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1. Introduction. Beineke and Schwenk [1] have defined the bipartite Ramsey
number R(m, n), for integers m, n(1<m<n), to be the smallest integer p such that any
2-colouring of the edges of the complete bipartite graph K, , forces the appearance of a
monochromatic K,, .. In [1] the following results are established:

R(1,n)=2n-1 (1.1)

R(2,n)<4n-3 1.2)
with equality if there is a Hadamard matrix of order 2(n—1), n odd,

R(2,4)=13 (1.3)

R(3,n)<8n-5 (1.4)

R(3,n)=8n-7 (1.5)

if there is a Hadamard matrix of order 4(n—1),

R(3,3)=17. (1.6)

On the basis of this evidence, Beineke and Schwenk formulated the conjecture
R(m,n)=2"(n-1)+1. 1.7

In the present note, we strengthen (1.4) to
R@3,n)s8n-7, (1.8)
thus establishing equality in (1.5). In particular, we show that

R(3,4)=25 (1.9)
R(3,5)=33, (1.10)

thus solving two specific problems listed by Harary [5]. Further, we show that (1.7) is false
in general by providing a number of counter-examples.

An extension of the Beineke-Schwenk problem, which has been mentioned by Hales
and Jewett [4] and by Guy [3], is the determination of those ordered pairs (x, y) such that
in any 2-colouring of the edges of K, ,, some K, ,, with the m vertices a subset of the x
and the n vertices a subset of the y, is monochromatic. We write

(x, y) = (m, n)
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to denote the truth of the latter statement and
(x, y) 4 (m, n)

to denote its falsity.

Guy [3] reports that S. Niven has determined some of those pairs (x, y) for which
(x, y)— (m, n) in the cases (m, n)=(2,2), (2, 3),(2,4). In §4 of the present note, we shail
investigate some properties of the symbol —, determine precisely those (x, y) for which
(x, y)— (m,n) in the cases (m,n)=(2,2), (2,3), (2,4), and we solve most of the
corresponding problem for (m, n)=(3, 3).

The corresponding extremal problem, a special case of which was first posed by
Zarankiewicz [6], asks for the smallest integer Z = Z(x, y; m, n) such that any Z-edge
subgraph of K, , contains K,,, with the m vertices a subset of the x and the n vertices a
subset of the y. It seems appropriate to refer to the numbers Z(x,y; m, n) as the
Zarankiewicz numbers. Upper and lower bounds for these numbers have been given, and
for small values of the parameters many exact values are known; see [3] for a comprehen-
sive summary of results and a list of references.

The connection between the Ramsey problem and the extremal problem is obvious
and is stated in the following proposition.

Proposrrion 1.1, Z(x, y; m, n)<[ixy] implies (x, y)— (m, n), where [p] denotes the
smallest integer not less than p.

Hence any method which gives an upper bound for Z(x, y;m, n) also yields informa-
tion about those (x, y) for which (x, y)— (m, n), and in the special case x =y gives an
upper bound for R(m, n). We shall pursue this approach in §3.

2. An upper bound for R(3, n).
Tueorem 2.1. R(3,n)<8n-17.

Proof. Let A, B denote the two (8n —7)-sets into which the vertex set of K, _7g,_7 i$
naturally partitioned. Suppose that the edges of Kg, ;4,-7 are coloured in two colours,
red and green, say. We have to show that there is either

(i) a subgraph K, , with the 3 vertices a subset of A and the n vertices a subset of B,
with all edges the same colour, henceforth referred to as a monochromatic K ,, or

(ii) a subgraph Kj, with the 3 vertices a subset of B and the n vertices a subset of A,
with all edges the same colour, henceforth referred to as a monochromatic K, ;.

For a vertex set {v,v,...,0}SA(resp.B), define stg(v,,0,,...,0,)=
{ue B(resp. A): edges uv,,uv,,...,uv, all red}, stg(vy,v,,...,0,)={ueB(resp. A):
edges uv,, uv,, ..., uv, all green}.

