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ON THE GENUS OF SOME MODULAR CURVES OF LEVEL N

CHAaNG HEON Kim AND JA KYUNG KOO

We estimate the genus of the modular curves X;(N).

INTRODUCTION

Let h be the complex upper half plane. Then SL;(Z) acts on § by (a Z) 2=
c

(az +b)/(cz + d). Let h* be the union of h and P}(Q), and let I' be a congruence
subgroup of SL3(Z) (= T'(1)), which is a Fuchsian group of the first kind and contains
a principal congruence subgroup I'(N) for some positive integer N. Then the modular
curve I'\h* is a projective closure of the affine curve I'\lj, which we denote by Xr,
with genus g.. In this article, we shall determine the genus g(N) of the modular curve
X1(N) (= Xr,(v)) when ' = T'1(N) for N =1,2,3,--- . Here, we denote by I';(N)

1
the group of elements in I'(1) which are congruent to (0 :) mod N.

THEOREM 1. The genus g(N) of X;(N) is given by

0, f1< N4
g(N) = N? ( 1) 1 N .
1+ —[ll1-=)-= ¥ e(de(5F), otherwise
24 N P’ 4 4|N,d>0 (@)
where ¢ is the FEuler’s phi function.

We shall see later in §1 that g(N) = 0 only for the eleven cases 1 < N < 10 and
N =12.
Throughout the article we adopt the following notation:

T is the inhomogeneous congruence group (= I'/ £ I)
I', is the isotropy group of s
I'(N)={y € SLy(Z)| y=1 mod N}

b
To(N) is the Hecke subgroup {(Z d) €T(1)|c=0 mod N}

o0(N) is the number of positive divisors of N.
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1. Proor

Let g be the index of T1(N) in I(1). Let v, (respectively v3) be the number
of T';(N)—inequivalent elliptic points of order 2 (respectively order 3) and vs, be the
number of T';(N)—inequivalent cusps. It is well-known {1, p.68, 2, Chapter IV] or [3,
Proposition 1.40] that

f2 1 2] 12 Voo

* =1+ = =2_=_ =,
*) 9=+ -7 "33

Thus, in order to estimate g it is enough to know the explicit values of u,v,v; and

Voo -
(i) »:
For the congruence subgroup T'y(N) of T'(1), we know [3, Proposition 1.43] that
— - 1
(1.1) T :To(M)]=N-]] (1 + ;).
pIN

Note that I';(N) is the kernel of the surjective homomorphism fny from Io(N) to

(Z/NZ)* defined by fn ((: Z)) —d mod N. This yields
[Lo(¥) s Tu(w)) = o) = - I (1- 7).

p|N

Since —1 € ['g(N) and —1 ¢ I';(N) except for N = 1,2,

N-H(l—l), N =1,2
(1.2) Ty =4 0
R pll}v (1 - ;), otherwise.
By (1.1) and (1.2),
1, N =1
p=[F): T ={ > N =2

1
11 <1 - —), otherwise.
2 pIN p2

(ll) 1243 and v3 .
Recall that v € (1) is an elliptic element if and only if |tr(v)| < 2. If v € I'1(N),

then v = (:) :) mod N . Hence, tr(v) lies in 2+ NZ. Thus I';(N) has no elliptic
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element unless N =1,2,3. f N =1, I'1(1) =T(1) sothat v, =v3 =1. f N =2,
I';(2) = I'0(2) and hence, by [3, Proposition 1.43], v, =1 and v3 = 0. If N = 3, then
T1(3) =Ty (3). Again, by the same argument, v; = 0 and v3 = 1. We summarise the

above by
1, if N=1,2
Vg =
0, otherwise
and
1, if N=1,3
V3 =
0, otherwise.
(i) Voo :

First, we consider all pairs

(1.3) {c,d} of positive integers satisfying (¢,d) =1, d| N, 0 < c < N/d

(or c in any set of representatives for Z mod (N/d)).

