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LINEAR ISOMETRIES OF SPACES 
OF ABSOLUTELY CONTINUOUS FUNCTIONS 

V. D. PATHAK 

1. Let X be an arbitrary compact subset of the real line R which has 
at least two points. For each finite complex valued function / on X we 
denote by V(f; X) (and call it the weak variation of f on X) the least 
upper bound of the numbers ^2« l/(^*) ~ f(ai)\ where {[au bt]} is any 
sequence of non-overlapping intervals whose end points belong to X. 
A function/ is said to be of bounded variation (BV) on X if V( / ; X) < co . 
A function/ is said to be absolutely continuous (AC) on X, if given any 
e > 0 there exists an rj > 0 such that for every sequence of non-overlapping 
intervals {[au bi}} whose end points belong to X, the inequality 

i 

implies that 

T,\f(bi)-f(at)\<e 
i 

([7], p. 221, 223). 
We denote by AC(X) the linear space of all absolutely continuous 

complex valued functions on X and define a norm on it by 

(1) I!/Il = II/IL+ V(f;X), fÇAC(X) 
where \\ f\\œ is the usual uniform norm. 

Now let a and b be the greatest lower bound and the least upper bound 
of X, respectively. Since X is compact, a and b belong to X and hence 
[a, b]\X is an open subset of the real line R. Clearly then [a, b]\X is the 
union of a countable number of disjoint open intervals. In order to show 
that AC(X) is a Banach space we first prove the following lemma. 

LEMMA 1.1. Let f G KC{X). Then there is a unique function F on [a, b] 
such that 

(i) F\x = / 
(ii) F is linear on the closure of each component of [a, b]\X. We have 

F 6 AC [a, b] and 
(iii) V(f;X) = V(F;[a,b]). 

Proof. The existence and uniqueness of a continuous function T^on [a, b] 
with properties (i) and (ii) is obvious. It is easy to see that (iii) holds. 
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To show that F £ AC [a, b] it is enough to show that the real and imagin­
ary parts of F belong to AC [a, b]. From (iii) it follows that F is of BV 
on [a, b] and hence Re F and Im F are of BV on [a, b]. Clearly, Re F and 
Im .Fare absolutely continuous and hence N-îunctions ([7], p. 224) on X 
as well as on each component of [a, b]\X. Since [a, b]\X has only a 
countable number of components Re F and Im F are TV-functions on [a, &]. 
The result now follows from ([3], p. 288, Theorem 18.25). 

Let Sx = {G\G £ AC [a, b] and G is linear on the closure of each com­
ponent of [a, b]\X}. 

\\G\\ = ||G|U+ V \G'{t)\dt 
J a 

where ||G||œ is the usual uniform norm. It is well known that AC [a, b] 
with this norm is a Banach space. 

PROPOSITION 1.2. Sx is a closed sub space of AC [a, b] and AC(X) with 
the norm given by (1) is a Banach space which is isometrically isomorphic 
to Sx. 

Proof. Clearly, Sx is a closed subspace of AC [a, b] and hence it is 
complete. Now define a map \px\ AC(X) —> Sx by f —> F where F is the 
unique extension o f / a s defined in Lemma 1.1. Clearly, \px is well defined 
and is an isomorphism of AC(X) onto Sx. Now, 

11/11 = \\f\L+V(f;X) = \\fL+V(F;[a,b]) 

= \\F\\m+ f \F'(t)\dt = \\F\\ = \\Mf)l 

Therefore, fe is an isometry. This implies that AC(X) is complete. Thus 
AC OX") is a Banach space which is isometrically isomorphic to Sx. 

2. By an isometry of a Banach space B\ onto a Banach space B^ we 
will mean a linear norm preserving map of B\ onto B2. The isometries of 
AC [0, 1] were investigated in [1] and in [6]. In this article, we show that 
the techniques of [1], in fact, can be employed to prove that if X and Y 
are compact subspaces of R, then the existence of an isometry T of AC (X) 
onto AC(F) implies that there exists an absolutely continuous homeo-
morphism r of F onto X. Moreover T can be described via r. 

