
14

A Brief Introduction to Poroelasticity and Simulation
of Coupled Geomechanics and Flow in MRST

odd andersen

Abstract

In this chapter, we discuss how two-way coupled fluid flow and geomechanics
can be modeled in the MATLAB Reservoir Simulation Toolbox (MRST) using
the ad-mechanics module. A brief introduction to linear poroelasticity is pro-
vided, which is a common framework for studying geomechanics in the context
of reservoir management or groundwater applications. We review commonly used
poroelastic coefficients and moduli and present a handy tool that removes the need
to manually navigate the large number of poroelastic relationships to compute val-
ues of needed parameters. The chapter further provides three examples where well-
known model cases in linear elasticity and poroelasticity are modeled in MRST
and compared with results from analytical estimates. These examples include the
compression of a dry sample (a linear elastic problem) as well as the compression
of a wet sample (Terzaghi’s problem) and Mandel’s problem.

14.1 Introduction

Understanding the mechanical behavior of the subsurface is a key factor for a wide
and growing range of engineering disciplines. Historical examples include building
and construction, which requires a good understanding of the process of soil consol-
idation, and the extraction of groundwater from confined aquifers, where estimates
of available resources are based on storage coefficients derived from porome-
chanics theory. The oil and gas industry is also concerned with the estimation of
in-place resources, and growing use of hydraulic fracking for well stimulation has
further increased its emphasis on understanding the underlying rock mechanics.

549

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

550 O. Andersen

Another growing field where knowledge of the subsurface stress state is of
fundamental importance is the production of energy from deep geothermal systems
[8] (see also Chapter 12). Fluid flow through such systems is often through fractures
whose properties, whether engineered or natural, to a large degree depend on the
in situ effective stress. Although rocks are often fractured on purpose in the context
of geothermal energy or hydrocarbon production, fracturing is something that must
actively be avoided in other contexts. In the emerging engineering discipline of
geological CO2 storage, an important parameter is that of maximum sustainable
injection pressure [17], which is the maximum pressure at which CO2 can be
injected into an underground reservoir without risking irreversible mechanical
damage in the form of new fractures or reactivating existing faults. Other common
causes of concern that arise when fluids are extracted from or injected into
the subsurface through human activity include the potential for long-term land
subsidence (groundwater, hydrocarbons) and the possibility of induced seismicity.

To a large extent, the underground can be thought of as a fluid-filled porous
medium consisting of rock (solid) and water (liquid). Its mechanical behavior is fre-
quently modeled and analyzed within the framework of linear poroelasticity. This
theory models the linear elastic behavior of porous, fluid-filled systems and how the
mechanics of the solid matrix and the evolving pressure of the pore fluid influence
each other. As reflected by historical practice (reservoir modeling, hydrogeology),
this influence can in many cases reasonably be considered to work mainly in one
direction, which allows the engineer to compute one system (i.e., fluid flow) first
and then estimate the impact on the other (e.g., the mechanical stresses) as a second
step, only if needed. However, in modern applications it is frequently becoming the
case that the two-way coupling of fluid flow and mechanical behavior cannot be
neglected or be sufficiently approximated by simple multipliers.

The goal of this chapter is to show how the coupled effects of geomechanical
stresses, deformations, and fluid flow can be modeled and understood within the
framework of linear poroelasticity, using tools provided by the MATLAB Reser-
voir Simulation Toolbox (MRST). We present a brief introduction to the theory,
building on the concepts originally introduced by Maurice Biot [4]. We focus on
the equations, general poroelastic concepts and quantities, solution strategies, and
the resolution of some well-known problems from the literature through developed
code examples. On the other hand, analysis of the calculated stresses, strains, and
pressures in the context of the actual engineering disciplines just mentioned is not
within this chapter’s scope. It should also be mentioned that linear (and nonlinear)
poroelasticity is highly relevant not only for applications within geomechanics but
also for a whole range of other sciences and industries (e.g., biomedical applica-
tions, manufacturing of composites, gels [5, 12]) in which the understanding of
porous media flow and deformation is central.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 551

Notation: We use lowercase symbols with arrows to denote 3D vectors (�n)
but use plain italic letters for coordinates (x). Higher-rank tensors are usually
represented with boldface and uppercase (C), except for the stress and strain
tensors, which are written using their traditional symbols σ and ε. On the
other hand, the scalar properties mean stress, σ , and volumetric strain, ε, are
written in regular face. For the gradient (of a scalar or vector) we use the ∇
symbol, whereas the divergence (of a vector or tensor) is written using (∇·).
Application of a tensor to another tensor or vector is written with a dot between,
σ · �n, whereas time derivatives are written with a dot above, ζ̇ . We have tried
to remain consistent with the established use of letters and symbols in other
poroelastic literature. As such, we advise the reader to carefully distinguish
betweenK (boldface), which represents the permeability tensor, and K (regular
face), which represents the (drained) bulk modulus of a (poro)elastic medium.