Case (i). No vertex of Ky, 7,7 has as many as 4n—2 incident edges of any one
colour.

Denote by R the red-coloured subgraph of K, _;4,_; and assume, without loss of
generality, that there are more red edges than green edges. Let A=A ,UA, and B=
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B,UB, where A,, B, consist of vertices of degree 4n—~3 in R and A,, B, consist of
vertices of degree 4n—4 in R.

Label the vertices in A u;, Uy, . .., Ugn_q, With dg(u) = dg(u)= ... = dg(ug,_,), and
the vertices in B vy, vy, ..., Ugh—v, With dg(v,)=dr(v,)= ... = dg(vg,_7), where dg(u),
dr (v) denote the degrees in R of the vertices u, v. Then Aj={u;, Uy, ..., Us_3t S Ay,
B, ={v;, vs,...,v4,_3} < B,. We claim that there is a vertex u of A/ such that

Iste(W)N Bj|=n+1. 2.1

For otherwise, number of red edges between A} and B} < n(4n—3). Therefore, number
of red edges between A} and B\ B{=(3n—3)(4n—3). Therefore, number of red edges
between A\ A} and B\ B} <(n—1){(4n—3). Therefore, number of green edges between
A\ A} and B\ B,=(12n—-13)(n—1). Now we count the members of the set S={u, v, v/,
v":ue A\ A%, v, v’, v"€ B\ B}, uv, uv’, uv" all green}. Since |A\ A}|=4n—4, and since
|S] will be minimised when the vertices of A\ A{ all have green degree as nearly equal as
possible, we find

(12n—-13)(n-1)
|S|>( 4n—4 ).(4n—4),
3

where the generalised binomial coefficient (3) is defined by (5)=&x(x—1)(x—2) for all
x € R. Hence

IS|>(n—1) (4"3—4) (n=3)

={(n—1) . number of such triples v, v’, v",

and so there is a green K, ;. So (2.1) is established.

Now (2.1) implies that the number of red paths of length 2 originating at u is at least
(n+1)4n—4)+Bn—-4)(4n—-5)=16n%2—-31n+16 and, since 2n—-2)(8n—-8)=
16n%—32n+ 16, either there is a vertex u’e€ A such that |stg(u, u’)|=2n, or there are n
vertices u;,, U, ..., u; €A such that |stg(u, u,.‘)lz 2n—1 (j=1,2,...,n). In the first
case, the number of red edges connecting members of st (u, u’) to members of A \{u, u’}
is at least 2n(4n—6)>(n—1)(8n —9) and so there is a u”€ A such that |stg(u, v, u")|=n
and we have a red Kj,,

In the second case, the number of red edges connecting members of stg(u, u; ) to

members of A\{u, u,} is at least
2n-1)(4n-6)>(n-1)(8n-9) (n>3)

so that the same conclusion holds provided n>3. If n =3, then either the number of red
edges connecting members of stg(u, u;) to members of A\{u, u;} is greater than

(2n—1)(4n—6), forsome j,
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in which case the same argument works again, or eachof u; , u;, ..., u; is red adjacent to
each of the 5 vertices of stg(u)N(A\A?) which, of course, gives a red Kj ; at once.
Case (ii). There is a vertex u,, say of A, with at least 4n—2 incident edges of the
same colour, say red.
Denote the vertices of B red-joined to u, by vy, vy,..., Usn_s,. ... Define

Si={we A\ u,:edge wy, is red} (i=12,...,4n-2),
T.={we A\u,:edge wy, is green}  (i=1,2,...,4n-2).

Hence
|Si|+|T,.|=8n—8 (i=1,2,...,4n-2). 2.2)

Case (ii) (a). |T,|+|Tal+. . . +|Tan_o|>4(n—1)(4n—1).
The number of quadruples {w, T, T, T,} with 1si<j<k=<4n-2, we TNT,NT,
is at least

(4"_3)(23n)+(4"”5)<2n3—1)>(n—1). (4n3_2)

= (n—1) . number of such triples T;, T, T,.

