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Introduction

Throughout this paper, k is a perfect field of characteristic p > 0,
R is a complete discrete valuation ring with residue field & and quotient
field of characteristic zero, and X is a connected smooth prescheme of
finite type over k.

In their papers [6,8] Monsky and Washnitzer have developed a de
Rham cohomology theory for certain varieties in characteristic p. In
particular, they construct functors from the category of ‘“very smooth”
k varieties (which includes all affine complete transversal intersections)
to the category of R ®,Q-vector spaces:

X~ H(X,R®;0) t>0

which vanishes for 7 > dim X. We refer to these spaces as the MW-
cohomology groups.

In this paper we add to the accumulating evidence that Monsky and
Washnitzer have defined a ‘“‘good” cohomology theory. We investigate
the functor

X — H(X,E®;0)

and show that this functor may be extended to the category of all smooth
k-varieties. We prove that:
(1) if U is an open subset of X, the assignment

U-—~—HWU,R®;0)

is a sheaf ' on X;
(2) if V C U are open subsets of X, then the restriction morphism
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HY\U,R ®,;Q) — H(V,R ®,0)
is injective;
8) if U is an open subset of X, we show that there is an exact
sequence (which is functorial on pairs (X, U))

0 —> I'(X, #") —> (U, #Y) —> G(X, U) —>
H(X, #Y) s H(U, #') —> 0

where G(X,U) is a finite dimensional R ®;Q-vector space and r and +/
are the restriction morphisms. We show further that H‘(X, #") = 0 for
P> 2.

At the end of this paper we have appended several short applica-
tions of the main theory, including a proof that the MW-cohomology
theory yields “correct” results for algebraic curves: e.g. if g is the genus
of a complete curve X then dimgg,o H'(X, R ®,0Q) = 2¢, and a proof that
the group HYX,R ®,Q) is a birational invariant of complete varieties X.

In a later paper, we will prove that the following theorem: if X is
a complete smooth (connected) k-variety, and if 2(X) (resp. 2.(X), 2,(X))
is the group of divisors on X (resp. the divisors algebraically equivalent
to zero, the divisors linearly equivalent to zero) and if

H(X) =lim A(U,RE®;Q)
v

as U runs through the open subsets of X, then we have natural iso-
morphisms :

H(X) ~
X Ew,0 = 200 ES:0

2(X)
H{(X, #") =
( ) 24X)

Much of the research upon which this paper is based was completed
while I was a graduate student at Brandeis University, where Professor
Monsky served as my advisor. I am indebted to him for proposing the
initial hypotheses for this work and for providing many valuable sug-

gestions.

Rz (R ®z0)

1. Differentials on Weak Formal Preschemes

In [5, 4.1], we defined weak formal (wf) preschemes, which arise in a
natural way from wcfg algebras [8]. Suppose (X', %) is a wf-prescheme.
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DEFINITION 1. The sheaf of differentials, 2%t,, of 0% is defined on
affine wf open sets U C X by:

', 2yyz) = D('(U,0%) ,

where D*(I'(U, 0%)) is the module of m-separated R-differentials of I"(U, 0%)
[8, pp. 196].
The following lemma will prove that Q%t,r is a coherent ¢%-module.

LEMMA 2. Suppose A'1is a wefg algebra (over R) and fe A'. Then
D (A") is a finite At-module. Moreover, the natural map A'— Al, induces
an isomorphism:

¥ DAY @t Aty — D (A}, .
(where Al = (ADN)

Proof. The finiteness of D*(AY) is proven in [8, Th. 4.5]. D (A" /(m?)
(resp. Dr(Al,;)/(m%) is the algebra of differentials D'(Af/m*A") (resp.
Dr(A};/m*Al;)) [8, Th. 4.4]. Consequently the Al ,,-homomorphism + is
bijective modulo m* for all s > 0. Since A}, is a Zariski ring and both
D'(A") ®,4 Al;y and Dr(A};) are finite Al,-modules, + is bijective.

The coherent ¢%-module 2%+, is direct sum of components Q%t,z, ¢ > 0,
and there exists the R-linear derivation d: Q%1 — Q2% z.

DEFINITION 3. Let (X, 0%) be a wf-prescheme, and let 2%+, be the
sheaf of differentials on ¢%. Define a presheaf #* (of R ®,Q-modules)
on X' by:

', #£) = H(I'(U, 2y @2 Q)

The sheaves #* associated to #* are the MW-cohomology sheaves.
Note that if X' is an affine wf-scheme, then since 2%t is a coherent
O%-module, ¢ > 0,

kerd N I'(XT, Qit,p)
imd N X', Qrp)

x££ = ®z0 .

PROPOSITION 4. #°= #"; i.e., #° is a sheaf.

Proof. The differentiation map d: 2%tz — 2%tz is a homomorphism
of sheaves, and so ker d is a sheaf. Since Q is flat over Z and the
underlying space is noetherian, (ker d) ®,Q = #° is also a sheaf.
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PROPOSITION 5. Suppose the sheaf 0% is flat over R, and that the k-
prescheme (X,0y) = (X!, 0% R k) is smooth over k. Suppose further that
X' is irreducible. Let K be the algebraic closure of R/m in the function
field of Oy, and let S be a weak formalization of K over R. Then #°
is canonically isomorphic to the constant sheaf S ®,Q.

Proof. Monsky and Washnitzer prove that whenever U is an affine
wf open set of X such that I'(U, @) is very smooth, then I'(U, #°) is
canonically isomorphic to S®,Q [8, Th. 7.1]. Their proofs also show
that this canonical identification commutes with the restriction maps of
the sheaf #°. Since X is smooth, X has a neighborhood basis of very
smooth open sets. Consequently #° is canonically isomorphic to the con-
stant sheaf with stalk S®;Q.

This paper devoted primarily to a sheaf closely related to . The
following proposition will be essential.

PROPOSITION 6. Suppose 0% is flat over R and the k-prescheme
(X1, 0% Qg k) is smooth over k. Then #' = #'; i.e., H#*' is a sheaf.

Proof. Let B, (resp. Z,) be the presheaf of exact (resp. closed) one-
forms in 2%t,z. B, and Z, are defined on affine wf open sets of X. We
have two exact sequences of presheaves:

0—H'—0y8,0 — B, ®;0 —0
0—B,®;0 —7,®;0 — &' —0

0% ®,0 is a sheaf and #° is a sheaf with HY(U, #") = 0 for any open
set U and ¢ > 0. Consequently B, ®,Q is a sheaf. Further, for affine
wf open sets U C X', H(U,B,®;0) =0 because H'(U, 0%, ®,0) = 0.
Also, Z,®,0 is a sheaf, because it is the kernel of the sheaf map
Ad®1: Q/r ®z0 — 512 Q0.

Thus, for U an affine wf open set of X, I'(U, #") = I'(U, #"), which
proves that ' is a sheaf.