Let V denote the closed unit ball of the space Lœ([a, b]) provided with 
the weak-star topology and let Wx denote the compact space X X V. 
Corresponding to each/ G AC(X) we define/ G C (Wx) by 

f(x, a) = f(x) + J F'(t)â(t)dt, (x, a) € Wx 
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where F is the unique extension of/ as defined in Lemma 1.1. It is easy to 
see that the following lemma holds. 

LEMMA 2.1. The mapping f —» / establishes an isometry between hC(X) 
and the closed sub space Sx of C (Wx) where Sx = {/| / É AC (X)}. 

Next, for (x, a) ' G Wx we define the continuous linear functional Lx<a on 
AC(Z)by 

Lx,aU) = / ( * . « ) , / € AC(Z). 

It follows from ([2], p. 441) that the extreme points of the unit ball Ux* 
of AC* (X) constitute a subset of 

{yLX!a\ y is a complex number with \y\ = 1, (x,a) (E Wx). 
Moreover, it is clear that if Lxa is extreme in Ux*, then a must be extreme 
in the unit ball of L°° ([a, b]), i.e., |a| = 1 almost everywhere on [a, b] 
([4], p. 138). 

For a given x in X we denote by ax the L°° function which takes the 
value 1 on [a, x) (if [a, x) ^ 0) and takes the value — 1 on (x, b] (if (x, 6] 
^ 0). Let 5 be the set of all complex numbers with modulus one and 
having positive real part. 

LEMMA 2.2. For all x G X and y G 5 the functional LXiyax is an extreme 
point of the unit ball in AC* (X). 

Proof. Given x G X} define Hx G Sx by Hx(x) = b — a, Hx = ax a.e. 
on [a, 6]. Now let 7 (î 5. There is a real number M such that 

y(b - a + Mi) = \b - a + Mi\. 

Set 

HXt7 = y(Hx+ Mi) and hx>7 = HXty\x. 

Then** i7 G AC(Z) , 

Lx,yax(hx,y) = hx<y(x) + 7 I yHx{t)oix(t)dt 
J a 

= | |AX.TIU+ I |J9TxV(0l* = \\hxA 
and 

|ii./»(**.7)l < IKTII for (/, |8) € WXJ (t,0) * (xj7ax). 

Now, a result of deLeeuw ([5], p. 61) shows that Lx<yax is an extreme point 
of the unit ball in AC*(Z). 

Now, let Y be another arbitrary compact subset of R with c and d as 
its greatest lower bound and least upper bound respectively. Let T be an 
isometry of AC(X) onto AC(F) . We denote by ^ F (analogous to \px) the 
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isometry of AC(F) onto the closed subspace SY (analogous to Sx) of 
AC[c, d]. Then T = \pYT\px~

l is an isometry of Sx onto SY. Also the 
adjoint of T, namely T*, is an isometry of AC(F)* onto AC(X)* and 
hence maps the set of extreme points of Uy* onto the set of extreme points 
of Ux*. 

The function which is identically equal to 1 on a set Q will be denoted 
by 1 and it will be always clear from the context what Q is meant. 

LEMMA 2.3. T(1) is a constant function on F. 

Proof. Let y Ç Y, y Ç S and let ay denote the function in L°°([c, d]) 
analogous to the function ax in L°°([a, 6]). The fact that Lyf7ai/ is an 
extreme point of Uy* implies that T* Ly<yay is a functional of the form 
bLxM, where |6| = 1 and (x, 0) G Wx. Set g = 7\1) and G = T(1). Then 

g(y)+y pG'WayWdt = \Ly,yay(g)\ = \T*Ly,yay(l)\ = 1. 

Since 7 is an arbitrary element of S, we must have either g(y) = 0 or 
\g{y)\ = 1. Since \\g\\ = 1, we have 

\g(y)\ = 1 and J* G'(t)ay(t)dt = 0 

for each y Ç K Therefore 

0 = G(y) - G(c) - G(d) + G(y), G(y) = $(G(c) + G(d)) 

for each y (z Y. Since g = G\ y, g is a constant function on F. 