Hence there exist v, v’, v” € B such that |stg(v, v/, v")|=n and we have a green K, ;.
Case (ii) (b). |S;|+|Sa+. . . +|Ssnz|>4(n—1)(dn-3).
We first show that, if any vertex of A belongs to as many as 2n of the sets S, then
either a red K, , or a green K, ; is present. For, if u,€$,NS,N...NS,, say, then, if
there is to be no red Kj,, each of the 8n—9 vertices of A \{u,, u,} can belong to at most

2n
n—1 of the sets S;(i=1,2,...,2n). Hence the sets S; (i=1,2,...,2n) satisfy Y |S;|<
i=1

2n

8n2—15n+9. By (2.2), we have Y |T;|=8n*—n-9, so that the number of quadruples
i=1

{w, T, T, T} with 1 <i<j<k<2n, we TNT,NT, is at least

n+1

2
3 )> (n— 1)( 3n) =(n—1). number of such triples T;, T, T,.

@n—%(
Hence a green K, ; is present.
On the other hand, if among the 4(n—1)(4n—3)+1 (or more) pairs (¥, S;), u€ S; c
A, no u appears more than 2n—1 times, then at least 4n—3 of the vertices of A, say
Uy, Us, . . ., Ugy_p, appear exactly 2n—1 times in such pairs. Therefore some S, say S,
contains at least 2n—1 of the vertices u,, Us, . .., Us,_2, SAY Uy, Us, . . ., Uy,. The remain-
ing 2n—2 appearances of each of u,, u;, ..., u,, are distributed among 4n—3 of the sets
S, and so the number of triples

{uia uj’ Sk}
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2=i<j=2n, u,y €S, 2<k<4n-2, is at least

(2n _2)(;)} (2n —2)(" ; 1) >(n —2)(2n2— '

Hence some pair appears in S, and n—1 of the other S, and, together with u,, this yields a
red K, .

Case (i) (¢). |TW|+|T|+. . . #|Toal=4(n—-1)@dn-1), |S|+|S)+.. . +|Ssol=
4(n—-1)(4n-3).

By the argument of Case (ii) (a), we deduce at once that the only case needing
consideration is when 4n—4 of the vertices of A \{u,}, say u,, us, ..., Uy,_s, lie in 2n of
the sets T; and the remainder, u,,_,,..., Ug,_7, lie in 2n—1 of the sets T, These
incidences yield (4n—4)(2n)-subsets and (4n—4)(2n —1)-subsets of a (4n—2)-set and, if
we can show that some triple occurs in n of these subsets, we will have established the
existence of a green K ;.

If this is not the case, then a simple count of triples reveals that every triple belongs
to exactly n—1 of the subsets. Consider a fixed element and suppose that this element
belongs to x of the (2n)-subsets and y of the (2n —1)-subsets. Then, by counting triples
containing this element, we obtain the equation

x<2n2— 1)+ y<2n2— 2) —(n- 1)(4n2—3)

2n-Dx+(2n—-3)y=2n-2)(4n-3).

This equation has solutions x=n, y=3n—-2, and x=3n-3, y=n—1 so that, if we
suppose that p of the elements yield the first solution and ¢q the second solution, we
obtain

) = (n—2) . number of such pairs u, u,.

ie.

pn+q(3n-3)=(4n-4).2n
p(B3n—2)+q(n—1) =(4n—4).(2n-1)
ptq =4n-2
giving p=2n-2, q=2n.
Hence there is an element e which lies in n of the (2n)-sets and (3n—2) of the
(2n—1)-sets. So the number of pairs (e, f) with e, f lying together in the same set is

n2n-1)+3n-2)2n-2)=8n>-8n+4>(4n-3)2n-1)

so that there is a fixed element f which lies together with e in at least 2n of the sets. The
number of triples (e, f, g) with e, f, g lying together in the same set is at least 2n(2n—3)>
(4n—4)(n—1) so that there is a fixed g which lies together with e and f in at least n of the
sets.