2. Definitions and Elementary Properties

Recall that X is a smooth scheme of finite type over k. If UC X
is an affine open set and I'(U,0y) is very smooth, we shall say that U
is very smooth affine. For the definition of very smooth, see [8, Def. 3.1].
A complete transversal intersection [8, Def, 3.8] is very smooth affine
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[8, Th. 3.6], and a very smooth affine open set can be covered by princi-
pal open subsets which are complete transversal intersections. Also, very
smooth affine open sets are absolutely non-singular [8, Th. 2.5 et. passim.,
also 2, 0., 22.5.8].

If UcC X is a very smooth affine open set, we may associate to U the
Monsky-Washnitzer cohomology groups H'(I'(U,0y),R ®, Q) [8, Th. 5.6].
If VC U are both very smooth affines, then the restriction morphism
I’'(U,05) — I'(V,0) induces a unique homomorphism H(I'(U,0y), R ®,Q)
— HYI'(V,0x), R @, 0).

DEFINITION 1. 2 is the presheaf of R ®,Q-modules defined on very
smooth affine open sets U C X by:

rwu,#) = HI(U,0x),RR,0) .

A% ig the i-th M-W (Monsky-Washnitzer) presheaf.

Since any principal open subset of a very smooth affine open set is
a very smooth affine o#° is defined on a basis of the topology of X.

If (X,04) is the reduction modulo m of a wf prescheme (X7, %) flat
over R [5, 4.1], and if Q%1 is the sheaf on continuous R-differentials
of 0%, then X may be identified with X', and the presheaf 2 (1.3) is
canonically isomorphic to s#* on those open subsets where #* is defined.
Thus the sheaves ' and /' are canonically iscmorphic all ¢ > 0.

Although (X, 05) may not be liftable to a smooth wjf prescheme over
R, the existence of liftings for very smooth open subschemes of X leads
to a proof of the following theorem.

PROPOSITION 2. s#° and ' are both sheaves.

Let K be the algebraic closure of k£ in I'(X,0y). K is separable and
finite over k. Consequently K has a weak formalization S which is a
discrete valuation ring and a finite extension of R [8, Lemma 7.2].

PROPOSITION 3. #° is a constant sheaf isomorphic to S ®,0.
Proof. Since any two open sets of X have non-empty intersection,
we may assume that X itself is very smooth affine. In this case the
theorem follows trivially from (1.5).
3. The Residue Map

Suppose A is a very smooth k-algebra and tc A is not a unit or a
zero-divisor. Monsky has defined the notion of an admissible pair [6, Def.

https://doi.org/10.1017/50027763000015117 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015117

104 DAVID MEREDITH

4.11; an example of such a pair is (4,%) if A and A/(f) are both com-
plete transversal intersections.

DEFINITION 1. Let U C X be an open affine set, and let D C X be
a hypersurface (i.e. a reduced subprescheme of pure codimension 1 in X).
U is an admissible neighborhood of D if and only if:

(1) the ideal I(D N U) is principal on some te I'(U,0);

(2) (I'(U,04),t) is an admissible pair.

If s,te'(U,0x) each generate I(D N U), and if (I"(U,0%),%) is an
admissible pair, then (I'(U, 0x), s) is an admissible pair. That is, U being
an admissible neighborhood of D is independent of the choice of gener-
ator for I(D N U).

Suppose U is an admissible neighborhood of D, and V is a princi-
pal open subset of U such that VN D+ 6. Then V is an admissible
neighborhood of D [8, Th. 3.5]. Thus, if a point p e D is contained in
an admissible neighborhood of D, there is a neighborhood basis at p con-
sisting of admissible neighborhoods of D.

Notice that if U is an admissible neighborhood of D, then U is an
admissible neighborhood of any (reducible or irreducible) component of
D which has non-empty intersection with U and which is principal on U.
For if £ is a component of D, then since I'(U N D, 0p) is very smooth,
I'(U N E,0z) is a direct summand of I'(U N D, 0,;) and consequently is
very smooth [8, Cor. to Th. 3.5].

PROPOSITION 2. Let U C X be an affine complete transversal inter-
section, and let D be a hypersurface on X. Suppose p, - --,0, €D NTU
are non-singular on D. Then there exists an admissible neighborhood V
of D such that VC U and p;eV,i=1,.-.,7.

Proof. There is, in fact, a principal open subset V of U such that:
D peV;

(2) D N V is non-singular;

@) I(D N V) is principal in I'(V, 0%).

To find V, let p, = I(p;) C I'(U,O%), and let a be the ideal of the singular
subvariety of D N U pulled back to I'(U,0%). Let S = I'(U,0x) ~ "1 5.
Since a & p;, a & Ui p;.  Thus there is an element fea N S. Also,
I'(U,0x)s is a regular semi-local ring and so is a PID. Consequently
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there is an element g € S such that I(D N U), is principal. Let V = Uy,.
V satisfies conditions (1), (2), and (38) above.

I'(V,0y) is a complete transversal intersection, I'(V N D, 0p) =
I'(V,05)/I(D N V) is regular, and I(D N V) is principal. Since k is per-
fect, these three conditions imply that I'(V N D, 0,) is a complete trans-
versal intersection. Thus V is an admissible neighborhood of D satisfying
the proposition.

COROLLARY 3. Suppose D is a hypersurface on X and p is a mnon-
singular point of D. There is an X-neighborhood of p which is an admis-
sible neighborhood of D.

Proof. Choose U C X to be an affine complete transversal inter-
section which contains p. Proposition 2 gives a neighborhood V < U of
p satisfying the corollary.

COROLLARY 4. Let U C X be open and suppose D 1is a hypersurface
on X. Then there is an admissible neighborhood V of D such that
V ~DcC U. Further, if U N D+0, we can choose V C U.

Proof. Suppose U N D=~ 0. Choose a point pe U N D which is
regular on D, and let W be an admissible neighborhood of D which con-
tains p. Take V to be a principal open subset of W such that pe V C U.
V is an admissible neighborhood of D.

In general, select an admissible neighborhood W of D. Such admis-
sible neighborhoods exist by Corollary 3. Let A = I'(W,0x) and I(DNW)
= tA. Choose se¢ A ~ tA such that W, C U. This is possible because
W N U-=+©0, as X is irreducible. Let V = W,. V is an admissible neigh-
borhood of D, and V ~ D=V, C U.

For an admissible pair (4,t), Monsky has defined the residue map:

A
res: H'(A,, R ®,0) — H“( 4

E®;0).
Tixis homomorphism is part of the long, exact Gysin sequence:

A
®

co — HI(A,K) — Hi(A, K) —> H1< , K)——» H*Y A, K) —> - -

where K = R ®;0.

Using the Gysin sequence, we will define the residue of a local section
of the sheaf 2" with respect to a prime divisor (i.e. an irreducible hyper-
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surface) on X. The idea is to map sections of ' to the ‘“zero’th M-W
cohomology” of D in such a way that the kernel of this map consists
precisely of those sections which extend to points of D. First we must
specify what we mean by the “zero’th M-W cohomology” of D, as D is
not in general a smooth variety.