14.2 Governing Equations

In this section, we present the equations governing mechanic deformation in a linear
elastic system and then extend the formulation to the linear poroelastic case by
coupling the linear elastic equations with the equation for one-phase fluid flow in a
porous medium.

14.2.1 Equations of Linear Elasticity

We here consider the elastostatic problem of linear elasticity, for which the solid
under consideration is assumed to be in static equilibrium and the problem does not
depend on time. The purely elliptic governing equations are derived from the force
equilibrium equations (Newton’s second law with zero acceleration) applied to
each point of a continuum, combined with a linear constitutive relationship relating
material stresses and strains. We will here briefly derive these equations expressed
in terms of the (infinitesimal) displacement field of the domain. This version of the
equations is commonly called the displacement formulation.

Displacement and the Strain Tensor

Let � represent a region in 3D space occupied by some continuous solid (or part
thereof). Consider a spatial transformation �χ of this solid that moves each point
from its original position x ∈ � to a new position �χ(x) ∈ �χ(�). The associated
displacement field �u is defined as �u = �χ(x) − x. Furthermore, assume that the
deformation is such that the displacements are infinitesimal; i.e., that the values
of �u(x) are sufficiently small to be (i) negligible compared to the size of � and

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

552 O. Andersen

(ii) small enough to ignore second-order effects of the resulting strains on mate-
rial stresses (see Subsection 14.2.1). Infinitesimal displacements also mean that
the change in position can be disregarded when referencing points in � after the
deformation; in other words, we can use the original coordinates x to refer to the
position of the points before and after the displacement. (This means that we make
no distinction between the so-called Lagrangian [material] and Eulerian [spatial]
descriptions of the solid, a distinction that becomes important when displacements
are finite.) Infinitesimal displacements thus do not affect the geometric description;
they only matter in the effect they have on strains and stresses [15].

We now define the infinitesimal deformation gradient tensor:

F = ∇�u. (14.1)

As the gradient of a vector in 3D space, this is a rank 2 tensor. An infinitesimal,
continuous spatial transformation of an infinitesimal volume element dVx around a
position x ∈ � can be decomposed into a translation, a rotation, and a deformation,
described respectively by �u itself and the antisymmetric and symmetric parts of
the deformation gradient tensor F(x). The translation and rotation components
(�u and the antisymmetric part of F) collectively describe a rigid-body motion.
The deformation component (the symmetric part of F) can be further broken down
into three orthogonal, infinitesimal strains. The symmetric part of F is called the
infinitesimal strain tensor ε:

ε = 1
2(F+ FT) = 1

2

(∇�u+ (∇�u)T
)
. (14.2)

The three (real) eigenvalues of this symmetric tensor are called principal strains
and the associated eigenvectors the principal directions of strain. Strain is a dimen-
sionless quantity. A positive value of a principal strain represents an extension
(“stretch”) along the associated principal direction, and a negative value represents
a compression.

The Stress Tensor and Force Equilibrium

With each point x ∈ �, we can associate a rank 2 tensor, called the stress tensor,
which expresses the internal forces (stress) acting on an infinitesimal surface dSx,�n
around x for any given surface normal �n. In other words, for each spatial direction
�n, the application of the stress tensor provides the corresponding stress vector �τ .
The stress tensor is usually denoted σ , and the stress vector for a given point x and
direction �n can be written as

�τ(x,�n) = σ (x) · �n, (14.3)

where we emphasize that σ is a function of x ∈ � so that �τ depends both on x

and the chosen direction �n. In general, �n and �τ are not colinear. The component

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 553

Figure 14.1 Decomposition of the stress �τ(x,�n) acting on an infinitesimal surface
element dS around a point x having unit normal �n. The stress vector �τ(x,�n) can
be decomposed into a normal component τn(x,�n) (normal stress) and a tangential
component τt (x,�n) (shear stress).

of �τ parallel with �n is called normal stress and the perpendicular component shear
stress; see Figure 14.1.

Stress has the unit of pressure (force per area). For a solid in rotational equi-
librium, Newton’s second law for moments can be used to show that the tensor is
necessarily symmetric. As such, it has three real eigenvalues, which we refer to as
principal stresses, with associated eigenvectors that are called principal directions
of stress. We here use the convention that positive eigenvalues represent extensive
stresses (same direction as �n, thus “pulling” on the corresponding surface element),
whereas negative eigenvalues represent compressive stresses (with opposite ori-
entation of �n, thus “pushing” on the corresponding surface element). The reader
should be aware that the opposite sign convention is also sometimes found in the
literature.

Similarly, Newton’s second law of motion can be used to show that in the static
case (no acceleration), the following relation must hold in the interior of �:

∇ · σ + �b = 0. (14.4)

Here, ∇ · σ denotes the divergence of the stress tensor, which here becomes a
vector, whereas �b represents the body forces, which usually consist of gravity in
geomechanical applications. In other words, �b = ρ �g where ρ is the mass density
and �g is the vector of gravitational acceleration.