This completes the proof in all possible cases.

CoroLLArY 2.2. R(3, n)=8n—7 if there is a Hadamard matrix of order 4(n-1).

2
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This follows at once from the theorem and from the result (1.5) of Beineke and
Schwenk. In particular, the known Hadamard matrices of orders 12 and 16 establish

R(@3,4)=25
R(3,5)=33.

3. Upper bounds for the Zarankiewicz numbers. Henceforth we assume that
suffices are ordered, i.e. we say that K, ,, is a subgraph of K, , if and only if the a vertices
are a subset of the x and the b vertices a subset of the y.

Our upper bound method for the Zarankiewicz numbers is based on the following
lemma.

Lemma 3.1. Suppose that, in a subgraph of K, ,, the number of copies of K, is at least
a. Then
(i) the number of copies of K,. (b<c) in the subgraph is at least

min (i) (di)
d =1 \C
where the d, (1 <is< (Z)) are non-negative integers subject to

5 (#)sa

(it} The number of copies of K., (a <c) in the subgraph is at least
Q) @
min Z
d; =1 \C

where the d; <1sis( )) are non-negative integers subject to

@ g
Z 2.
i=1 \@

Proof. (i) Let A, B denote respectively the x-vertex set and the y-vertex set. Let

di<1<is (x)) denote the number of vertices of B joined by an edge to each of the
a

vertices in the i™ a-subset of A. Then the number of copies of K, is

(a)
L (i‘);a.
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But then the number of copies of K, is

£
Si\e/

(i) Similar,

In order to establish an upper bound for Z(x, y; m, n) for particular values of the
parameters, Lemma 3.1 may be applied several times to a p-edge subgraph of K, , and for
suitable successive choices of a, b and ¢, it may be possible to prove that the number of
copies of K,,, =1, so establishing Z(x, y; m, n)<p.

We have been unable to determine, in the general case, the optimal sequence of
choices of a, b, ¢ in the lemma. However, in the special case x =y, best results appear to
be obtained by counting successively subgraphs K, ,, K35, K34, ..., K1, K if m is
odd, or K, Ks3, K43, -5 Kpppne1, K if m is even.

We illustrate the method for Z(48, 48; 4,4) and, in so doing, provide a counter-
example to the conjecture (1.7) of Beineke and Schwenk.

Tueorem 3.2. Z(48,48; 4,4)<1148.
Proof. Consider a 1148-edge subgraph of K g5 In Lemma 3.1(i), take a=b=1,

a8 /d 48 (4
¢ =2. Then the number of copies of K, ,= ) ( 2’), subject to Y, ( 1') = 1148. Hence the
\ .

i=1

number of copies of K1'2>44(224) +4(223) =13 156.

Now in Lemma 3.1(ii) take a=1, b=2, ¢=3. The number of copies of K;,=
1128 1128

¥y (‘;‘), subject to Y (‘i‘)a 13156. Hence the number of copies of K,,=
i=1 i=1

748(132> + 380(131) =227 260.

Now, in Lemma 3.1(i), take a=3, b=2, c=4. The number of copies of K;,=

17296 17296

Y (Z‘), subject to Y (;‘)2227 260. Hence the number of copies of K;,=

i=1
6
10 860(4

Finally, in Lemma 3.1(ii), take a=3, b=c=4. The number of copies of K,,=

194580 d 194 580 d .
Y ( 4'), subject to Y ( ‘>>195 080. Hence the number of copies of K, ,=

i=1 i=1 \3

4
167(4)21.

CoroLLARY 3.3. R(4,4)<48.

Proof. Z(48,48; 4,4)<1148<1152= [5.48.48]. The result is an immediate conse-
quence of Proposition 1.1.

i=1

)+6436(i) =195 080.
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Note that, when m =n =4, conjecture (1.7) states that R(4,4)=49.