Fix a prime divisor D on X, and let £ C D be the maximal smooth
open subvariety of D. FE is an irreducible k-prescheme of finite type.
Let K, be the algebraic closure of k¥ in I'(F,0g). Since k is perfect, we
may set S, = the weak formalization of K, over R. The next lemma
shows that S, ®,Q functions as the “zero’th M-W cohomology group”
of D.

LEMMA 5. Suppose U C D is a very smooth affine set. Then Sp ®,0
= HI'(U,0,), R ®; Q).

Proof. Since U is smooth, U C E. FE is connected, and so K, is
the algebraic closure of & in I'(U,0,). The lemma is then a consequence
of (2.3).

DEFINITION 6. Let 7: D — X be the inclusion map. Let K, denote
the constant sheaf S, ®,0Q on X. Define #9 =i, o i*(K,), and define
&» to be the kernel of the canonical surjection K, — #7.

A% is the extension by zero of the constant sheaf S, ®,Q on D, and
we have an exact sequence:

0 *p K, H, 0.
PrOPOSITION 7. If U C X is open, I'(U,¥p) = 0 for almost all prime

divisors D.

Proof. X is a noetherian space, so X ~ U contains at most a finite
number of prime divisors D. I'(U,%p,) # 0 if and only if DN U = 0,
so I'(U,%p,) = 0 for almost all prime divisors D.

Suppose that V is an admissible neighborhood of a prime divisor D.
By Lemma 5 and the Gysin sequence, Monsky’s residue map is a homo-
morphism :

resp: I'(V ~ D, #)— I'(V ~ D, %)) .

If 4 is the restriction map, the following sequence is the initial portion
of the Gysin sequence, and thus is exact:
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res,

0—> I'(V, o) 2, I'V~D,#)—I(V~D,%) .

The remainder of this section is devoted to extending the homo-
morphism res, to a morphism of sheaves,

res,: H#' ——> Fp .

For notational purposes, D will continue to denote some fixed prime
divisor on X,

LEMMA 8. Suppose W C V are admissible neighborhoods of D. Then
the following diagram commutes (where the vertical arrows are restric-
tion maps):

resp

0—> I'(V, £ -, I'V~D, #Y—TIT(V ~D,%p)

l l l

resp

0 —> I'(W, #) > (W ~ D, ) 23 7 (W ~ D, &) .

Proof. Let A=1I(V,0y), B=1(W,0x), sA =1V N D), and tA =
I(W N D). The restriction homomorphism A — B induces a map of admis-
sible pairs (4,s) — (B, t) which has ramification degree one [6, Def. 4.2];
consequently the lemma follows from Lemma 5 and [6, Th. 4.3].

DEFINITION 9. Define the morphism
resp: H#'—— Fp

as follows: If U < X is open, choose V so that V is an admissible neigh-
borhood of D and V ~ D < U (Corollary 4). The homomorphism

res,: ['(V ~ D, #)—T'(V ~ D,¥p)

is Monsky’s residue map. Extend res, to U in such a way that the fol-
lowing square commutes (where the vertical arrows denote restriction
maps) :

resp

raw,x#)y — I'(U,%p)

l !

resp

r'V~D,#)—>I(V ~D,%p

4. A Theorem on Residues

Retain all of the notation of §3.

https://doi.org/10.1017/50027763000015117 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015117

108 DAVID MEREDITH

The main business of this section is to prove the following theorem:
if D is a prime divisor on X and p € D, then there is an X-neighborhood
U of p such that res,: I'(U ~ D, #") — I'(U ~ D, %) is surjective. Thus
we can find a cohomology class on U ~ D which has a prescribed residue
at D and zero residue on every other prime divisor passing through p.
In fact, our proof will show that every very smooth affine neighborhood
U of p such that each “absolutely irreducible” component of D is globally
principal on U has the desired property.

We will first prove the theorem under the additional assumption that
D is “absolutely irreducible”. i.e. K, = k. Then we will construct an
appropriate neighborhood U of p and a field extension K of k such that
the components of K X, D are absolutely irreducible. Given a residue on
D, we will construct a cohomology class on K X, U ~ K X D which, when
pushed down to U ~ D, has the required residue.

ProOPOSITION 1. Let (A,t) be an admissible pair. There exists
ceH'(A,R ®;0) such that res (¢) = 1.

Proof. Let A" be a weak formalization of A, let B' be a weak
formalization of A4,, and let T be a preimage of ¢t in A'. The differ-
ential dT/T e D'(B") is clearly closed. Monsky’s map 2,: D'(A"/TA"Y) —
DY(B")/D'(A"), which is a homology isomorphism, yields 2,(1) = dT'/T mod
-DYAY. Thus res (dT/T) = 1. [ef. 6, Th. 1.5, Th. 4.1]

COROLLARY 2. Let D be a prime divisor on X and pe D. Suppose
further thoat K, = k. Then for every wvery smooth affine neighborhood
U of p such that D N U is principal on U, the residue homomorphism :

resp: I'(U ~ D, #") — I'(U ~ D, ¥p)
18 surjective.

Proof. Let teI'(U,0x) generate I(D N U). Select an admissible
neighborhood V of D such that V C U (8.4). If T is the preimage of
t in some weak formalization of I'(U,0y), then the differential dT/T
represents a cohomology class ce I'(U ~ D, #"). The proof of Proposi-
tion 1 shows that if ¢ is the restriction of ¢ to I'(V ~ D, #"), then
respr=1eI'(V~D,¥,). Consequently resp,oc =1eI'(U~D,%,). Since
I''U~D,%,) = R®,0 by assumption, res, is surjective.

Having proven a special case of our theorem, we need now to study
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the effect of ground field extension on the cohomology sheaves. In order
to study extension of the ground field, we must give a further sheaf-
theoretic interpretation of Monsky’s residue map. In particular, we must
clarify the notion of a residue at a not necessarily irreducible hyper-
surface.

If U is an admissible neighborhood of a prime divisor D, let
A=IU,0x) and tA = I(D N U). Then by definition I'(U ~ D, #") =
H'(A,,R®,0); and by (3.5), I'(U ~ D,¥p) = HY(A|tA,R®,0Q). Further,
the residue map:

A
tA

res: (4, B 8;0) — B'( 5 R ®; Q)

is precisely:
resp: I['(U ~ D, #") —I'(U ~ D, %)) .

Suppose now that (4,t) is an admissible pair. Let U = spec A and
D = V(tA). If D is irreducible, then we may make the identifications
of the previous paragraph, but D need not be irreducible. We want to
interpret the residue homomorphism:

A
tA

res:Hl(At,R®ZQ)——+H"< ,R@zQ)
when D is not necessarily irreducible. The basic idea is that the residue
at D of a cohomology class of U ~ D is the direct sum of the residues
on each irreducible component of D.

To make this precise, let D,,.--,D, be the irreducible components
of D. We shall assume that each D, is principal on U. Let ;4 = I(D)),
and let g,: A/tA — A/t,A be the projection map. Since A/tA is very
smooth,

n . A n A
L9 — L%y

is bijective. Consequently each A/¢;A is very smooth [8, Cor. to Th. 3.5].
That is, U is an admissible neighborhood of each D;. The induced map:

4 r®,0)

L A
0( ). EJO
;H(g».H( -

A ,R®ZQ>’—_)§®HO(

is an isomorphism (5, Th. 5.7). Since
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o[ 4 p ):F ~ D,
H(tZA, ®ZQ (U ’ Di)’

we have a canonical isomorphism :

g*:H"( A

= )——>;)@r(U~D,ym).

