SUPREMUM AND INFIMUM OF SUBHARMONIC FUNCTIONS OF ORDER BETWEEN 1 AND 2

P. C. FENTON

Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand (pfenton@maths.otago.ac.nz)

(Received 2 March 2010)

Abstract For functions u, subharmonic in the plane, let

$$A(r, u) = \inf_{|z|=r} u(z),$$

$$B(r, u) = \sup_{|z|=r} u(z)$$

and let N(r,u) be the integrated counting function. Suppose that $\mathcal{N}\colon [0,\infty)\to\mathbb{R}$ is a non-negative non-decreasing convex function of $\log r$ for which $\mathcal{N}(r)=0$ for all small r and $\limsup_{r\to\infty}\log\mathcal{N}(r)/\log r=\rho$, where $1<\rho<2$, and define

$$\begin{split} \mathcal{A}(r,\mathcal{N}) &= \inf\{A(r,u) \colon N(r,u) = \mathcal{N}(r)\},\\ \mathcal{B}(r,\mathcal{N}) &= \sup\{B(r,u) \colon N(r,u) = \mathcal{N}(r)\}. \end{split}$$

A sharp upper bound is obtained for $\liminf_{r\to\infty} \mathcal{B}(r,\mathcal{N})/\mathcal{N}(r)$ and a sharp lower bound is obtained for $\limsup_{r\to\infty} \mathcal{A}(r,\mathcal{N})/\mathcal{N}(r)$.

Keywords: subharmonic; supremum; infimum

2010 Mathematics subject classification: Primary 31A05

1. Introduction

In [1,2] Rossi and Fenton showed that a method of Beurling is effective in approaching questions on the supremum and infimum of subharmonic and delta-subharmonic functions of order less than 1. The intention here is to apply Beurling's method to subharmonic functions u of order between 1 and 2.

It involves no loss of generality in our results to assume that u is harmonic at the origin. For such functions there is, from the Riesz representation theorem, a Borel measure μ such that

$$u(z) = \alpha + \operatorname{Re}(\beta z) + \int_{|\zeta| < \infty} \log |E(z/\zeta)| \,d\mu(\zeta), \tag{1.1}$$

© 2011 The Edinburgh Mathematical Society

685

where $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{C}$ are constants and $E(z) = e^z(1-z)$. We define

$$A(r, u) = \inf_{|z|=r} u(z),$$

$$B(r, u) = \sup_{|z|=r} u(z)$$

and

$$N(r,u) = \int_0^r \frac{\mu^*(t)}{t} \, dt,$$
 (1.2)

where $\mu^*(r) = \mu(\{|z| < r\})$. Since $\mu^*(t) = 0$ for all small t (u being harmonic at 0), N is well defined. If u has order ρ , $1 < \rho < 2$, then

$$\limsup_{r \to \infty} \frac{\log N(r, u)}{\log r} = \rho,$$

and, conversely, if $\mathcal{N}: [0, \infty) \to \mathbb{R}$ is a non-negative non-decreasing convex function of $\log r$, for which $\mathcal{N}(r) = 0$ for all small r and

$$\limsup_{r \to \infty} \frac{\log \mathcal{N}(r)}{\log r} = \rho, \tag{1.3}$$

and if μ is a Borel measure for which μ^* is given by (1.2), then u given by (1.1) is subharmonic in the plane and has order ρ [3, p. 146].

Our main result concerns functions that have the same N. With

$$\mathcal{A}(r,\mathcal{N}) = \inf\{A(r,u) \colon N(r,u) = \mathcal{N}(r)\},\tag{1.4}$$

$$\mathcal{B}(r,\mathcal{N}) = \sup\{B(r,u) \colon N(r,u) = \mathcal{N}(r)\},\tag{1.5}$$

we have the following result.

