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Abstract  For functions u, subharmonic in the plane, let
A(r,u) = inf u(z),

|z|=r
B(r,u) = sup u(z)

[z|=r

and let N(r,u) be the integrated counting function. Suppose that A': [0,00) — R is a non-negative non-
decreasing convex function of log r for which '(r) = 0 for all small r and lim sup,._, .o log N'(r)/logr = p,
where 1 < p < 2, and define

A(r,N') = inf{A(r,u): N(r,u) = N(r)},
B(r,N) = sup{B(r,u): N(r,u) = N(r)}.

A sharp upper bound is obtained for lim inf, o B(r, N')/N(r) and a sharp lower bound is obtained for
limsup,._, oo A(r, N') /N (7).
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1. Introduction

In [1,2] Rossi and Fenton showed that a method of Beurling is effective in approaching
questions on the supremum and infimum of subharmonic and delta-subharmonic func-
tions of order less than 1. The intention here is to apply Beurling’s method to subharmonic
functions w of order between 1 and 2.

It involves no loss of generality in our results to assume that w is harmonic at the origin.
For such functions there is, from the Riesz representation theorem, a Borel measure u
such that

u(e) = act Re(32) + [ log[E(:/0)|du(0). (1)

[€<oo
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where a € R and 3 € C are constants and E(z) = e*(1 — z). We define

A(r,u) = ‘;I‘ETU(Z%

B(r,u) = sup u(z)

|z|=r

and

N(r,u) = /OT ) dt, (1.2)

4
where p*(r) = u({|z| < r}). Since p*(t) = 0 for all small ¢ (u being harmonic at 0), N is
well defined. If w has order p, 1 < p < 2, then

. log N (r, u)
lim sup ———— = p,
r—00 logr

and, conversely, if N': [0,00) — R is a non-negative non-decreasing convex function of

log 7, for which N(r) = 0 for all small r and
1
lim sup log N'(r) =p, (1.3)
r—ooco  logr

and if p is a Borel measure for which p* is given by (1.2), then w given by (1.1) is
subharmonic in the plane and has order p [3, p. 146].
Our main result concerns functions that have the same N. With

A(r,N') = inf{A(r,u): N(r,u) =N(r)}, (1.4)
B(r,N') = sup{B(r,u): N(r,u) =N(r)}, (1.5)
we have the following result.

Theorem 1.1. Suppose that N': [0,00) — R is a non-negative non-decreasing convex
function of logr for which N'(r) = 0 for all small r and (1.3) holds, where 1 < p < 2.

Then Al )
r
lims . > , 1.6
msup =7 c(p) (1.6)
where T
2T1—r 2t
c(p) = p(?TCOt(ﬂ'(,O —-1)) - P /0 T g dt) (1.7)
and T ~ 1.2 is the positive solution of the equation
T+1
2T = log | ——|; 1.
o 71 (18)
and Bl A
T
lim inf d < , 1.9
ity < O (1.9)
where
cp = 2L E 1.10
_ _ t. .
= —+5—- | T (1.10)

The constants C(p) and c(p) are best possible.
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In fact we will show that there is a sequence r; — oo such that
A(rg, N) > (e(p) + 0(1))N(ry) and B(rj,N') < (C(p) +0(1))N(r;) as j — oo.

Evidently, (p—1)c(p) = —1 and (p—1)C(p) — 1 as p — 17. If we also denote the best
possible values of the left-hand sides of (1.6) and (1.9) by ¢(p) and C(p) for 0 < p < 1, we
have (1—p)c(p) - —1and (1—p)C(p) — 1 as p — 17 (see, for example, [1, Theorem 3]).

It is perhaps worth stating explicitly that Theorem 1.1 has nothing to say on the key
question in this context: that of finding the best lower bound for

A(r,u)
lim su ’ for p > 1.
s B(rou) P
2. Preliminaries
Let
_ _ 0
o(r) = max |EGe”), W)= min [E(re?) (2.1)

We have the following.

Lemma 2.1.

2/92 0<r<2
@(T‘): 7'/, r i
r+log(r—1), r>2,
and
() = r + log |r — 1|, 0<r<T,
—r+log(r+1), r>T,

where T is given by (1.8).
With
H(r,0) = log|E(re')| = rcosf + Llog(r? — 2rcosf + 1)

for 0 < 6 < 7, we have

0H r/2 — cosf
— 92 9—
00 rosin 2 _2rcosf+1’

which is 0 when
2,

r<
2.