This leads to a diagram which will relate the homomorphisms res and
resp,:

U ~ D%%ﬁLH°

D 5 res\ /

Z@HU D,%5)

LEMMA 3. (1) is a commutative diagmm.
Proof. 1t suffices for the lemma to show that the following diagram

commutes:

HU~Q%%JE»MFQ£®Aﬁ

tA
@ r% (g4):

I'(U~D,%p)

Let B=A,,..4.., Then A, = B,, and the inclusion map f: A — B is
a map f:(4,t) — (B,t;) of admissible pairs of ramification degree one
[6, Def. 4.2]. Consequently we have a commutative square [6. Th. 4.3]:

H 1(f)j( lH {6

res:, of B
H'(B,, R ®,0) % H (tiB,R@)ZQ).

rest of A
H'4,,R ®,0) =, H(tA’
@)

The homomorphism H'(f) is the identity map. Further, B/{;B = A/tA,
as the primes ¢;A are comaximal. Thus H'(f) = (g,);, res, = resp,, and
the diagram (3) is just the same as (2), which proves the lemma.

The next lemma is an extension of (3.4). It demonstrates an im-
portant local property of ground field extension.
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LEMMA 4. Let D be a prime divisor on X and let K be a finite
extension of k. Suppose U is an affine neighborhood of the generic point
of D. Let D,,---,D, be the irreducible components of K X,D. There
exists an admissible neighborhood V < U of D such that V X, K is an
admissible neighborhood (over K) of each D;.

Proof. Choose W C U to be an admissible neighborhood of D (3.4).
Let A =I'(W,0%) and tA = I(D N W). Because W is admissible, both
A and A/tA are very smooth over k. Consequently, both A ®, K and
AJtA ®, K are very smooth over K (5, Th. 5.9).

Let S=A ~tA. S is a multiplicative set since D is irreducible.
More importantly, (A ®, K)s is a regular semilocal ring of height 1 whose
maximal ideals correspond to the components D; of D x, K. Thus there
is an element fc¢ S such that the ideal of each D, is principal in (A ®;K);.
Let V=W, V is an admissible neighborhood of D. We shall prove
that V X, K is an admissible neighborhood of each D,

Let B=TI'(V X K,0y,,x) = A;®; K, and set I(V x,K N D, =t,B.
No ¢, is a unit, and the ideals t,B are the minimal primes of ¢tB. Both
B and B/tB are very smooth over K, as they are localizations of very
smooth rings. Since B/t{B is very smooth, each B/{,B is very smooth
[8, Cor. to Th. 3.5]. Thus V X, K satisfies the conditions required by
the lemma.

Retain the conditions and notation of Lemma 4, and assume in addi-
tion that U is very smooth affine and D is principal on U. Let S be a
weak formalization of K. We ghall use Uy to denote U XK, Dy to
denote D X, K, ete. Note that Uy is considered as o K-variety, and thot
all M-W cohomology sheaves on V are formed with respect to S. We
will prove that if every map

resy,: ['(Ux ~ Dy, #Y) — I'(Ux ~ Dy, &p,)
is surjective, then
res,: (U ~ D, #) ——I'(U ~ D,%p)

is surjective. This result, stated as Corollary 6, is the key to proving
the theorem announced at the beginning of this section.

In order to prove this result, we will first construct isomorphisms
¢y and p which make the diagram below commute:
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I(U ~D,#)®, 8 =2%L U ~D,#,)®;8

| g

IUx ~ Dy, #) ~E5% 52 @ I(Ux ~ Dy, &)

We will also prove that if resp ® 1 is onto, res, is onto. The desired
corollary will then follow easily.

Let A=TI(U, 0y), tA=I1IDNU), and B=AQ; K = I'(Ug, Oy,).
Both A and B are very smooth, and the inclusion map A, — B, induces
an isomorphism [8, Th. 5.9]:

p:H(A,R®;0) ®z S — H'(B,,S®;0) .

This is the first of the two required maps.

To construct +, choose an admissible neighborhood V € U of D such
that V, C Ug is an admissible neighborhood of each D; (Lemma 4). Note
that the restriction maps:

T:F(UND,‘SPD)——"F(V"’D:*SPD)
7;: I'(Ux ~ Dg, &p) —> I'(Vg ~ D¢, %)

are bijective. Because these maps are bijective, we may construct + over
V instead of over U.

Let A’ =1(V,00), B = A" Q, K = I'(Vg,0p,), and t,B’ = I(D; N V).
We still have tA’ = I(V N D) and tB’ = I(Dx N V). A’[tA’, B'[tB’, and
B’/t,B’ are all very smooth, and the natural map f: A’/tA’ — B’/tB’ in-
duces an isomorphism [8, Th. 5.9]:

Al

B ®1: B2

E®,0)®: S — (-2, 58,0).

tB"’

From (3.5), H'(A'/tA’,R ®,Q) = I'(U ~ D, ¥5; and from Lemma 3 there
is the isomorphism

H( 2 ,S®ZQ)~—+ 5@ (Vi ~ Dxy &) -

Let ¢ = g, o (H()®D.

In order to show that (4) commutes, we consider first the square:
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res® 1 A’

H(A, R ®,0) ®p S uy,Rc»QyORS
5) Hl(h)l LHﬂ(f) ®1

H\(B!, S ®,0) m%%&%q,

2|

res

where H'(h) is the cohomology homomorphism derived from the inclusion
map h:A’— B’. To see that (5) commutes, replace H(A'/tA’, R®,0)
Qe S, by HDMA)/DA)) ®,Q S, and replace H'B'/tB’,S®,Q) by
H'(D(A)/DA)) ®r S Q0. These substitutions are permissible, as S is
a free R-module.

In terms of our sheaves and Lemma 3, (5) becomes

IV ~ D, #)®, 8 2L 1y ~ D, #,)®,8

(6) pl lw

(Vg ~ Dy, #Y) ~ZI52 U P(Vy ~ Dy, ) -
1=1

Diagram (6) is a special case of (4), where V has been substituted
for U. Taking account of the fact that the restriction maps » and »;
are bijective, the commutativity of (4) is immediate from (6).

Suppose now that res, ® 1 is surjective. Then res, must itself be
surjective, as S is a free R-module.

We collect the above results into

LEMMA 5. Let U be a very smooth affine neighborhood of the generic
point of a prime divisor D on X. Suppose D N U is principal on U. Let
K be a finite extension of k, and let Ur = U X, K. Uy s considered as
a K-variety, and all M-W cohomology sheaves on Uy are constructed with
respect to a weak formalization S of K over R. Let D, ---,D, be the
srreducible components of Dy on Ug.