Theorem 1.1. Suppose that $\mathcal{N}: [0, \infty) \to \mathbb{R}$ is a non-negative non-decreasing convex function of $\log r$ for which $\mathcal{N}(r) = 0$ for all small r and (1.3) holds, where $1 < \rho < 2$. Then

$$\limsup_{r \to \infty} \frac{\mathcal{A}(r, \mathcal{N})}{\mathcal{N}(r)} \geqslant c(\rho), \tag{1.6}$$

where

$$c(\rho) = \rho \left(\pi \cot(\pi(\rho - 1)) - \frac{2T^{1-\rho}}{\rho - 1} - \int_0^{1/T} \frac{2t^{\rho}}{1 - t^2} dt \right)$$
 (1.7)

and $T \approx 1.2$ is the positive solution of the equation

$$2T = \log \left| \frac{T+1}{T-1} \right|; \tag{1.8}$$

and

$$\liminf_{r \to \infty} \frac{\mathcal{B}(r, \mathcal{N})}{\mathcal{N}(r)} \leqslant C(\rho), \tag{1.9}$$

where

$$C(\rho) = \frac{2^{1-\rho}}{\rho - 1} + \frac{2^{3-\rho}}{2-\rho} - \int_0^{1/2} \frac{t^{\rho}}{(1-t)^2} dt.$$
 (1.10)

The constants $C(\rho)$ and $c(\rho)$ are best possible.

In fact we will show that there is a sequence $r_j \to \infty$ such that

$$\mathcal{A}(r_j, \mathcal{N}) > (c(\rho) + o(1))\mathcal{N}(r_j)$$
 and $\mathcal{B}(r_j, \mathcal{N}) < (C(\rho) + o(1))\mathcal{N}(r_j)$ as $j \to \infty$.

Evidently, $(\rho-1)c(\rho) \to -1$ and $(\rho-1)C(\rho) \to 1$ as $\rho \to 1^+$. If we also denote the best possible values of the left-hand sides of (1.6) and (1.9) by $c(\rho)$ and $C(\rho)$ for $0 < \rho < 1$, we have $(1-\rho)c(\rho) \to -1$ and $(1-\rho)C(\rho) \to 1$ as $\rho \to 1^-$ (see, for example, [1, Theorem 3]).

It is perhaps worth stating explicitly that Theorem 1.1 has nothing to say on the key question in this context: that of finding the best lower bound for

$$\limsup_{r \to \infty} \frac{A(r, u)}{B(r, u)} \quad \text{for } \rho > 1.$$

2. Preliminaries

Let

$$\Phi(r) = \max_{0 \leqslant \theta \leqslant 2\pi} |E(re^{i\theta})|, \qquad \Psi(r) = \min_{0 \leqslant \theta \leqslant 2\pi} |E(re^{i\theta})|. \tag{2.1}$$

We have the following.

Lemma 2.1.

$$\Phi(r) = \begin{cases} r^2/2, & 0 \leqslant r \leqslant 2, \\ r + \log(r - 1), & r \geqslant 2, \end{cases}$$

and

$$\Psi(r) = \begin{cases} r + \log|r - 1|, & 0 \le r \le T, \\ -r + \log(r + 1), & r \ge T, \end{cases}$$

where T is given by (1.8).

With

$$H(r,\theta) = \log |E(re^{i\theta})| = r\cos\theta + \frac{1}{2}\log(r^2 - 2r\cos\theta + 1)$$

for $0 \le \theta \le \pi$, we have

$$\frac{\partial H}{\partial \theta} = -2r^2 \sin \theta \frac{r/2 - \cos \theta}{r^2 - 2r \cos \theta + 1},$$

which is 0 when

$$\theta = \begin{cases} 0, & \pi \text{ or } \cos^{-1}(r/2), & 0 \leqslant r \leqslant 2, \\ 0 & \text{or } \pi, & r \geqslant 2. \end{cases}$$