For each pair {c,d}, take a and b so that ad — bc = 1 and fix them. Then the
b
elements (a d) satisfying (1.3) form a set of representatives for I'o(IV)\I'(1). Also,
c

the number of double cosets in T'o(N)\I'(1)/T, for any fixed cusp s gives the number

of T'g(N)-inequivalent cusps. Take s to be 0. Then we see that it is the number of

pairs {c,d} satisfying (1.3) modulo the equivalence ~ defined by {c,d} ~ {¢',d'} if

(*I *) = (* *) ( 1 0) for some m € Z. From the last equality, we come up
¢ d ¢ d m 1

with d = d' and ¢' = ¢ + dm. Therefore, for fixed d

(1.4) there are exactly ¢((d, N/d)) inequivalent pairs.

b
Now choose a pair {c,d} satisfying (1.3) and ¢ = (a d) from I'(1). Put s = b/d.
c
Then £ -0 = s. We want to estimate the index [To(N), : Ty(N),]. Suppose

1 0\"
that +£71To(N),¢ = {:i:(hl 1) }ﬂez for some h; > 0 and +£7'Ty(N),¢ =

1 n
{i( 0) } . for some h; > 0. Recall that h; (respectively h;) is the smallest
ne

ha 1
positive integer h such that

a b\ (1 0\ [a b\* 1+bdh  —b%h
(1.5) (c d) (h 1>(c d) =( &h l—bdh)EiF"(N)
(respectively +T'1(INV)).
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b\ /1 © AN
(" ¢ belongs to —I';{N), then by taking the trace we have
c d h 1 c d

2 = —2 mod N; hence N divides 4, that is, N = 1,2,4. In what follows, we assume
that N # 1,2,4. The cases N = 1,2,4 will be dealt with separately. By (1.5), h;
is the smallest positive integer h such that d?A = 0 mod N and h; is the smallest
positive integer h such that

(1.6) d®h =0=bdh mod N.

Clearly, hy = N/(d?,N). Let h} be the smallest positive integer such that bdh' = 0
mod N . Since d | N, we are forced to get

, N/
(1.7) W= GnTa

Then h; = l.e.m(h;,h]). Observe that (dz,N) = (d,N)-((d,N), N/(d,N)) = d -
(d, N/d) because N is divisible by d. Using this we are able to rewrite h; as

(1.8) hy

N N N 1
" (&#,N)  d-(d,N/d)  d (d4,N/d)’

Since (b,N/b) | b, (d,N/d) | d and (b,d) = 1, by (1.7) and (1.8) we have hy =
l.eem.(h1,h}) = N/d. Thus

(1.9) [To(N), : T1(N),] = [£€7To(N), & : ££7'T4(N), €]
= [h1Z H hzZ] = ”:—2
/L — (d, N/d).

Njd1/(&N]d)
Now consider the natural projection p : Ti(N)\h* — To(N)\b*. Let p~(s) =
{s1,...s4} and let e be the ramification index of p at si. Then by [3, Proposi-
tion 1.37], ex = [fo(N),k : fl(N),k] for k = 1,...,h. Furthermore, T';(N) a Ty(N)
implies that e; =--- = e, and
(1.10) [To(N): T1(N)] = esh = (d,N/d)-h
by (1.9). Here h is the number of elements of p~!(s) which is equal to the number

of those in p~?(b/d) depending only on d. By (1.4), given d, there are ¢((d, N/d))
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I'y(N)-inequivalent cusps with the same d. Therefore, we have

veo = 3 ((d, N/d))h

d|N
= o((d, N/d))(d, N/d) " p(N)/2 by (1.10)
d|N

p(d)p(N/d) p(N)
p(d-(N/d)) 2

¢((n1,m2))

using the fact that ¢(n1)p(nz2) = p(ninz) (n1,m2)

d|N

= 13" elde(/a).
dIN
Next, we deal with the cases N = 1,2,4. If N =1, I'i/(1) = I'(1); hence vo, = 1.
If N =2, I'i(2) = I4(2), and so by [3, Proposition 1.43], voo = 2. If N = 4,
T1(4) = T4(4), and again by the same Proposition 1.43 in [3], v = 3. In summary,

1, N =1
2, if N =2

Voo = 3, fN =4
1

Z ¢(d)e(N/d), otherwise .