Similar arguments to that of the proof of Theorem 3.2 have been used to construct
the following table of upper bounds for the bipartite Ramsey numbers R(m, n). A table of
values of f(m, n)=2"(n—1)+1 is included for purposes of comparison.

n 4 5 6 7 n 4 5 6 7
m m
4 48 65 82 98 4 49 65 81 97
5 115 149 182 5 129 161 193
6 257 328 6 321 385
7 566 7 769
Upper bounds for R(m, n) fim,n)=2"(n-1)+1

4. The pairs (x,y) for which (x, y)— (m,n). Given a pair of integers (m, n),
1=m=n, we define the critical set for (m, n), denoted by C,,, to be the smallest set

{(xl’ YI)’ (x2’ y2)) ..y (xp, YP)}

with the property that (x, y)— (m, n) & there exists i (1<i<p) such that x=x, y=y,.
It is clear that, for each pair (m, n), the critical set C,, is well-defined, and its
determination is equivalent to the determination of precisely those (x,y) for which
(x, y)— (m, n).
Trivially, we have C;,={(1,2n—1)} for all n=1. We now record, in a series of
lemmas, some properties of the symbol — and of the sets C,, ,, which will enable us to
determine C,,, C,;, C,,4 and to come close to determining C; 3.

Lemma 4.1

; (x',y)—>(mn) if x'=x and y'=y
(1) (x, }’)-—) (M, n) $ { (x’ )’)_) (m/’ nl) if m<sm and n'sn
(x',y)» (mn) if x'<x and y's<y
(x,y)»(m',n") f m'=2m and n'=n.

(i) (x, y) (m, m)> {

Proof. These are immediate consequences of the meaning of the symbol —.
Lemma 4.2. (x,y)€C,.. & (3, )€ Cp -
Proof. This is an immediate consequence of the definition of C,, ..

For the next lemma, we require some of the terminology of design theory. A -
(b, v, r, k, A)-design is a collection of b k-subsets of a v-set such that every element of the
v-set belongs to r of the k-subsets and such that every t-subset of the v-set is contained in
exactly A of the k-subsets. Clearly, the collection of b (v— k)-subsets of the v-set, which
are the complements of the original k-subsets, forms a t-(b, v, b—r, v — k, A")-design, with
-k

A= A(” t
design is isomorphic to its complement, then the design is called self-complementary.

k
) / ( t)’ called the complement of the original design. If, in the case k =3v, the
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\ 1) -design, then (x, y) # (m, n).

y ) / ( ))-design with the proper-

ties (a) no m blocks have n points in common, (b) if m>2 the design is self-complementary,
then (x,y) (m, n).

Proof. (i) We have to colour the edges of K, , using two colours in such a way that no
K, . is monochromatic. Let M be a y X x incidence matrix of the design. Label the rows
of M with the vertices of the y-set and the columns of M with the vertices of the x-set,
and let M be the y X x adjacency matrix for the subgraph of colour 1. Suppose that some
subgraph K|, , has all of its edges colour 1. Then some n rows of M have ones in m
common positions, i.e. some n blocks of the design contain the same m elements—a
contradiction.

If all other edges are given colour 2, then the fact that the complementary design has
the same parameters as the original implies that no K, , has all of its edges colour 2.

(ii) As in (i), we use an x Xy incidence matrix for the design as an x Xy adjacency
matrix for the subgraph of colour 1. Then no subgraph K, , can have all of its edges
colour 1, otherwise some m blocks of the design have n elements in common—a
contradiction.

The same is true in colour 2 if the design is self-complementary. When m =2, the
same is true in colour 2 whether or not the design is self-complementary, since if 2 blocks
of the complement have intersection size =n then the corresponding 2 blocks of the
original also have intersection size = n.

Lemma 4.4. (i) (x,y)eC,,, implies x=2m—1,y=2n-1.
(ii)(a) (2m, 2(n- 1)(2<'"m_ 1)) 4 (m, n).

b) (Zm 1,2(n— 1)(2"‘ 1)+1)ecm_".
(iii)(a) (2(m—1)( ),Zn)-ﬁ(m, n).