The critical values of H are thus $r + \log |r - 1|$, $-r + \log(r + 1)$ and $r^2/2$ for $0 \le r \le 2$, and $r + \log(r - 1)$ and $-r + \log(r + 1)$ for $r \ge 2$. Since

$$\frac{\mathrm{d}}{\mathrm{d}r}\bigg(-2r+\log\left|\frac{r+1}{r-1}\right|\bigg) = \frac{2r^2}{1-r^2},$$

which is positive for 0 < r < 1 and negative for r > 1, we have

$$-r + \log(r+1) \geqslant r + \log|r-1|, \quad 0 \leqslant r \leqslant T,$$

$$-r + \log(r+1) \leqslant r + \log(r-1), \quad r \geqslant T,$$

where T is given by (1.8). Also,

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{r^2}{2} - r - \log|r - 1| \right) = r - 1 - \frac{1}{r - 1},$$

which is positive for 0 < r < 1 and negative for 1 < r < 2, and thus

$$\frac{1}{2}r^2 \geqslant r + \log|r - 1|, \qquad 0 \leqslant r \leqslant 2.$$

A similar argument shows that

$$\frac{1}{2}r^2 \geqslant -r + \log(r+1), \quad 0 \leqslant r \leqslant 2,$$

and Lemma 2.1 follows.

In proving Theorem 1.1 there is evidently no loss of generality in assuming that $\alpha = \beta = 0$ in (1.1). With this assumption we have

$$\mathcal{B}(r,\mathcal{N}) = \int_0^\infty \varPhi\left(\frac{r}{t}\right) d\mu^*(t),$$

and, from Lemma 2.1,

$$\int_{0}^{\infty} \Phi\left(\frac{r}{t}\right) d\mu^{*}(t) = \left[\Phi\left(\frac{r}{t}\right)\mu^{*}(t)\right]_{t=0}^{\infty} + \int_{0}^{\infty} \frac{r}{t^{2}} \Phi'\left(\frac{r}{t}\right)\mu^{*}(t) dt$$

$$= \int_{0}^{r/2} \frac{r^{2}}{t^{2}(r-t)} \mu^{*}(t) dt + \int_{r/2}^{\infty} \frac{r^{2}}{t^{3}} \mu^{*}(t) dt. \tag{2.2}$$

Similarly,

$$\mathcal{A}(r, \mathcal{N}) = \int_0^\infty \Psi\left(\frac{r}{t}\right) \mathrm{d}\mu^*(t)$$

and

$$\int_0^\infty \Psi\left(\frac{r}{t}\right) d\mu^*(t) = -\int_0^{r/T} \frac{r^2}{t^2(r+t)} \mu^*(t) dt + \int_{r/T}^\infty \frac{r^2}{t^2(r-t)} \mu^*(t) dt.$$
 (2.3)

All of what follows is concerned with estimating the integrals in (2.2) and (2.3). If τ satisfies $\rho < \tau < 2$, then, by the hypotheses of Theorem 1.1,

$$\frac{\mathcal{N}(r)}{r^{\tau}} \to 0 \quad \text{as } r \to \infty.$$

Thus, if σ satisfies $1 < \sigma < \rho$ and η is any positive number.

$$\frac{\mathcal{N}(r)}{r^{\sigma}} - \eta r^{\tau - \sigma} \to -\infty$$

Supremum and infimum of subharmonic functions of order between 1 and 2 689

as $r \to \infty$. We define

$$a_{\eta} = \max_{r \geqslant 0} \left(\frac{\mathcal{N}(r)}{r^{\sigma}} - \eta r^{\tau - \sigma} \right) \tag{2.4}$$

and we let r_{η} be any value of r at which the maximum in (2.4) is attained. Since $\mathcal{N}(r)/r^{\sigma}$ is unbounded as $r \to \infty$,

$$a_{\eta} \to \infty$$
 and $r_{\eta} \to \infty$ (2.5)

as $\eta \to 0^+$. Also

$$\mathcal{N}(r) \leqslant \eta r^{\tau} + a_{\eta} r^{\sigma} \tag{2.6}$$

for all r and

$$\mathcal{N}(r_{\eta}) = \eta r_{\eta}^{\tau} + a_{\eta} r_{\eta}^{\sigma}. \tag{2.7}$$

(Were we to follow [1] precisely, we would consider $\max_{r\geq 0}(\mathcal{N}(r) - \eta r^{\tau})$ instead of the right-hand side of (2.4), but this leads to divergent integrals and the method breaks down.) Arguing as in [1, Lemma 4], we have the following.