If the homomorphism :

ZreSDi:F(UK N-’JDK,\-}fl)—"_’> Zji®F(UI< NDKnyi)

18 surjective, then
rves,: (U ~ D, #Y) — I'(U ~ D, ¥p)

is surjective.
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COROLLARY 6. Situation as in Lemma 5. If each homomorphism
resy,: ['((Ug ~ Dy #Y) —— I'(Uxg ~ D;, &p)
18 surjective, then
resy: ['(U ~ D, s#") —> I'(U ~ D, %)
18 surjective.

Proof. By Lemma 5, all we need prove is that
S resy,: [(Ux ~ Dy, #) —> 3. ® I'(Ux ~ Dg, &)
i=1

is surjective. Let (z) € 32, ®@ '(Ux~Dyg,¥p). Choose g, € I'(Ux~D;, #")
such that resp, (6;) = z;. Note that since D; & D; all ¢  j, I'(Ux~D;, ¥p))
= 0. Consequently, res,, (¢)) =0, all 1 j. Viewing each o; as an ele-
ment of I'"(Ux ~ Dg, #Y), let ¢ = > 7,0, Then >, resp, (o) = (z,).

The next lemma is used to show that a divisor may be split up into
absolutely irreducible components by a finite extension of the ground field.

LEMMA 7. Let A be a finitely generated, integrally closed domain
over o field k, and let k' be the algebraic closure of k in A. Suppose k’
1s separable over k, and suppose K is a finite separable extension con-
taining o splitting field of k' over k. Let p be a minimal prime of A ®, K.
Then K is algebraically closed in (A ®; K)/p.

Proof. F =(AQ;K)/p is a free join of A and X over k. Since K
contains a splitting field of %/, F' is also a free join of A and K over &/,
provided we identify k&’ with an appropriate conjugate in K. Because &k’
is algebraically closed in the quotient field of A and K is separable over
K, F=A®,; K. Thus K is algebraically closed in F. [cf. 10, Chap. III,
Th.’s 37, 39, 40.]

The preliminaries are finished, and we come to the main result of
this section.

THEOREM 8. Let D be a prime divisor on X and p e D. There exists
a neighborhood U of p such that the homomorphism :

resy: I'(U ~ D, #Y) —> I'(U ~ D, ¥p)

is surjective.
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Proof. Let K be the splitting field of K, over k, and let S be a weak
formalization of K over R. K, and K are separable over k, because %k
is perfect. Since @y, is regular, there is a very smooth affine neigh-
borhood U € X of p such that:

(1) DNU is principal on U;

(2) D x,K has only principal components on U X, K.

Set V=Ux,K, and let D,,--.,D, be the irreducible components of
D x, K. V isconsidered as a K-variety, and all M- cohomology sheaves
on V are taken with respect to S.

By Corollary 6, it suffices to prove that

resp,: I'(V ~ D;, ) —> I'(V ~ Dy, ¥p,)

is surjective for each 2. We will show that K,, = K, which by Corollary 2
implies that res,, is surjective.

Let U’ © U be an admissible neighborhood of D such that V' = U’ x K
is an admissible neighborhood of each D, (Lemma 4). Define A = I'(U’, 0y),
B=I(V,0,) =AQ.K, tA=I(DNU), and ;B = 1D, N V). Recall
that K, is the algebraic closure of k in A/tA, and Kj, is the algebraic
closure of K in B/t;B. A|/tA is integrally closed, so—by Lemma 7—K is
algebraically closed in B/t;B. That is, K;, = K.

5. The sheaf ¢!

The results of the foregoing sections permit us some theorems de-
seribing the cohomology of #'. As previously, (X,0y) is a connected,
smooth prescheme of finite type over a perfect field %, and R is a com-
plete, discrete valuation ring with residue class field k. Asin 4, we will
use finite ground field extension to facilitate the following proofs.

LEMMA 1. Let U C X be an affine complete transversal intersection,
and let D be a principal hypersurface on U. There exists o finite exten-
ston K of k and principal hypersurfaces D, ---,D, on U X, K such that
if Uy=UXi K, and U, =U X, K ~ Ui, D;:

1 W, 0y,) is a complete transversal intersection ;

2 I'tU; N D;yy,0p,.,) is a complete transversal intersection;

B) Dx,K=D,.

If we set V=U~D and Vo=V X, K, we may conclude from the
lemma: there exists a decreasing sequence of open sets UyD U, D ---
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> U, CV, such that if D, = U,;_, ~ U,, then D, is a principal hyper-
surface on U,;_,, and (I'(U;_,, 0y,), I(U;_, N Dy)) is an admissible pair. In
the case where K =k, this means that we may cut out of U a very
smooth hypersurface, then from what is left a second very smooth hyper-
surface, and so on, until what is left is o subset of V. Moreover, if k
is infinite, we may always toke K = k.

Proof. It is not difficult to show that, if A is a finitely generated
smooth algebra over k and if € A is such that A/fA is reduced, then there
exists a finite extension K of &k and non-zero-divisors ¢, =1, ¢, --,t,_;,
t, =t of A®,K such that

(A Qi Kyt
()

is a smooth k-algebra, 1 < ¢ < m. Thus there exist principal hypersurface
D, such that D, = D X, K and I'(U; N D,,,, ®p,,,) is a regular ring. Since
r'w;, 0y, is a localization of I'(U, 0x) ®, K, I'(U;, 0y,) is a complete trans-
versal intersection. Thus I'(U; N D,,,,p,,) is a regular ring which is
a complete transversal intersection modulo a principal ideal. Moreover,
dim I'(U; N Dy,y, 9p,,,) = dim I'(U,;, @y,) — 1. Consequently, since k is per-
fect, I'(U; N D;,,,9p,,,) is a complete transversal intersection.

The next proposition shows that a cohomology class—that is, a local
section of #'—is determined by its value on any non-empty open subset
of its domain of definition.

PROPOSITION 2. Let U C X be a non-empty open set. The restric-
tion morphism r. I'(X, 2#Y) — (U, ) is injective.

Proof. Since s is a sheaf (1.2), it suffices to prove the proposition
for X an affine complete transversal intersections and U a principal open
subset of X. Let A =I'(X,05) and U = X, for some teA. If (4,%) is
an admissible pair, then by the Gysin sequence the proposition is true.

If (A,t) is not an admissible pair, we must resort to the construc-
tion given in L.emma 1. Let K be an appropriate extension of k. Set
X, =X XK and U,= U XK. Recall that, when considering a finite
field extension, all M-W cohomology sheaves on X, are constructed with
respect to some fixed weak formalization S of K. By Lemma 1, there exist
open sets X, D --- D X, C U, such that the restriction maps I'(X;, s#")
— I'(X;,,, " are injective. Thus the restriction map:
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I'(X,, " —> I'(U,, #*)
is injective. This last map can be rewritten as:
rQ®L:I'X,#) RS —> I'(U, #) @z S .
Since .S is a free R-module, » must then be injective.

As a converse to the previous proposition we next present a theorem
which describes the maximal extension of a section of s#'. A lemma
is required.