Substituting (i), (ii) and (iii) into the formula (*), we get the theorem.
PrROPOSITION 2. For N > 20, g(N)>1.

PROOF: It follows from Theorem 1 that g(N) = 1+ (N%/24) [] (1 —1/p?) —
pIN

(1/8) | 5 eld)e(N/d). Notice that N - T (1=1/p) = plN) and pld)o(N/d) =

o(N)-(¢((d, N/d)))/((d, N/d)) < ¢(N). Then g(N) > 1+(1/24)(N' Il}v(l +1/p) ¢
(N) = 60o(N) - <p(N)). We will show that for N > 20

(1.11) N-T] (1 + ) > 6-ao(N),

pIN

where the equality holds if and only if N is square-free. Put ¢(N) = (N [~ (1 + ))/
(00(N)) and fp(k) = (p* +p*71)/(k +1). We must show g(N) > 6. Then for k >

(p* + "' )((log p)(k + 1) — 1)
(k+1)?

fp( )= >0
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indicates that

(1.12)

fp(kl) < fp(kz) “for kl < ks.

Also it is easy to see that

(1.13)

Ior (k) < fp,(k)  for  py <pa.

For 1 < k <5, fp has the following values:

Let N = p* ..

k fa fs fs fa fu1
1 1.5 2 3 4 6
2 2 4 10 182 44
3 3 9 375 98 363
4 48 21.6 150 548.8 31944
5 8 54 625 32011 29282

-p* be the prime factorisation. Then g(N) = fp, (k1) - - - fp, (k-). Let

r(N) be the number of distinct primes dividing N. If »(N) > 3,

g(N) > (1) fs(1)fs(1) =9 >6 by (1.12), (1.13) and the table.

If 7(N) =1 or 2, we can check the inequality as follows:

() w(N)=2, 21 N: o(N) > fs(1)fs(1) = 6.
(i) =(N)=2, 2° | N: Since 7(N) = 2, there exists an odd prime p dividing
N. Then ¢(N) 2 f2(3)fs(1) = 6. In this case, N is not square-free and
so we have strict inequality in (1.11).
(i) r(N)=2,2|N, (15,N)=1: Since r(N) =2 and 3{ N,5{ N, there
exists an odd prime p > 7 dividing N. Then ¢(N) > fo(1)f7(1) = 6.
(iv) »(N)=2,22||N, 32| N: q(N) > f(2)fs(2) > 6.
(v) =(N)=2,2%]||N, 5%|N: q(N)> f(2)fs(2) > 6.
() (M) =2, 2| [N, B|N: (V) > L()AE) > 6.
(vii) 7(N)=2,2||N, 52| N: ¢(N) > fo(1)fs5(2) > 6.
(vii) (N)=1, N =p*, p>11: ¢(N)> fu(1) > 6.
(ix) #(N)=1, N=T7 k>2: g(N)> fi(2) > 6.
(x) »(N)=1, N=5F k>2: ¢(N)> f5(2) > 6.
(xi) (N)=1, N=3% k>3: g(N)> fs(3) > 6.
(xii) ~(N)=1, N=2F k>5: q(N)> f(5) > 6.
This completes the proof. 1
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For N < 20, Theorem 1 gives the following table :

N b Vo Va2 Vs g
1 1 1 1 1 0
2 3 2 1 0 0
3 4 2 0 1 0
4 6 3 0 0 0
5 12 4 0 0 0
6 12 4 0 0 0
7 24 6 0 0 O
8 24 6 0 0 O
9 36 8 0 0 0

10 36 8 0 0 0
11 60 10 0 0 1
12 48 10 0 0 0
13 84 12 0 0 2
14 72 12 0 0 1
15 96 16 0 0 1
16 96 14 0 0 2
17 144 16 0 0 5
18 108 14 0 0 3
19 180 18 0 0 7
20 144 20 0 0 3

REMARK. From this table and Proposition 2, we conclude that g{(N) = 0 if and only
if N=1,...,10 and 12.
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