Lemma 2.2. $\mathcal{N}(r)$ is differentiable at $r=r_{\eta}$ and, at $r=r_{\eta}$

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{\mathcal{N}(r)}{r^{\sigma}} \right) = (\tau - \sigma) \eta r^{\tau - \sigma - 1}.$$

3. Estimates for $\mathcal{A}(r_{\eta}, \mathcal{N})$ and $\mathcal{B}(r_{\eta}, \mathcal{N})$

We shall prove the following result.

Lemma 3.1. For all $\eta > 0$,

$$\mathcal{B}(r_n, \mathcal{N}) \leqslant C(\tau)\mathcal{N}(r_n) + a_n r_n^{\sigma}(C(\sigma) - C(\tau)), \tag{3.1}$$

where C is given by (1.10).

With (2.2) in mind, write

$$I_1 = \int_0^{r/2} \frac{r^2}{t^2(r-t)} \mu^*(t) dt, \qquad I_2 = \int_{r/2}^\infty \frac{r^2}{t^3} \mu^*(t) dt.$$
 (3.2)

Integrating by parts, we have

$$I_{1} = \left[\frac{r^{2}}{t(r-t)}\mathcal{N}(t)\right]_{t=0}^{r/2} + \int_{0}^{r/2} \frac{r^{2}(r-2t)}{t^{2}(r-t)^{2}}\mathcal{N}(t) dt$$

$$= 4\mathcal{N}(\frac{1}{2}r) + \int_{0}^{r/2} \frac{r^{2}(r-2t)}{t^{2}(r-t)^{2}}\mathcal{N}(t) dt$$

$$\leq 4\mathcal{N}(\frac{1}{2}r) + \int_{0}^{r/2} \frac{r^{2}(r-2t)}{t^{2}(r-t)^{2}} (\eta t^{\tau} + a_{\eta} t^{\sigma}) dt, \tag{3.3}$$

using (2.6). Also

$$\int_0^{r/2} \frac{r^2(r-2t)}{(r-t)^2} t^{\mu-2} dt = C_1(\mu) r^{\mu},$$

690 P. C. Fenton

where

$$C_1(\mu) = \int_0^{1/2} \frac{1 - 2t}{(1 - t)^2} t^{\mu - 2} dt = \frac{2^{1 - \mu}}{\mu - 1} - \int_0^{1/2} \frac{t^{\mu}}{(1 - t)^2} dt,$$

and thus

$$I_1 \leqslant 4\mathcal{N}(\frac{1}{2}r) + \eta C_1(\tau)r^{\tau} + a_n C_1(\sigma)r^{\sigma}. \tag{3.4}$$

Similarly,

$$I_{2} = \left[\frac{r^{2}}{t^{2}}\mathcal{N}(t)\right]_{t=r/2}^{\infty} + \int_{r/2}^{\infty} \frac{2r^{2}}{t^{3}}\mathcal{N}(t) dt$$

$$= -4\mathcal{N}(\frac{1}{2}r) + \int_{r/2}^{\infty} \frac{2r^{2}}{t^{3}}\mathcal{N}(t) dt$$

$$\leq -4\mathcal{N}(\frac{1}{2}r) + \int_{r/2}^{\infty} \frac{2r^{2}}{t^{3}} (\eta t^{\tau} + a_{\eta} t^{\sigma}) dt$$

$$= -4\mathcal{N}(\frac{1}{2}r) + \eta \frac{2^{3-\tau}}{2-\tau} r^{\tau} + a_{\eta} \frac{2^{3-\sigma}}{2-\sigma} r^{\sigma},$$
(3.5)

using (2.6). Combining (3.4) and (3.5), we obtain

$$\mathcal{B}(r,\mathcal{N}) \leqslant \left(C_1(\tau) + \frac{2^{3-\tau}}{2-\tau}\right) \eta r^{\tau} + \left(C_1(\sigma) + \frac{2^{3-\sigma}}{2-\sigma}\right) a_{\eta} r^{\sigma}. \tag{3.6}$$

Evaluating this at $r = r_{\eta}$ and using (2.7), we obtain (3.1).