For y £ F and 7 G 5, the functional T*Ly,yoty must be of the form 
ô L ^ where 5, x, 0, as such, will depend on y and 7 but it is easy to see 
that 8 is constant for all y £ F and y £ S and ô = T(l). In what follows 
we suppose that 7\1) = 1, for otherwise we may replace T by T/T(l). 
Hence for y Ç F and 7 (î S, the functional T*Ly>yay will be of the form 
LXtp for some x £ X and /3 G Lœ([a, b]) such that |/3| = 1 a.e. on [a, b]. 
For each y G Y let hy £ AC (F) be defined by hy = Hy\Y where Hv £ 
AC [c, d] is defined as Hy(y) = d — c, Hy = ay a.e. on [c, d\. Let M be a 
real number such that 

y{d - c + Mi) = |d - c + M*|. 

Letify>7 = 7 ( i ^ + Mi) and let hy>y = i^,7 | r . 

LEMMA 2.4. Let y £ F, 7 £ 5, g G AC ( F) a ^ 
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Proof. It is easy to see that 

l i ^ . 7 + gllco = \\hy,y\\œ + Halloo 

and that 

f ' \Hy,y'{t) + G'(t)\dt=f* (\Ht.y'(t)\ + \G'(t)\)dt 

where G = ^Y{g). It follows that g(y) = \\g\\œ and that G' è 0 a.e. on 
(c, y), G' ^ 0 a.e. on (y, d). This proves the lemma. 

LEMMA 2.5. Let y £ Y, y Ç 5 and T*LVtyay = Z,Ii(s. Lei & = T-l(hv,y), 
f € AC (X) awd ||& + / | | = ||ft|| + ||/||. 77Jew 

11/11 = LxAf)-
Proof. We have 

IUUI + ||T(/)|| = pu + II/II = il* + /|| = \\T(k + /)|| 
= ll*,.T + r(/)||. 

Therefore by Lemma 2.4 

II/II = ||r(/)H = Lv,yay(T(f)) = T*Ly,yay(f) = LxAf). 
For each y Ç_ Y and each y Ç 5 let AVt7 be the set of all g £ AC( F) 

such that Lytyay(g) — ||g||. Then, since JT -1 is an isometry, we have 

T-l(Ay,y) = | r - H g ) | gtAy.y) 

= | / € A C ( Z ) | T*Lv,yay{f) = ll/||}. 

For each measurable set i3 C ^ let |J5| be its Lebesgue measure. 

LEMMA 2.6. Let y É F, 7 G «S and T*Ly^ay = L ^ . 7/ £ ts an 0£en swfrse/ 
of X which contains x, then there exists an h £ AC(X) swcfr £to 

Lx,eW = \\h\\ and max^ ( Z \E ) \h(t)\ < \h(x)\. 

Proof. We first assume that x is an interior point of [a, b]. Then there 
exists an open interval (p, q) such that x G (p, q) C\ X C. E- We claim 
that T - 1 ^ ^ ) contains an element /1 such that fe(/i) is not constant 
on (£, x]. To see this, one may take /1 = T~l(hy<1) if T~~l(HViy) is not 
constant on (£>, x]. Otherwise let x be the characteristic function of (£,#], 
^ i (0 = JV x(s)ds (t e [a, b]) and/ i = F ^ . Further define ^(s) = j3(s) 
on [a, b]\(p, x], /3i(s) = 1 on (p, x]. Then 

ll/ill + l l ^ 1 ^ ) ! ! = ll/illco + f |ft'(*)l<fc + LxAT-\hv,y)) 
J a 

= M*) + f'x(s)ds + T-\hy,y){x) + I " (f-\Hv,y))'(s)e(s)ds 

= (A + 7-1(A!/,7))(x) + f* (TV + (T-\Hv,y)y)(s)^(s)ds 

^ IIA + r - 1 ^ ) ! ! . 
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Lemma 2.5 now shows tha t / i £ T~l(Ayty). Clearly, Fi is not constant on 
(p, x]. Thus there exists a n / i £ T~1(Ay>y) and a point ex (E (£, x) such 
that 

^l(^l) ^ / l W = ll/lllco. 