LEMMA 3. Let U C X be an affine complete transversal intersection,
and let V. U be open affine. Let K be a finite extension of k, and let
S be a weak formalization of K over R. Let Uy=U XK, V, =V x,K,
and n:U,— U be the natural projection. Suppose e I'(V,#") is such
that for any prime divisor D on U, respo = 0. Then for any prime
divisor D’ on U,, resp (o) = 0.

Proof. Let D’ be a prime divisor on U,, D = =(D’), and D" = z~¥(D).
D is a prime divisor on U, and D’ is a component of D”. Denote the
components of D” by D' = Dy, -.-,D). According to the discussion pre-
ceeding (4.5), I'(Vy, #") = I'(V, ") @ S and > resp, = resp, ® 1. Under
this identification, z,(¢) =¢ ® 1. Since by hypothesis, res, ® 1(¢ ® 1)
=0, resy. m,(o) = 0.

THEOREM 4. Let U C X be open, and let o I'(U, #Y). Then o ex-
tends to an element of I'(X, s#") if and only if, for every prime divisor
DcCX, res,o =0.

Proof. Suppose ¢ extends to I'(X, #"). Then res,oc ['(X,p), and
I'X,%,) =0.

To prove the opposite implication, assume first that X is an affine
complete transversal intersection and that D =X ~ U is a principal
hypersurface on X with irreducible components D;. Let A = I'(X, 0y).
If tA =I(D) and (4,t) is an admissible pair, then (4.3) and the exact
Gysin sequence;

0 — I'X, #Y) —> [(U, #2222 5 @ (U, #5);

shows that ¢ extends to I'(X, s#Y).
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If (A,%) is not an admissible pair, we shall construct an appropriate
field extension K of k as in the proof of Proposition 2. Then we will
show that ¢ ® 1 extends from U %, K to X x, K, and that this exten-
sion is the image of a cohomology class on X.

Choose K to satisfy Lemma 1, and define X, =X XK. Letr:X,—X
be the canonical projection, and fix a weak formalization S of K over R.
As usual X, is considered as a K-variety, and all M-W cohomology sheaves
on X, are constructed with respect to S. Let U, = U X, K, and construct
on X, principal hypersurfaces D,, - .-, D, such that if X, = X, ~ Ui_, Dy,
then (I'(X;,0x,), I(D;,; N X;)) is an admissible pair, and U, D X,.

By Lemma 3, res,. r,.(c) = 0 for any prime divisor D’ on X,. Con-
sequently we may use (4.3) and the exact Gysin sequence to prove that
if n,(0) € I'(X;, 57, then =z, (c) extends to an element of I'(X;_,, #"). Thus
we have shown that z,(¢) is defined on X,. Since I'(X,, #") = I'(X, #")
RS, and I'(X,#Y) C I'(U, #Y), e I'(X, o) [10, 1.3.5.10]. Thus we have
proven the theorem in the case that X is a complete transversal inter-
section and X ~ U is a principal hypersurface on X.

In general, replace U by an open subset of U such that X ~ U =D
is a hypersurface. Then X can be covered by affine complete transversal
intersections W;, where either W, C U or D N W, is principal on W,.
In either case, ¢ extends to an element ¢, ¢ I'(W,, #%). By Proposition 2,
the ¢, patch together to extend ¢ to I'(X, #").

Recall (3.6), where we defined sheaves #%, K,, and &,. Let 2 be
the collection of prime divisors on X, and define sheaves:

y: Z(_Byl)
Dea

K = ZC-BKD
Dea

T = @ A .

Deca

We have an exact sequence:

0—>F —>K—>T 0.
LEMMA 5. For every open set U C X and 1> 0, H(U,%¥) = 0.

Proof. By [2, 11.4.12.1], H(U,K) = 3 e, ® H(U, K ,), and HYU, )
= > pes ® H(U, %) for ¢>0. Thus HYU, K)y=0 and H(U,7)=0
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for ¢ > 0. Also, I'(U,K)— I'(U,7) is surjective, because I'(U,K,) —
I'(U, %) is surjective for each De 2. The lemma follows.

By (3.7), the map:

res,: H' ——> S
Dea
is a morphism of sheaves. Let ¥ = ker (3 res;) and ¢’ = coker (3] resp).
We shall prove that € and %’ are constant sheaves.

LEMMA 6. ¥ s a constant sheaf with stalk I'(X, #").

Proof. Let UC X be open. By Proposition 2 and Theorem 4,
I'(X, s#") is precisely the kernel of the homomorphism > res,: I'(U, #")
— (U, &).

Next we shall construct a constant sheaf which will turn out to be
canonically isomorphic to %’.

Define a module:

lim I"'(U, ")
—>
- U open s
I'X, s
and let A be the constant sheaf with stalk H. The composite map for

each open set U:

rw, #) 222, /U, #) — 1, K

has kernel equal to I'(X,s'). Consequently, this map induces a mono-
morphism +: H-K.

Let " = coker 4. The canonical injection ¥ — K induces a morphism
p: %€ — %", and we have a commutative diagram of sheaves:

o 50, o ¢ — 0
| | le
0— H Y, F %" 0

LEMMA 7. p is bijective, so €' = €' is constant.

Proof. First we will prove that p is injective. Suppose U C X
is open. Since u,%) — UK is injective, it suffices to show that
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ze'(U, H) N I'(U, &) implies that & pulls back to an element y of
r, #Y.

Because zeI'(U, H), there is an open set V C U such that z pulls
back to an element y ¢ I'(V, s#"). On the other hand, xz e I"(U, %) implies
that for» any prime divisor D such that DN U # 0, res, ¥ = 0. By
Theorem 4, y extends to an element of I'(U, o).

In order to prove that p is surjective, we will show that for any
point pe X, &, + H, = K,. If S, is the module defined in (3.6), then:

yp= §9®SD®ZQ

»eD

K,=3 @ S,®,0.

Dea

Thus, to prove the lemma, it suffices to show that one can construct a
cohomology class having prescribed residues on the prime divisors D such
that p € D, provided that almost all of the prescribed residues are zero.
The existence of this cohomology class will follow easily from the results
of §4.

Suppose we prescribe residues z; € S,, ®, 0 for some finite collection
of D;e 2 passing through p. Using (4.8), select a neighborhood U; of
p and a cohomology class ¢, € I'(U; ~ D,, #") such that res,,¢; = z;. If
D =+ D, is another prime divisor passing through p, then res,q; = 0.
The cohomology class ¢ = > ; 04, defined on M, U; ~ |UJ; D;, has the pre-
sceribed residues z; on D, and zero residue on every other prime divisor
passing through p.

We conclude this section with a theorem which gives information
about the cohomology of the sheaf s#'. One short construction facilitates
the statement of the theorem.

Let & be the sheaf im (3] res;). We have two exact sequences of
sheaves:

1 00— —H"—% —>0

2 00— —HF—%—0

I'X,?¥) =IrX,%) =0, and by Lemma 5 H'(X,%) = 0. Thus we may
identify I'(X,¥’) with HY(X,#). On the other hand, since ¥ is constant,
H(X,#") = H(X,%). If U isopenin X, let ¢: I'(U,¥) — H(X, #") be
the composite map I'(U,¥) — I'(U,¥") = I'(X,¥¢’) = H(X, 7).
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THEOREM 8. Let U C X be open, and let
r: ' X,#") — (U, #Y)
v H(X, #") — HY(U, ")
be the restriction morphisms. The following is o long exact sequence:
0 — I'(X, #") — (U, #) =22, 17U, )
X, e L BU, #) — 0.