Lemma 3.2. For all $\eta > 0$,

$$\mathcal{A}(r_{\eta}, \mathcal{N}) \geqslant c(\tau)\mathcal{N}(r_{\eta}) + (c(\sigma) - c(\tau))a_{\eta}r_{\eta}^{\sigma}, \tag{3.7}$$

where c is given by (1.7).

With (2.3) in mind, write

$$J_1 = \int_0^{r/T} \frac{r^2}{t^2(r+t)} \mu^*(t) dt, \qquad J_2 = \int_{r/T}^{\infty} \frac{r^2}{t^2(r-t)} \mu^*(t) dt.$$
 (3.8)

Considering the second of these integrals first, we have

$$J_2 = \lim_{\varepsilon \to 0^+} (J_2' + J_2''), \tag{3.9}$$

where

$$J_2' = \int_{r/T}^{r-\varepsilon} \frac{r^2}{t^2(r-t)} \mu^*(t) \, dt, \qquad J_2'' = \int_{r+\varepsilon}^{\infty} \frac{r^2}{t^2(r-t)} \mu^*(t) \, dt. \tag{3.10}$$

Integrating by parts, we have

$$J_2' = \left[\frac{r^2}{t(r-t)}\mathcal{N}(t)\right]_{t=r/T}^{r-\varepsilon} - \int_{r/T}^{r-\varepsilon} r\left(\frac{1}{(r-t)^2} - \frac{1}{t^2}\right) \mathcal{N}(t) dt.$$

Supremum and infimum of subharmonic functions of order between 1 and 2 691

Also, since $T \approx 1.2$ we have r/T > r/2 and therefore $(r-t)^{-2} > t^{-2}$ for $r/T \leqslant t \leqslant r$. Thus, using (2.6) and integrating by parts again,

$$J_2' \geqslant \left[\frac{r^2}{t(r-t)} \mathcal{N}(t) \right]_{t=r/T}^{r-\varepsilon} - \int_{r/T}^{r-\varepsilon} r \left(\frac{1}{(r-t)^2} - \frac{1}{t^2} \right) (\eta t^{\tau} + a_{\eta} t^{\sigma}) \, \mathrm{d}t$$

$$= \left[\frac{r^2}{t(r-t)} (\mathcal{N}(t) - \eta t^{\tau} - a_{\eta} t^{\sigma}) \right]_{t=r/T}^{r-\varepsilon} + \int_{r/T}^{r-\varepsilon} \frac{r^2}{r-t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) \, \mathrm{d}t. \quad (3.11)$$

Also, using (2.7) and Lemma 2.2,

$$\mathcal{N}(r_{\eta} - \varepsilon) - \eta(r_{\eta} - \varepsilon)^{\tau} - a_{\eta}(r_{\eta} - \varepsilon)^{\sigma}
= (r_{\eta} - \varepsilon)^{\sigma} \left(\frac{\mathcal{N}(r_{\eta} - \varepsilon)}{(r_{\eta} - \varepsilon)^{\sigma}} - \eta(r_{\eta} - \varepsilon)^{\tau - \sigma} - a_{\eta} \right)
= (r_{\eta} - \varepsilon)^{\sigma} \left(\frac{\mathcal{N}(r_{\eta} - \varepsilon)}{(r_{\eta} - \varepsilon)^{\sigma}} - \frac{\mathcal{N}(r_{\eta})}{r_{\eta}^{\sigma}} + \eta(r_{\eta}^{\tau - \sigma} - (r_{\eta} - \varepsilon)^{\tau - \sigma}) \right)
= o(\varepsilon)$$
(3.12)