Similarly, there is an F2 £ 5 X and a point e2 G (x, q) such that 

and that 

F2(e2) s* F2(x) = \\F2\\œ. 

Define functions Hi and H2 as follows: \f eu e2 G X then #i(£) = Fi(ei) 
for * Ç [au ei], Hx{t) = Fi(/) for / G (*i, 6], H2(t) = F2(0 for * Ç [a, e2), 
i / 2(0 = F2(e2) for / G [e2, b]. H ei d X then <?i must belong to one of the 
components of [a, b]\X which must be an open interval say (a1} bi) C 
(a, b). Thus #i G (ai, b\). Clearly then at least one of the/i(ai) and/i(&i) 
must be different from/i(x). Say for definiteness f\{a{) ^ fi(x)- Then 
define i î i ( 0 = Fi(ai) fort £ [a, a^, Hi(t) = Fi(0 for £ 6 (alt b]. 

If e2 € ^ , the definition of H2 can be modified similarly. It is easy to 
see that Hj\x <E T-l(Av>y) (j = 1,2 ) and that the function h= (Hx + H2 

+ l)\x has the required properties. A slight modification in the above 
arguments will prove the result in the case when x = a or x = b. 

LEMMA 2.7. Let y G F, £> = [t 6 [a, 6]| (T-^H^Yit) = 0}. T^w 

1̂ 1 = 0. 

Proof. Let T*Lyj(Xy — LXt&. Suppose that |D| > 0. Then for some positive 
real number rj at least one of the two sets D C\ [a, x — rj], D Pi [x + y, b] 
has a nonzero measure. Choose such a set and denote it by B. By Lemma 
2.6 there exists an h G r - 1 ^ ^ ) , and an e > 0, such that 

sup /€B \h(t)\ < \h(x)\ — e. 

Next choose a measurable function a with |a| = 1 on B, a = 0 on [a, b]\B, 
j a

b a(s)ds — 0 and such that a8 has a nonzero imaginary part on some 
subset of B with positive measure. Now define 

H = fe(A), F(0 = H(t) + e I la(s)ds (agt^b), f = F | x . 

It is easy to see that \\f\\œ = / (*) , F ' (0 = #'(*) a.e. on [a, b]\B, \H'(t)\ 
= H'(t)ô(t) a.e. on [a, 6]. We may choose h so that H'(t) is either zero or 
one on B from which it follows that Ff (t) T6 0 a.e. on B. 
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Let Si(t) = F'(t)/\F'(t)\ a.e. on B, d^t) = 5(0 on [a, b]\B. We have 

11/11 + \\ir\hv)\\ = H/iu + P \F'(t)\dt + LXAT-\K)) 
J a 

= f(x) + f \F'{t)\dt + f |f'(0|* + (T-\hv))(x) 
J [a,b]\B J B 

+ f (f-\Hy))'(t)5(t)dt = (/ + r-\hs))(x) 

+ / (F'(t) + (î-\Hy))'(t))Kt)dt + f \F'(t)\dt 
J [a,b]\B J B 

= (/ + T~\hy))(x) + P (F + f-\Hy))'(t)h(t)dt 
J a 

è \\f + T-\kv)l 
Also, since aô has a nonzero imaginary part on some subset of B with 
positive measure, LXts(f) 3̂  ||/|| which contradicts Lemma 2.5. 

LEMMA 2.8. Let y £ F, 7 G 5, T*LVtay = Lr,§, T*LVtyay = LVtp. Then 
fi = yd a.e. 

Proof. Let AT be a real number such that 

7(d - c + Mi) = |d - c + Mi\, 

F = y(t-i(Hv) + Mi), 

f = F\x. 

Then Hvn = 7(i?y + Mi), 7 \ / ) = ftyi7 and 

11/11 = ||A,|7|| = Ly,yay(hy,y) = T*Lv,yav(f) = f(v) + P F'{tm)dt. 