) (2(m 1)(2” 1)+1,2n—1)ecm,n.

Proof. (i) If x<2m—2 then, for any y, the edges of K, , can be coloured in 2 colours
so that no one of the x vertices has more than m—1 incident edges of each colour.
Similarly if y<2n-2.

(ii)(a) There is an m—(2(n—1)(2mm_1), 2m, (n—l)(zmm_1>, m, n—l)-design

consisting of every m-set of the 2m-set repeated n—1 times. Result follows by Lemma
4.3(i).

(b) Let s=2(n—1)(2mm_ 1>+1 and consider any 2-colouring of the edges of

Lemma 4.3. (i) If there exists an m — ( X, =,

Ni= N | ¢

y
2
(ii) If there exists an (n—1)— (x V. 3%, 3y, x (
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K,._1s Each of the s vertices defines a subset of the (2m —1)-set of size m or greater,
each member of which is joined to it in the same colour. In 2(n—1)(2mm— 1)+1 such
subsets, some m-subset appears 2n—1 times and hence n times in the same colour, and

-1
this yields a monochromatic K,, .. Hence (Zm—l, 2(n—1)(2mm >+1) — (m, n). How-
2m— 2m-1
ever, (2m—2,2(n—1)( '”m 1)+1)74(m, n) by (i) and (2m—1,2(n—1)( "'m ))74

(m,n) by (ii)(a) and Lemma 4.1(ii). Hence(Zm ~-1,2(n—- 1)(2mm_ 1) + 1) €Cpn

2n-1

(iii)(a) There is a self-complementary (n—1)— (Z(m - 1)( ), 2n,(m-1)

n
(2n n—l>, n, (m—l)(n+1))-design consisting of all the n-subsets of a 2n-set repeated

m—1 times and in this design no m blocks have n points in common. The result follows
by Lemma 4.3(ii).
(b) This follows by an argument analogous to that of (ii}(b) above.

Lemma 4.5. G, ={x, y1)s (x5, ¥2), ..., (x,, ¥,)} with 2m—1=x,<x,<...<x,=

2(m-1) <2nn—1)+1 if and only if (i) (x, y;)—=>(mn) (i=1,2,...,p), and (it) (x.,

—1’ yi_l)_ﬁ(m’n)(i=1’2""’p—l)-

Proof. If (x, y) is such that x=x,, y =y, for some i (1<i<p), then (x, y) = (m, n), by
Lemma 4.1(i).

Suppose (x, y) — (m, n). We have to show x=x, y=y, for some i (1<i=<p). We can
assume x, <x =<y, and so there is an i (1<i=<p—1) such that x; <x <x;,,. It suffices to
show y=y,. Suppose, on the contrary, that y <y, Then, since (x,,,—1, y;,—1)+ (m, n),
we have (x, y,— 1) (m, n), since x<x;,,—1, and so (x, y) (m, n) since y<y,—1. This
is a contradiction and the result follows.

Lemma 4.6. (i) If 2x+1,2y+1) -4 (2, n), then there is a collection S|, S,, ..., S, of
(x+1) y-subsets of a (2y+1)-set such that |S,NS;|<n-2 for any i,j (1si<jsx+1).

(i) If 2x+1,2y+1)-4 (3, n), then there is a collection S,, S,,...,S.., of (x+1)
y-subsets of a (2y +1)-set such that, for any i, j, k (1si<j<ksx+1)

IS,nS,|+|S,nsk|+|S,nSk|"‘|S,ns,ﬂSkISn+y—2.