A\VARV/AN

0 or ,

- {O, 7 or cos~1(r/2), 0
r

The critical values of H are thus r + log |r — 1|, —r + log(r + 1) and r2/2 for 0 < r < 2,
and r 4 log(r — 1) and —r + log(r + 1) for r > 2. Since

d r+1 2r2
—( —2r+1 =
dr( T+Og’7’—1D 1—7r2’
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which is positive for 0 < r < 1 and negative for r > 1, we have

—r+log(r+1)=r+loglr—1[, 0
—r+log(r+1)<r+log(r—1), r

<7,

<r
>T

3

where T is given by (1.8). Also,

d [r? 1
S gl 1)) =1 ——
dr(? r—loglr |) " r—1’

which is positive for 0 < r < 1 and negative for 1 < r < 2, and thus
%7‘2>r—i—log|r—1|7 0<r<.
A similar argument shows that

7"2>7T+10g(r+1), 0<r<2,

N[

and Lemma 2.1 follows.
In proving Theorem 1.1 there is evidently no loss of generality in assuming that o =
B =01in (1.1). With this assumption we have

BN = [T a3 aw .
0
and, from Lemma 2.1,

[ oeJuo- ] [ g ron

r/2 r2 00 1.2
_ /0 g e+ / T (t) dt. (2.2)

’f‘—t) T/Qt

Similarly,

and

(D) 4 = — " QLM*(t) a [ %u*(t) dt. (2.3)
0 t 0 t (7“—|—t) T/Tt (7“ t)

All of what follows is concerned with estimating the integrals in (2.2) and (2.3). If 7
satisfies p < 7 < 2, then, by the hypotheses of Theorem 1.1,

N(r)

,rT

—0 asr — oo.

Thus, if o satisfies 1 < ¢ < p and 7 is any positive number,

N(r)

TJ

—nr’T% = —0
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a, = max (N(T) - mﬁ‘”) (2.4)

r=0 ro

as r — oo. We define

and we let 7, be any value of r at which the maximum in (2.4) is attained. Since N'(r)/r?
is unbounded as r — o0,

ap — oo and 1, — 00 (2.5)
asn — 07. Also
N(r) <nr’ + a,r® (2.6)
for all r and
N(ry) = nry + ayry. (2.7)

(Were we to follow [1] precisely, we would consider max,>o(N (r) — nr"™) instead of the
right-hand side of (2.4), but this leads to divergent integrals and the method breaks
down.) Arguing as in [1, Lemma 4], we have the following.

Lemma 2.2. N(r) is differentiable at r = r,, and, at r = ry,

a4 (N (r)

dr ro

)=t o

3. Estimates for A(r,,N') and B(r,,N)
We shall prove the following result.
Lemma 3.1. For alln > 0,

B(ry,N) < C(1)N(ry) + a,ry (C(o) — C(1)), (3.1)

n
where C' is given by (1.10).
With (2.2) in mind, write
r/2 2 o0 1.2
L= /0 mﬂ*(t) dt, I, = /T/2 t—gu*(t) dt. (3.2)

Integrating by parts, we have

B r2 r/2 r/2 r2(r — 2t)
= L(r "V (t)L_o = L
/22
—ann + [ f)g)/\/(t) dt
/2 T2 r—
cavtin+ [ SR ) (3.3

using (2.6). Also

/2 r2(r — 2t)
n—2 34 — Iz
/0 12 th=2dt = Cy(u)rt,
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V21—t N
C = 2 At = - ——dt,
=" g i o

where

and thus
I < 4]\/(%7“) +nCi(T)r™ + a,C1(o)r°.

Similarly,
2 o0 % 9.2
I = {TQN(t)} + / ZN () de
t t=r/2 r/2 t

=0+ [ N ar

3

VA
|
=
=

o0 2r2
r)+ / —5 (" +a,t?)dt
r/2 t

3—71 23—0—

2—TT —|—a,72_0

T,

=—4N(5r) +n

using (2.6). Combining (3.4) and (3.5), we obtain

3—1

2 230
B(r,N) < <C’1(T) + 5 _T)UTT + (C’l(a) + 5 U)anr".

Evaluating this at r = r,, and using (2.7), we obtain (3.1).

