

v(t, x1, . . . , xn−2, x) = E[h(x1, . . . , xn−2, Stn−1 , Stn) | St = x]
= E[h2(Stn−1) | St = x].
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Hence, the assertion will follow for tn−2 ≤ t < tn−1 by Lemma 3.1 if we can show that h2
is again a payoff function. Let us first show the polynomial growth condition. Owing to the
polynomial growth condition for h, there exist constants C, p ≥ 1 such that

h(x1, . . . , xn−2, x, Stn) ≤ C(1 + x
p
1 + · · · + x

p
n−2 + xp + S

p
tn
). (3.1)

Thus, according to Lemma 3.1, h2 also satisfies the polynomial growth condition. Regarding
the proof of the continuity of h2, let h̃(y, z) := h(x1, . . . , xn−2, y, z). Then

|h2(x) − h2(y)| ≤ | E[̃h(x, Stn) | Stn−1 = x] − E[̃h(x, Stn) | Stn−1 = y]|
+ | E[̃h(x, Stn) − h̃(y, Stn) | Stn−1 = y]|.

As x → y, the first difference on the right tends to 0 by Lemma 3.1. For the second difference,
we can use (3.1) and dominated convergence (see the Remark followingAssumption 2.1). Thus,
h2 is also continuous. Backward induction on n concludes the proof of the regularity assertions
of v and of (2.9).

We now prove Itô’s formula, (2.11). Owing to the established regularity properties of v, we
may apply Föllmer’s pathwise Itô formula [9] for tk < s < t < tk+1:

v(t, X) = v(s, X) +
∫ t

s

vx(r, X) dXr + 1

2

∫ t

s

vxx(r, X) d〈X〉r +
∫ t

s

vt (r, X) dr.

Since v is continuous and (2.10) holds, we may pass to the limit as s ↓ tk and t ↑ tk+1.
Summing over k then yields (2.11).

Proof of Corollary 2.1. Owing to Propositions 2.1 and 2.2, we have only to prove the
convexity of x 	→ v(t, ·, x). However, this follows immediately from the fact that the path of
a geometric Brownian motion with time-dependent volatility σ(t) and S0 = x is given by

St = x exp

(∫ t

0
σ(s) dWs − 1

2

∫ t

0
σ 2(s) ds

)
, t ≥ 0,

and thus is affine in its starting point x.

Now we will prepare for the proof of Theorem 2.1. We denote by S
γ
t the price process in a

Black–Scholes model with constant volatility γ > 0. More precisely,

S
γ
t = S0 exp

(
γWt − 1

2γ 2t
)
.

We write vγ for the value function corresponding to H(Sγ ). Note that if h is positively
homogeneous then so is vγ (t, ·).
Lemma 3.2. For S

γ
0 = 1, the function γ 	→ E[H(Sγ )] is strictly increasing if h satisfies the

assumptions of Theorem 2.1.

Proof. We proceed by induction on n. For n = 1, the convex function h can be represented
as

h(x) = h(0) + h′(0+)x +
∫

(0,∞)

(x − K)+µ(dK) (3.2)

for a positive Radon measure µ on (0, ∞), where h′(0+) denotes the right-hand derivative of
h at 0; see, e.g. [12, Example 1.24]. This measure µ must be nonzero since h is not linear.
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Fubini’s theorem thus yields, for all t, γ > 0,

E[h(S
γ
t )] = h(0) + h′(0+) +

∫
(0,∞)

E[(Sγ
t − K)+]µ(dK).

It follows, from the standard Black–Scholes formula, that γ 	→ E[(Sγ
t − K)+] is strictly

increasing, and this proves our claim for n = 1. Now suppose that our claim has already been
established for a given n ≥ 1 and that h(x1, . . . , xn+1) is a convex payoff function, which is not
linear. If (x2, . . . , xn+1) 	→ h(x1, x2, . . . , xn+1) is linear for x1 = 1 and hence for all x1 > 0,
then we are back to the situation where n = 1. Otherwise, the induction hypothesis and the
Markov property of Sγ imply that

γ 	−→ E[h(1, S
γ
t2−t1

, . . . , S
γ
tn+1−t1

)] = 1

x
vγ (t1, x, x)

is strictly increasing for all x > 0. Thus, we find that, for γ < κ ,

E[H(Sγ )] = E[vγ (t1, S
γ
t1
, S

γ
t1
)] = vγ (t1, 1, 1) < vκ(t1, 1, 1) = E[H(Sκ)].