Consequently, coker v and ker v’ are both finite R @, Q-modules. More-
over, H(X,#") =0 for ¢ > 2.

Proof. Sequences (1) and (2), together with Lemmas 6 and 7, imply
immediately that:

0—I'\u,%) — v, #) — U, )
—I'(U,%¢") — H(U, %) — 0

is exact. But I'(U,%¥) = I'(X,#"), I'(U,¥¢’) = H(X,#"), and H(U,%)
= HU, s#"). Consequently the proposed sequence is exact.

Coker r and ker 7’ are finite because I'(U, %) is finite. By Lemma 5,
HY{(U,%¥) = 0 for ¢ > 2. Thus, by sequence (1), H{(U, s#*) = 0 for 7 > 2.

Remark. Monsky has proven [7] that for any simple k-scheme X,
I'X, ") is a finite R ®, Q-module. His proof is quite long, however—
by an easy application of [5, 5.4]—if X is projective and liftable to a
projective smooth R-scheme then both I'(X, ") and H'(X, #") are finite
dimensional R ®, Q-modules.

6. Applications

Algebraic Curves

Suppose that the k-scheme (X,0y) is a connected, absolutely non-
singular projective curve. Then (X, 0x) may be lifted to a flat, nonsingular,
projective R-scheme (X’,0%) [9, pp. 35]. 0% possesses two important
properties: its weak completion (X', 0%) is a weak formalization of (X, Oy);
and X' ®,Q = X* is a nonsingular projective curve over the field K =
R ®,0Q. Furthermore, if we assume that k is algebraically closed in Oy,
then K is algebraically closed in ¢%; also, the genus g of X equals the
genus of X* [3].
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Let 9%,z be the sheaf of 1-forms on X’. Then the sheaf of 1-forms
%, on X' may be identified with the weak completion of £%.,, (1.1).
Also, Q% ®;0 = Q%% is the sheaf of 1-forms on X*. Let B* (resp. BY)
be the sheaf of exact 1-forms on X* (resp. X7). We will use the canoni-
cal identification HX*, B*) = HYX*, 0%), 1 > 1, arising from the exact
sequence of sheaves:

0 K 0% B* 0;
where K is the constant sheaf with stalk K. Similarly, we will identify
HY{X', B") = HY(X',0%), ¢ > 1.

We need two exact sequences: the first involves the group of differ-

entials of the second kind H = I'(X*, Q4. x/B*) over X*. It is namely,

00— I'X*, Q%x) — H — H(X*,0%) — 0.

This sequence is exact, because dimy H = 2¢, and dimg I'(X*, Q%) =
dimy H(X*, 0%) = ¢ [1, pp. 127, 130].

The second sequence is a dagger version of the first; it is the initial
segment of the long exact cohomology sequence relating, Bf, and #*:

0— I'(X", Q%t,2) ®z0 — ' X', #") — H(X', 0% ®,0 .
THEOREM 1. Dimjy HY(X, #") = 2g9. Also, dimy H'(X,#") = 1.

Proof. Note that we may identify the sheaf s#* over (X,0y) with
the sheaf #* over (X',0%). Let i:X'— X’ be the canonical morphism.
If H is the collection of differentials of the second kind over X*, we
have a natural homomorphism «: H — I'(X", 5#') induced by the maps Q% x
et Q% ®z0 and B*—i@» B'®,0. This homomorphism permits
us to connect the two exact rows below into a commutative diagram:

0— I'X* P —> H —> H'(X*,0%) —>0

00— I'X, %1/ @20 —> I'(XT, #") —> H' (X', 0%) Q0 .

By the comparison theorem [5, 5.4], the maps ¢, are isomorphisms.
Consequently, « is bijective, which implies dim, I'(X', #) = dim; H = 2g.

Moreover, since s is surjective, st is surjective. Thus the natural
map HY(X', Q%) ;0 — H(X, #") is bijective (since HY(X',0%) = 0 for
1> 2 by the comparison theorem). By the comparison theorem again,
dimg H'(X', Q%t,2) ®, 0 = dimy H(X*, Q%) = 1.
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COROLLARY 2. Retain all of the above mnotation. Let U C X be
open, and let X ~ U = {P,,.--,P,}. The divisor D = > 7_, P; has degree
dg-D=3,dim, (Op,/mp,). We have the following formula for the Euler
characteristic of #* on U:

dimg (U, ") — dimz H(U, #") =29 + dg-D — 1.
Proof. By the exact sequence of (5.8),
dimy I'(U, /") = dimz H(U, #") =29 — 1 + dime I"(U, &) .

Since I'(U, %) = >1., '(U, ¥5,), it suffices to prove that dimg I'(U, %5,
= dimg Sp; ®,0 = dim,, (0Up,/mp,). Since Sp, is the weak formalization of
Op,/mp,, the necessary equality follows from [8, Lemma 7.2].

Remark. If A is an absolutely non-singular, finitely generated, one-
dimensional k-algebra, then H' (spec A4, ') = 0. Consequently, the pro-
ceeding lemma gives us a technique for computing dim; H'(A; R ®,0).
In particular, suppose k is algebraically closed. Then dim, H'(A; R ®,Q)
is just 2g + m — 1, where m is the number of points needed to complete
spec A to a projective curve. This is the result suggested by topological
consideration. A more computational proof of this result is given in
[9, Th. 15.12].

Further Numerical Results

Let (X', 0%) be a smooth scheme over R, with weak completion (X', %)
and reduction modulo m(X,0y). If ,zit“', 1 > 0, denote the cohomology
sheaves of the complex of ¢%-modules Q%1 ®,0Q, we have the spectral
sequence :

Ept = H? (X', £7) = H"(X', Qxt/n @5 Q)

Moreover, the topological space X' may be identified with the topological
space X, and via this identification there is a canonical isomorphism of
sheaves #' =~ #' and H = #? (cf. 881, 2). Thus the spectral sequence
may be written

Eé’q = HP(X, %q) $> Hn(XT; Q:YT/R ®Z Q)

PROPOSITION 4. (a) The canonical map H'(X', Qv ®,0) — I'(X, o)
arising from the spectral sequence is bijective.

() We have the following exact sequence, where the maps are all
natural (that s, they commute with morphisms of R-schemes):
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0 —> H'X, #") — H(X', O3t/ ®,0) — I'(X, #?) — 0

Proof. In our spectral sequence, Ei’ = 0 if any of the following
conditions are satisfied (5.8):

7<0

7<0

j=0 and i>1

j=1 and 71>2.

Thus (a) and (b) follow immediately.

Suppose X’ is a projective smooth R-scheme. Let X* = X’ x,0.
Then Q% ®;0 = 2%z ®2Q, and H(X*, 23z ®z0) = H(X', 2%,z ®, Q)
= H'(X", 231, ®,0) = I'(X, 7).