Lemma 3.2. For alln >0,

Alry, N) Z e(T)N (ry) + (c(0) — e(7))ayry

77 )
where c¢ is given by (1.7).
With (2.3) in mind, write

r/T 7,2 0o 7,2
T R L A A (e G2
0 t ( ) r )

r+t T t3(r—t

Considering the second of these integrals first, we have

Jy = lim (J5 + JY),

e—0t

where

r—e 2 00 2

B[ prpeman g= [ oo

7 tAH(r—1) L t3(r—t)

Integrating by parts, we have

-] [ o

https://doi.org/10.1017/50013091510000362 Published online by Cambridge University Press

(3.4)


https://doi.org/10.1017/S0013091510000362

Supremum and infimum of subharmonic functions of order between 1 and 2 691

Also, since T' ~ 1.2 we have r/T > r/2 and therefore (r —t)=2 > t=2 for r/T < t < 7.
Thus, using (2.6) and integrating by parts again,

2 r—e r—e 1 1
J’){r/\/t} —/ r(—) t" + ayt?) dt
2 t(r _ t) ( ) b/ T r/T (7" _ t)2 t2 (77 n )
r—e 2

7“2 r—e r ) ,
=\ —nt" — 7 T 7= . 11
L(T Iy N () —nt™ — ayt )} o + /T/T p— t(T??t +oa,t® %) dt. (3.11)

Also, using (2.7) and Lemma 2.2,
N(ry—e) —n(ry —e)" —ay(r, —€)°

o (M e )

(rn —€)°
=o(e) (3.12)

as ¢ — 07. Thus, taking r = r, in (3.11),

Ty > (N (g /T) = (g T)7 = ayry/T)7)

Ty—& 7“2
+ / T (mnt™? + oa,t® " ?)dt + o(1)
/T Ty — t

K —2 )
> / ——(tnt" 7= 4+ a,t® ) dt + o(1) (3.13)
ro/T 7",—, —t

as ¢ — 0T, from (2.6).
Similarly, integrating by parts twice,

R

> [ N(ﬁ)oo QY (nt™ + a,t°) dt
~ _t(?"—t) t—r+5_/7"+€r (T—t)z—t2 7 a'q

- 7‘2 o 0o r2
- Lt(r —1t) V() —nt” — ant”)] t=rte " /T+a r— t(TmT_2 + UantU_Q) dt

7“2 [e%s} 2
=79 N(r+e) —nr+e) —ay(r+e)7) + /W T (i - oagt7 )

Asin (3.12), N(r, + ) —n(ry, + &)™ — ay(ry, + )7 = o(g) as € = 07 and we obtain

00 2

JY > / — ("% 4 ga,t® %) dt + o(1). (3.14)
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Combining (3.9), (3.13) and (3.14), we have
0 7"2

/ —— (Tt % 4 ga,t??)dt
ro/T Tn —t

0o 4T—2 o] t072

: J

Turning to the other integral in (3.8), we have, arguing similarly
complications),

Jo >

r
n

o

c dt.

=Tnr dt + oa,r

(3.15)

(but there are fewer

r2 K 1 1
e e [ D
S FTe) ()L_O o \oror e N0
72 r/T r/T 1 1
< N(t - — | (nt™ + ayt?) dt
[H(r+1) ()L_o /0 T((Ht)? tQ)(” o)
’)"2 r/T T’/T 7"2 ) )
= t) —nt” — a,t’ T t774)dt
N = =] [T e )
Ty —2 —2
< /0 . t(TﬂtT + oa,t° %) dt
1/T tT—Q 1/T ta—2
= T dt 7 dt 3.16
™nr /0 1Tt +oayr /0 T3 3 (3.16)
using (2.6). Combining (2.3), (3.15) and (3.16), we obtain
A(ry, N) = e(T)nr] + c(o)ayry, (3.17)
where c¢ is given by (1.7), since
oo ypu—2 1/T =2 o0 yu—2 1/T Qpp—2
[ [T [ [T
YT o1 — 42 4 2)tr 2
— rcot(m(p — 1)) _/O ( 1jt2) dt
ort—r  (MT g
=mcot(m(p—1)) — — / d¢
p—1 ), 1-#

= c(u)/n-
Then (3.7) follows from (3.17) and (2.7).

4. Proof of Theorem 1.1

a

From (2.7) we have a,r;

and 3.2,

B(r,N)
N(r)

lim inf
r—00

< (1) +1C(0) = C(7)]
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and

lim sup Al N) > (1) = |e(o) — c(7)].
r—00 (T)
This proves (1.9) and (1.6), since o < p and 7 > p are arbitrary.
Finally, as an examination of the proof of Lemmas 3.1 and 3.2 shows (taking 7 = p,
n =1 and a,) = 0 in the calculations), when N (r) = r” we have A(r,N') = ¢(p)N (r) and
B(r,N') = C(p)N(r), and thus the constants c(p) and C(p) are best possible.
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