Proof. (i) Suppose that the edges of K, ., ,,+; have been coloured using 2 colours so
that no K, , is monochromatic. Adjacency in one colour to the (2x +1) vertices yields at
least x +1 subsets, each of size at most y, of the (2y + 1)-vertex set. Denote these subsets
by T, T,, ..., T.,y. Then for any i,j (1si<jsx+1), we have

IT A TI<|TI+|T|+n~2y-2. @.1)
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For otherwise, denoting the complement of T, in the (2y + 1)-vertex set by T}, we find

ITiNTj|=2y+1~|TUT)|
=2y +1-{T|+|T|~|T.N T} (4.2)
>2y+1+n-2y—-2=n-1

and so a monochromatic K, , is present. Now to each T; we adjoin arbitrary vertices of
the (2y + 1)-vertex set (if necessary) to form a y-set. Such adjunction preserves inequality
(4.1) and leads to y-sets S,, S,, ..., S,,; with the stated property.

(i) The proof is similar, using the relation

ITINT;N T =2y+1-|TUT,U T,|
=2y+1—{|T.-|+|T,-|+|Tkl—|T,-ﬂT,-l—lTiﬂTkl
“|ITNT|+H|I TN TN T}

in place of (4.2).
We are now in a position to determine C,,, C,; and C,, completely.

Tueorem 4.7. C,,={(3,7), (5, 5), (7,3)}.

Proof. (3,7), (7,3)e C,, by Lemma 4.4, which also shows that (4, 6), (6, 4) » (2, 2).
An easy application of Lemma 3.1 shows that Z(5,5; 2,2)=<13, so that (5,5)— (2, 2).
The result follows from Lemma 4.5.

Tueorem 4.8. C,5={(3,13), (5,11), (7,9), (15,7), (21, S)}.

Proof. Lemma 4.4 gives (3, 13), (21, 5)€ C, ; and (4, 12), (20, 6) (2, 3). By Lemma
4.5, it remains to show (6, 10), (14,8) (2,3) and (5.11), (7,9), (15,7)— (2, 3). The
existence of a 2—(10,6,5,3,2)-design [2], together with Lemma 4.3(i), establishes
6,10)» (2, 3).

Also there exists a 3—(14, 8,7, 4, 1)-design [2]. This is a Hadamard 3-design and,
being the extension of a symmetric 2-design, any two blocks intersect in at most 2 points.
Therefore, by Lemma 4.3(ii), (14, 8) » (2, 3).

Simpie applications of Lemma 3.1 can be made to yield Z(5,11;2,3)=<28 and
Z(15,7;2,3)<53, so that (5, 11), (15,7)— (2, 3).

Finally, to show that (7,9) — (2, 3), we need a slightly different argument based on
Lemma 4.6(i). Suppose (7,9) + (2, 3). Then there is a set of four 4-subsets S, S,, S;, S,4
of a 9-set, no 2 of which intersect in more than 1 point. So the size of the set X ={x, S,, S;}

4 . .
with 1<i<j=4, xe§ NS, is at most (2)=6. But the number of pairs {x, S;} with

1=<i=x4, xe§, is 16 and, since there are only 9 choices available for x, it follows that
|X|=7, a contradiction.
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TueoreM 4.9. C,.={(3,19), (5,15), (9, 13), (23,11), (37,9), (71, 7)}.

Proof. Lemma 4.4 gives (3,19), (71,7)— (2,4) and (4,18), (70,8) (2,4). By
Lemma 4.5, it remains to show (8.14), (22, 12), (36,10)+ (2,4) and (5,15), (9, 13),
(23, 11), (37, 9) = (2, 4). The existence of a 2—(14, 8, 7, 4, 3)-design [2], together with
Lemma 4.3(i), establishes (8, 14) 4 (2,4). There exists a 3—(22, 12, 11, 6, 2)-design [2]
which is a Hadamard design and so the extension of a symmetric 2-design. Hence any 2
blocks intersect in at most 3 points and, by Lemma 4.3(ii), (22, 12) 4 (2, 4). Also there
exists a 3—(36, 10, 18, 5, 3)-design in which no 2 blocks have 4 points in common (see
Appendix for details), so that Lemma 4.3(ii) implies (36, 10) » (2, 4).