(The second equality follows from [5, 5.4], and the third from Proposi-
tion 4.) Similarly, we have the exact sequence:

0 — H'\(X, #") —> HA(X*, Q3 ®;0) — ['(X, #?) — 0
COROLLARY 5. If g is the dimension of the Picard group of X, then
dim, I'(X, o#") = 2g.

COROLLARY 6. If V is a complex analytic manifold obtained from X*
by imbedding a finitely generated field of definition for X* into C, then
dimg I'(X, #%) + dimg H(X, s#Y) = B(V) ,

the second Betti number of V.
Proofs. Corollary 6 follows from the equality:
dimy I'(X, #%) + dimx H(X, ") = dimz H(X*, Qv r ®z0)
and dimg H*(Q%vz) ®z0) = B(V), by [4].

To prove Corollary 5, we will show that dimyp H'(Q%z ®z0) = 2g.
If g is the dimension of the Picard group of X, then ¢ is also the dimen-
sion of the Picard group of X* [3]l. By (4) again, dimy; H'(Q%z ®;0)
= B(V) = 29.

Remark. Using the l-adic cohomology of Grothendieck, one can prove
that B,(V) is independent of the choice of the lifting X’ and the imbed-
ding X’ — V. Consequently, the conclusions of Corollaries 5 and 6 do
not mention the lifting X’, and one might conjecture that they remain
true even when (X, 0;) has no global lifting.

https://doi.org/10.1017/50027763000015117 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015117

COHOMOLOGY GROUP 125

Birational Invariance of s#'. We shall prove that the group of global
cohomology classes of ' is a birational invariant for complete, abso-
lutely non-singular varieties over k.

Suppose that K is a finitely generated extension of our perfect ground
field k. Let 2 be the collection of prime divisors of K/k (where a prime
divisors is a discrete valuation ring in K which has quotient field K and
contains k). If % is the collection of affine, non-singular models of K/k,
we shall view # as an inductive set under the relation U < V if and
only if I'(U,0y) C I'(V,0,) as subsets of K.

If U <V, then there is a natural injection:

Yoy I'(U, ) — I'(V, HY)

as follows. The inclusion map I'(U) — I'(V) induces a continuous map
p#:V—U. Let & be an open cover for U and # be an open cover for
V subordinate to p~'(«). Since k is perfect and U and V are nonsingular,
U and V are smooth. Thus we may assume that & and % contain
only very smooth affine open sets. If U'cs/ and V' e % are such that
w(V’)y U/, then the associated homomorphism I'(U’) — ['(V’) induces a
homomorphism

rw, £ — I'(V, "

[8, Th. 5.6]. These homomorphisms patch together to give +y,,. To
show that 4, , is injective, choose each element of # to be a principal
open subset of some element of /. Recall (5.2), which shows that if
V' c U’ is open, then I'(U’,#") — I['(V’, ") is injective. Consequently,
Yy, v 18 injective.
Since # is inductive, we may define:
T =1lim I'(U, ") .
—>
Uex

T is analogous to the classical notion of one-dimensional cohomology
classes of the third kind. Note that if U’ e %, then the natural map

lim I'(U, #) — T
Tt

is bijective. The map is onto because the open sets U C U’ are cofinal
in % ; the map is injective because v, is injective.
If De 2, then Ue% is an admissible neighborhood of D if and only if:
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(1) D dominates a prime divisor D’ on U;
(2) U is an admissible neighborhood of D’.

LEMMA 7. If De 2, then there is an admissible neighborhood of D.

Proof. If U is an affine model of K/k on which D dominates a
prime divisor, then U contains an admissible neighborhood of D (3.4).
Thus it suffices to prove the following.

SUBLEMMA. Let K be a finitely generated extension of a perfect
field k, and suppose (S,n) ts a discrete valuation ring of K/k. There
exists a regular, finitely generated k-algebra A C S with quotient field K
such that n N A has height one.

Proof. Let n = tr.dg-,K, and choose z,---,2,_,€S to be algebra-
ically independent over k& in S/n. Define C = klz,, ---,2,], where z, is
a generator for n in S. Since «, is transcendental over k(x,,---,2,_,),
K is a finite extension of k(x,:--,2,). Let B be the integral closure of
C in K. The quotient field of B is K, and tr-dg-,(B/n N B) =n — 1.
Thus n N B has height one. Since B is integrally closed and n N B has
height one, there exists an element fe B ~ n such that A = B, is regular.
A satisfies the sublemma.

Suppose De 2 and (S,n) is the ring of D. Let k' be the algebraic
closure of k£ in S/n, and define K’ = H'(k'; R ®, Q). Note that if U is
a model of K/k such that D dominates a prime divisor D’ on U, then
Sp. is a weak formalization over R of k' (3.6). Moreover, K’ = S, ®,0.

DEFINITION 8. Suppose w e T. Then res, w € K’ is defined as follows:
choose an admissible neighborhood U of D and an open affine subset

V < U such that we I'(V, #"). Let D’ be the hypersurface on U domi-
nated by D. Set

I'eSD w = YeSp w .

We must show that this definition does not depend on the choice of U.
The definition is obviously independent of the choice of V — U. Note
that the definition of res, also remains invariant whenever we replace
U by a principal open subset of U which is still an admissible neighbor-
hood of D. Since any two admissible neighborhoods of D contain princi-
pal open subsets which are admissible neighborhoods of D and which
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may be identified with one another, res, o is independent of the choice
of U.

PROPOSITION 9. Let De 2. Suppose U is a model of K|k such that
D dominates some point P of U (not necessarily a point of codimension
one). If weI'(U,#") C T, then res, v = 0.

Proof. If P has codimension one, then the proposition follows im-
mediately from (5.3). Otherwise choose V to be an admissible neighbor-
hood of D. Let (S,n) be the ring of D. I'(U) C S and I'(V) C S; further,
n N I'(V) has height one. Since V is nonsingular, I'(V)uqroy, = S. Thus
there exists fe I'(V) ~ n such that I'(V); © I'(U). V, remains an admis-
sible neighborhood of D, and U < V,. Considering « as an element of
rw;,#", (6.3) proves that res, w = 0.

THEOREM 10. If X is a complete, non-singular model of K|k, then
I'X,#) ={weT;respo =0 for every De2}. Consequently, I'(X,#")
s a birational invariant.

Proof. Let TV ={weT;resp o =0 for every D e 2}. Proposition 9
shows that I'(X, ") C T’; and (5.3) proves the opposite inclusion.

Remark. T’ is analogous to the differentials of the second kind on X.
If U and V are both models of K/k (complete or not), then I'(U,#")
and I'(V, ") each contains a subgroup corresponding to 7. We may
extend the conjecture which follows Corollary 6, and suggest that perhaps
dimR®ZQT’ = 2¢, where ¢ is the dimension of the Picard group of any
complete normal model for K/k. We must use normal model here, be-
cause 7T’ can be defined even if K/k has no complete nonsingular model.
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