as $\varepsilon \to 0^+$. Thus, taking $r = r_{\eta}$ in (3.11),

$$J_{2}' \geqslant -\frac{T^{2}}{T-1} (\mathcal{N}(r_{\eta}/T) - \eta(r_{\eta}/T)^{\tau} - a_{\eta}(r_{\eta}/T)^{\sigma})$$

$$+ \int_{r_{\eta}/T}^{r_{\eta}-\varepsilon} \frac{r_{\eta}^{2}}{r_{\eta}-t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) dt + o(1)$$

$$\geqslant \int_{r_{\eta}/T}^{r_{\eta}-\varepsilon} \frac{r_{\eta}^{2}}{r_{\eta}-t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) dt + o(1)$$
(3.13)

as $\varepsilon \to 0^+$, from (2.6).

Similarly, integrating by parts twice,

$$\begin{split} J_2'' &= \left[\frac{r^2}{t(r-t)} \mathcal{N}(t)\right]_{r+\varepsilon}^{\infty} - \int_{r+\varepsilon}^{\infty} r \left(\frac{1}{(r-t)^2} - \frac{1}{t^2}\right) \mathcal{N}(t) \, \mathrm{d}t \\ &\geqslant \left[\frac{r^2}{t(r-t)} \mathcal{N}(t)\right]_{t=r+\varepsilon}^{\infty} - \int_{r+\varepsilon}^{\infty} r \left(\frac{1}{(r-t)^2} - \frac{1}{t^2}\right) (\eta t^{\tau} + a_{\eta} t^{\sigma}) \, \mathrm{d}t \\ &= \left[\frac{r^2}{t(r-t)} (\mathcal{N}(t) - \eta t^{\tau} - a_{\eta} t^{\sigma})\right]_{t=r+\varepsilon}^{\infty} + \int_{r+\varepsilon}^{\infty} \frac{r^2}{r-t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) \, \mathrm{d}t \\ &= \frac{r^2}{\varepsilon (r+\varepsilon)} (\mathcal{N}(r+\varepsilon) - \eta (r+\varepsilon)^{\tau} - a_{\eta} (r+\varepsilon)^{\sigma}) + \int_{r+\varepsilon}^{\infty} \frac{r^2}{r-t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) \, \mathrm{d}t. \end{split}$$

As in (3.12), $\mathcal{N}(r_{\eta} + \varepsilon) - \eta(r_{\eta} + \varepsilon)^{\tau} - a_{\eta}(r_{\eta} + \varepsilon)^{\sigma} = o(\varepsilon)$ as $\varepsilon \to 0^+$ and we obtain

$$J_2'' \geqslant \int_{r_{\eta} + \varepsilon}^{\infty} \frac{r_{\eta}^2}{r_{\eta} - t} (\tau \eta t^{\tau - 2} + \sigma a_{\eta} t^{\sigma - 2}) dt + o(1).$$
 (3.14)

Combining (3.9), (3.13) and (3.14), we have

$$J_{2} \geqslant \int_{r_{\eta}/T}^{\infty} \frac{r_{\eta}^{2}}{r_{\eta} - t} (\tau \eta t^{\tau - 2} + \sigma a_{\eta} t^{\sigma - 2}) dt$$

$$= \tau \eta r_{\eta}^{\tau} \int_{1/T}^{\infty} \frac{t^{\tau - 2}}{1 - t} dt + \sigma a_{\eta} r_{\eta}^{\sigma} \int_{1/T}^{\infty} \frac{t^{\sigma - 2}}{1 - t} dt.$$
(3.15)