This concludes the proof.

Proof of Theorem 2.1. We will show that v(0, x) = Ex[H(S)] is not convex, where the
subscript x indicates that we are considering the model with S0 = x. To this end, it is enough
to show that

lim inf
x↓0

v(0, x)

x
> lim sup

y↑∞
v(0, y)

y
. (3.3)

Let σ(t, x) := C ∨ σ(t, x), where a ∨ b = max(a, b), and consider the solution X of the
stochastic differential equation (SDE)

dXt = σ(t, Xt )Xt dWt, X0 = S0.

Owing to the pathwise uniqueness of our SDEs, the sample paths of S and X coincide up to

τ := inf{t ≥ 0 | σ(t, St ) ≤ C}.
Moreover, C underestimates the ‘market volatility’of X, i.e. C2X2

t dt ≤ σ(t, Xt )
2 dt = d〈X〉t ,

and Corollary 2.1 yields

vC(0, X0) +
∫ T

0
vC
x (s, X) dXs ≤ H(X).

Since σ is bounded from above, X is a true martingale owing to Novikov’s theorem. Moreover,
it follows, from the positive homogeneity and continuity of h, that vC(t, ·, x) grows at most
linearly in x. Hence, vC

x (s, X) is bounded for a.e. s, and it follows that
∫

vC
x (s, X) dXs is a

true martingale. Taking expectations thus yields

Ex[H(X)] ≥ vC(0, x) = xvC(0, 1).

Thus,
v(0, x) = Ex[H(S)]

≥ Ex[H(S); τ ≥ T ]
= Ex[H(X); τ ≥ T ]
≥ xvC(0, 1) − Ex[H(X); τ < T ].
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We will show below that

1

x
Ex[H(X); τ < T ] −→ 0 as x ↓ 0. (3.4)

From this, it follows that

lim inf
x↓0

v(0, x)

x
≥ vC(0, 1).

Similarly, we can show that

lim sup
y↑∞

v(0, y)

y
≤ vc(0, 1),

and this completes the proof of (3.3) when combined with Lemma 3.2.
To prove (3.4), first note that there exists a constant k ≥ 0 such that H(X) ≤ k maxt Xt ,

owing to the continuity and positive homogeneity ofh. WritingXt = xMt , where the martingale
M is the Doleans–Dade exponential E(

∫
0 σ(t, Xt ) dWt), we see that

1

x
Ex[H(X); τ < T ] ≤ k Ex

[
max
t≤T

Mt ; τ < T
]

≤ k Ex

[
max
t≤T

M2
t

]1/2
Px[τ < T ]1/2.

Next, by Doob’s inequality,

Ex

[
max
t≤T

M2
t

]
≤ 2 Ex[M2

T ] ≤ 2e
T ,

where 
 is an upper bound for σ . Furthermore, S is a true martingale so that

x = Ex[Sτ∧T ] ≥ Ex[Sτ∧T ; τ < T ] ≥ x0 Px[τ < T ].
Thus, Px[τ < T ] → 0 as x ↓ 0, and (3.4) follows.

It remains to construct a path X along which the delta hedging strategy is not robust. Owing
to the nonconvexity of v(0, ·), there exists some x > 0 such that vxx(0, x) < 0. Now let X1 be
a typical path of a geometric Brownian motion with a volatility γ that is a strict lower bound
for σ(·), and suppose that X1

0 = x. The continuity of vxx implies that

τ := inf{t ≥ 0 | vxx(t, X
1
t ) ≥ 0} ∧ t1

2

is strictly positive. Furthermore, let X2 be a typical path of the solution to the SDE dSt =
σ(t, St )St dWt such that X2

τ = X1
τ . We claim that Xt := X1

t 1{t≤τ } +X2
t 1{t>τ } does the job.