Thus 

P ur1 (̂ ))'(oi* = P 1̂ '(01* = P Pimm 
•* a J a J a 

= [\(f-\Hy)y(t)ê(t)dt 

and hence 

7 / 3 ( 0 ( f - ' ( ^ ) ) ' ( 0 = K f - K t f j y W I a.e. on [a,*]. 

Taking 7 = 1 we get 

« ( 0 ( ^ ( # , ) ) ' ( 0 = | ( ? ' - 1 ( ^ ) ) ' ( 0 I a.e. on [a, b). 

Therefore, by Lemma 2.7, j8 = 78 a.e. 
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Let y G F, T*Ly>ay = L,,ô, (x, ô) £ Wx. We see from Lemma 2.8 that 
for each y (~ S there is a v (z X such that 

It is easy to see that there is a unique z/ fulfilling (2). Define a function ^ 

on 5 setting <p (7) = vy where v is obtained by (2). 

LEMMA 2.9. Let y G Y and let ç be as above. Then ip is constant. 

Proof. We show first that <p is continuous. Let 7 6 S and let E be an 
open neighbourhood of ^(7) in X. By Lemma 2.6 there exists an h in 
AC(Z) such that T*Ly>yay(h) = ||&|| and 

sup,€Jn / ? |fe(0| < \h(<p{y))\ - e for some e > 0. 

Then 

11*11 = (T(h))(y) + y f" (f(H))'(t)âv(t)dt. 

So it is clear that for z sufficiently close to 7, <p(z) Ç E. Thus the mapping 
V is continuous and <p (S) is connected. 

Now we prove that <p(S) is a singleton. We proceed as follows: Suppose 
that (p(S) has more points than one. Let T*Lyt<Xy = LXts. We may choose 
a function p £ AC(X), an interval / C <p(S) and a point z £ S such that 
£ = 0 on I, p(<p(z)) J* 0 and 

J* (tx(P)Y(t)l(t)dt = 0. 

If <p(y) e 11 then 

Ly,y*y(T{p)) = L<,(y)tyt(p) = p(<pM) = 0. 

Since there are infinitely many such numbers 7, we have 

Ly,yay{T(p)) = 0 for each y Ç 5. 

However, 

Ly,z*y(T(p)) = L,{z)^{p) = £(*>(*)) ^ 0 

which is a contradiction. 

We now define a mapping r: F into X setting r(y) to be the value of 
the function cp defined above. Thus 

Consideration of T~l will show that r is onto and one-to-one. It will then 
follow from the following theorem that r is an absolutely continuous 
homeomorphism from Y onto X. 
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THEOREM 2.10. Let T be an isometry of AC(Z) onto AC(F) with 
T(l) = 1. Letfo be the identity mapping of X onto itself and let r = r ( / 0 ) . 
Then for each f £ AC(X) and each y Ç Y 

(T(f))(y) = / ( r ( y ) ) . 

Proof. Let j ^ F. We first suppose that g G AC (F) with g (y) = 0. 
Then for all y £ 5 

Jd
cG'(t)ây(t)dt = Ti»,T-v(g) = T ^ i W r - ' f e ) ) = yLHy),yS(T-\g)) 

= 7(7^(g))(T(y)) + f Cf~\G)Y(t)Ht)dt. 
J a 

Therefore (T^(g))(T(y)) = 0. 
For arbitrary g Ç. AC (F) , define gi by 

gi(') = g(0 - g(y), t € F 

Then 

o = (r-Ugi))(T(y)) = (r^te))(r(y)) - g(y)(r-i(D)(r(y)) 
= (r-1(g))(r(3')) - g ( y ) -

Replacing g by 7 \ / ) , we have for y £ F a n d / G AC(X), 

( r ( / ) ) ( y ) = / ( r ( y ) ) . 

If /o is the identity mapping of X onto itself, we have 

r(y) = (r( /o))(y) 

and the theorem is proved. 
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