Turning to the other integral in (3.8), we have, arguing similarly (but there are fewer complications),

$$J_{1} = \left[\frac{r^{2}}{t(r+t)}\mathcal{N}(t)\right]_{t=0}^{r/T} - \int_{0}^{r/T} r\left(\frac{1}{(r+t)^{2}} - \frac{1}{t^{2}}\right)\mathcal{N}(t) dt$$

$$\leq \left[\frac{r^{2}}{t(r+t)}\mathcal{N}(t)\right]_{t=0}^{r/T} - \int_{0}^{r/T} r\left(\frac{1}{(r+t)^{2}} - \frac{1}{t^{2}}\right) (\eta t^{\tau} + a_{\eta} t^{\sigma}) dt$$

$$= \left[\frac{r^{2}}{t(r+t)}(\mathcal{N}(t) - \eta t^{\tau} - a_{\eta} t^{\sigma})\right]_{t=0}^{r/T} + \int_{0}^{r/T} \frac{r^{2}}{r+t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) dt$$

$$\leq \int_{0}^{r/T} \frac{r^{2}}{r+t} (\tau \eta t^{\tau-2} + \sigma a_{\eta} t^{\sigma-2}) dt$$

$$= \tau \eta r^{\tau} \int_{0}^{1/T} \frac{t^{\tau-2}}{1+t} dt + \sigma a_{\eta} r^{\sigma} \int_{0}^{1/T} \frac{t^{\sigma-2}}{1+t} dt, \tag{3.16}$$

using (2.6). Combining (2.3), (3.15) and (3.16), we obtain

$$\mathcal{A}(r_{\eta}, \mathcal{N}) \geqslant c(\tau)\eta r_{\eta}^{\tau} + c(\sigma)a_{\eta}r_{\eta}^{\sigma}, \tag{3.17}$$

where c is given by (1.7), since

$$\begin{split} \int_{1/T}^{\infty} \frac{t^{\mu-2}}{1-t} \, \mathrm{d}t - \int_{0}^{1/T} \frac{t^{\mu-2}}{1+t} \, \mathrm{d}t &= \int_{0}^{\infty} \frac{t^{\mu-2}}{1-t} \, \mathrm{d}t - \int_{0}^{1/T} \frac{2t^{\mu-2}}{1-t^2} \, \mathrm{d}t \\ &= \pi \cot(\pi(\mu-1)) - \int_{0}^{1/T} \frac{2(1-t^2+t^2)t^{\mu-2}}{1-t^2} \, \mathrm{d}t \\ &= \pi \cot(\pi(\mu-1)) - \frac{2T^{1-\mu}}{\mu-1} - \int_{0}^{1/T} \frac{2t^{\mu}}{1-t^2} \, \mathrm{d}t \\ &= c(\mu)/\mu. \end{split}$$

Then (3.7) follows from (3.17) and (2.7).

4. Proof of Theorem 1.1

From (2.7) we have $a_{\eta}r_{\eta}^{\sigma} \leq \mathcal{N}(r_{\eta})$ and thus, from the second part of (2.5) and Lemmas 3.1 and 3.2.

$$\liminf_{r \to \infty} \frac{\mathcal{B}(r, \mathcal{N})}{\mathcal{N}(r)} \leqslant C(\tau) + |C(\sigma) - C(\tau)|$$

and

$$\limsup_{r \to \infty} \frac{\mathcal{A}(r, \mathcal{N})}{\mathcal{N}(r)} \geqslant c(\tau) - |c(\sigma) - c(\tau)|.$$

This proves (1.9) and (1.6), since $\sigma < \rho$ and $\tau > \rho$ are arbitrary.

Finally, as an examination of the proof of Lemmas 3.1 and 3.2 shows (taking $\tau = \rho$, $\eta = 1$ and $a_{\eta} = 0$ in the calculations), when $\mathcal{N}(r) = r^{\rho}$ we have $\mathcal{A}(r, \mathcal{N}) = c(\rho)\mathcal{N}(r)$ and $\mathcal{B}(r, \mathcal{N}) = C(\rho)\mathcal{N}(r)$, and thus the constants $c(\rho)$ and $c(\rho)$ are best possible.

References

- P. C. FENTON AND J. ROSSI, Phragmén-Lindelöf theorems, Proc. Am. Math. Soc. 132 (2003), 761-768.
- 2. P. C. Fenton and J. Rossi, $\cos \pi \rho$ theorems for δ -subharmonic functions, J. Analyse Math. 92 (2004), 385–396.
- 3. W. K. Hayman, Subharmonic functions, Volume 1 (Academic Press, London, 1976).