First note that d〈X〉t = γ 2X2
t dt < σ 2(t, Xt )X

2 dt for t ≤ τ and d〈X〉t = σ 2(t, Xt )X
2 dt for

t > τ , so that σ overestimates the volatility of X. Moreover, we have

v(0, S0) +
∫ τ

0
vx(t, St ) dSt = v(τ, Sτ ) and v(τ, Xτ ) +

∫ T

τ

vx(τ, X) dXt = H(X).

These Itô integrals are all well defined, owing to the martingale property of v(t, S) and the
martingale representation theorem for S. Using vxx(t, Xt ) < 0 for t < τ and arguing as in the
proof of Proposition 2.2, we obtain

v(0, X0) +
∫ τ

0
vx(t, Xt ) dXt < v(τ, Xτ )
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and thus

v(0, X0) +
∫ T

0
vx(t, X) dXt < H(X),

i.e. the delta hedging strategy is not robust along the path X.

Let us now turn to the proof of Theorem 2.2. We prepare its proof with the following two
auxiliary results.

Proposition 3.1. Suppose that h(x1, . . . , xn) is a directionally convex payoff function and 0 ≤
t < T are given. Then the function

u(x1, . . . , xn) := E[h(x1, . . . , xn−1, ST ) | St = xn]
is also directionally convex.

Proof. Owing to Proposition 2.1 and the Remark following Theorem 2.2, we have to show
that

xj 	−→ u(x1, . . . , xi + ε, . . . , xn) − u(x1, . . . , xi, . . . , xn) (3.5)

is increasing for all ε > 0 and i, j ∈ {1, . . . , n}. This property is clear for i, j < n. To prove it
for the remaining cases, let S

t,x
T denote the solution of dSr = σ(r, Sr)Sr dWr starting at time t

in S
t,x
t = x. Owing to a standard comparison result, we have S

t,y
T ≥ S

t,x
T P-a.s. for y ≥ x; see,

e.g. [20, Proposition 5.2.18]. Hence, (3.5) is increasing for i < n and j = n or for i = n and
j < n. For i = j = n, we have to show the convexity of u in its final argument. For the case in
which h grows at most linearly in xn, this follows from Theorem 5.2 of [8]. The general case
can now be deduced by representing the convex function xn 	→ h(x1, . . . , xn) as in (3.2).

Lemma 3.3. If h(x1, . . . , xn+1) is directionally convex then so is the contraction

g(x1, . . . , xn−1, xn) := h(x1, . . . , xn−1, xn, xn).

Proof. Owing to the Remark following Theorem 2.2, we have to show that

xj 	−→ g(x1, . . . , xi + ε, . . . , xn) − g(x1, . . . , xi, . . . , xn)

is increasing for all ε > 0 and i, j ∈ {1, . . . , n}. This property is clear for i < n. If i = n then

g(x1, . . . , xn−1, xn + ε) − g(x1, . . . , xn−1, xn)

= [h(x1, . . . , xn + ε, xn + ε) − h(x1, . . . , xn + ε, xn)]
+ [h(x1, . . . , xn + ε, xn) − h(x1, . . . , xn, xn)].

Clearly, either of the two terms in square brackets is increasing in any of the variables x1, . . . , xn,
and the result follows.

Proof of Theorem 2.2. Take an arbitrary time point tn+1 > tn. We will prove our assertion
for tk ≤ t < tk+1 by backward induction on k. There is nothing to show if k = n. So let
us suppose that the directional convexity of v(tk+1, x1, . . . , xk+2) with respect to x1, . . . , xk+2
has already been established and that tk ≤ t < tk+1. Using the Markov property of S, we see
that

v(t, x1, . . . , xk, x) = E[v(tk+1, x1, . . . , xk, Stk+1 , Stk+1) | St = x]
= E[g(x1, . . . , xk, Stk+1) | St = x],

where g(x1, . . . , xk, xk+1) := v(tk+1, x1, . . . , xk, xk+1, xk+1). By Lemma 3.3 and the induc-
tion hypothesis, the function g is directionally convex. Hence, the assertion follows from
Proposition 3.1.
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