On the other hand, an application of Lemma 3.1 can be used to show Z(5,15;2,4)<
53 and so (5, 15) — (2, 4). The three remaining results are each proved by application of
Lemma 4.6().

Suppose (9, 13) 4 (2, 4). Then, by Lemma 4.6(i), there is a collection of 5 6-subsets
S.,...,85 of a 13-set, no 2 intersecting in more than 2 points. So the size of the set

X ={x3 Si’ S,}

. 5
1=si<js<35, xe§;NS, is at most 2(2

)= 20. But the number of pairs

{x, Si }
1=i=<S5, x€§, is 30 and, since there are only 13 choices available for x, we deduce that

| X]|= 4(;) + 9(2) =21—a contradiction.

2
Suppose (23,11)- (2,4). Then, by Lemma 4.6(i), there is a collection of 12
5-subsets S;, S, ..., S, of an 11-set, no 2 intersecting in more than 2 points. So the size
of the set
X= {x’ Sb S’}

. . 1
Isi<j=<12, xe§;NS§, is at most 2( 22)= 132. But the number of pairs

{x’ SI}
1=<i=<12, x€e S, is 60 and, since there are only 11 choices available for x, we deduce that
6 5 .
|X|=5 (2) + 6(2) = 135—a contradiction.
Finally, suppose (37, 9) + (2,4). Then, by Lemma 4.6(i), there ‘is a collection of 19
4-subsets S,, S,, . .., Sy of a 9-set, no 2 intersecting in more than 2 points. Clearly, some
element is in at least 9 of these subsets and, of these 9, some further fixed element is in at

least 4. To make up these 4 4-subsets, we require 4 mutually-disjoint 2-subsets of a 7-
set—impossible.

https://doi.org/10.1017/50017089500003323 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500003323

A BIPARTITE RAMSEY PROBLEM 25

Consecture 4.10. Gy 5={(5,41), (7,29), (9,23), (13,17), (17,13), (23,9), (29,7),
(41, 5)}.

Partial proof. Lemma 4.4 gives (5, 41), (41, 5)e C;; and (6, 40), (40, 6) 4 (3, 3). The
symmetric nature of C,; is a consequence of Lemma 4.2. By Lemma 4.5, it remains to
show (8, 28), (12, 22), (16, 16) » (3, 3) and (7, 29), (9, 23), (13, 17) — (3, 3). The existence
of a 3—(28, 8, 14, 4, 2)-design and a 3—(22, 12, 11, 6, 2)-design [2], together with
Lemma 5.3(i), establishes (8, 28) + (3, 3) and (12, 22) (3, 3). Beineke and Schwenk [1]
have shown (16, 16) - (3, 3). _

On the other hand, an application of Lemma 3.1 gives Z(7,29; 3, 3)<102 and so
(7, 29) — (3, 3). To show (9, 23) — (3, 3), we require a complicated application of Lemma
4.6(ii), the details of which we omit.

The only part of the conjecture which we have been unable to prove is the assertion
(13,17)—> (3, 3).

Three further conjectures worthy of mention are the following:

Conrecture 4.11
(i) Cn+1,4n-3)>(2,n)
(ii) (4n+1,8n-7)—> (@3, n)
(i) C,5={3,25), (5,21), (7,19), (11,17), (31, 15), (83, 13), (133, 11), (253, 9)}.

Finally, we might ask if it is ever possible for an even number to appear as a member
of a pair in a critical set, in any case for a critical set of the form C,,,.

Appendix. We list the blocks of a 3—(36, 10, 18, 5, 3)-design, on the point set
{0,1,...,9}, in which no 2 blocks have 4 common points.

12 345 12 570 13690 23467 24580 34680
12368 12 890 14 568 23490 24689 35790
12379 13 489 14 590 23 589 25678 36789
12478 13 567 14679 23560 26790 45670
12 460 13470 15789 23780 34569 47890
12 569 13 580 16780 24579 34578 56 890
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