Linking Stresses and Strains

In linear elasticity, the constitutive relation linking the stress and strain tensor is in
its most general form represented by a rank 4 symmetric1 tensor C such that

σ (x) = C(x) · ε(x). (14.5)

1 More specifically, the symmetries we here refer to are Cij,kl = Cji,kl = Cij,lk = Ckl,ij when we consider
the individual tensor components of C.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

554 O. Andersen

Table 14.1 Common linear elastic constants.

Name Symbol Unit Description

Young’s modulus E [p]∗ Resistance to uniaxial stress when lateral bound-
aries are unconstrained

Poisson’s ratio ν [–] The negative of the ratio of lateral to longitudinal
strain under uniaxial loading

Bulk modulus K [p] Resistance to uniform compression (inverse of
compressibility)

Shear modulus† G [p] Resistance to shear stress

Lamé’s parameter λ [p] No immediate physical description but results in
a simple expression for the constitutive relation
between stresses when used together with the
shear modulus

Vertical
incompressibility‡

Kv [p] Resistance to uniaxial stress, with constrained
(“roller”) lateral boundaries

∗Pressure = [M/T 2L].
†Also called Lamé’s second parameter.
‡Also called p-wave modulus.

This is called the generalized Hooke’s law. In the most general case in 3D, one
needs 21 independent stiffness coefficients to specify C for an elastic material.
However, when the material in question satisfies certain additional and commonly
encountered symmetry relations (specifically: monoclinic, orthotropic materials)
and we moreover assume the elastic properties to be isotropic (independent of
direction), only two degrees of freedom remain. To link σ and ε in this case, it
is sufficient to specify the value of two different elastic constants. A number of
such constants exist, connected by mathematical relationships that imply that by
fixing two of them (see Table 14.1), all of the others can be derived [20].

The choice of Young’s modulus E and Poisson’s ratio ν enables us to describe
the linear relationship between stresses and strain as

σ (x) = E

1 + ν

[
ε(x) + ν

1 − 2ν
tr
(
ε(x)

)
I
]
, (14.6)

where tr(ε) denotes the trace of ε and I is the identity tensor. Equivalent formu-
lations can, of course, be obtained using different choices of constants. For the
purpose of the discussion in Subsection 14.2.1, for instance, the same relationship
will be presented in terms of the bulk (K) and shear (G) moduli. For the rest of this
chapter, we assume that the linear elastic relationship between stresses and strains
can be written as in (14.6); i.e., we restrict our discussion to isotropic materials that
satisfy all of the required symmetry relationships just mentioned.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 555

The Displacement Formulation

By combining the generalized Hooke’s law (14.5) with the force equilibrium equa-
tion (14.4) and the definition of the infinitesimal strain tensor (14.2), we obtain the
displacement formulation of the governing linear elasticity equation for the interior
of a solid occupying the volume �:

∇ ·
(
C(x) · 1

2(∇�u(x) + (∇�u(x))T
)
+ �b = 0, ∀x ∈ �. (14.7)

If, moreover, the material fulfills the additional requirements mentioned in Sub-
section 14.2.1, and if material properties are constant throughout �, (14.7) can be
further developed; for instance:

E

2(1 + ν)

(
∇2�u(x) + 1

1 − 2ν
∇(∇ · �u(x)

))+ �b = 0, ∀x ∈ �. (14.8)

Note that whereas (14.8) has here been expressed in terms of Young’s modulus E

and Poisson’s parameter ν, other choices of elastic constants lead to different but
equivalent expressions. The infinitesimal displacements �u are the unknowns in
(14.7) and (14.8). In 3D space, this elliptic partial differential vector equation can be
written out as a set of three scalar partial differential equations for each component
of �u (i.e., ux,uy , and uz in a Cartesian coordinate system).

To complete the specification of the linear elastic problem, (14.7) has to be
supplemented with proper conditions on the boundary of �. This boundary, denoted
∂�, can be divided up into two nonoverlapping parts, ∂� = �u ∪ �σ , such that

�u = �g0 on �u, (14.9)

σ · �n = �t0 on �σ, (14.10)

where �g0 : �u → R
3 gives prescribed displacements on the Dirichlet boundary

�u, �t0 : �σ → R
3 gives prescribed forces acting on the Neumann boundary �σ ,

and �n represents the surface normal of an elementary surface patch of �σ . For the
problem to be well-posed, it is also necessary that �u has nonzero measure [6].

Dilation and Mean Stress

Equation (14.6) represents one way to express the linear relationship between the
stress and strain tensors under the hypotheses of the previous section, but it is not
the only one. Expressed in this form, the equation does not allow us to differentiate
between the separate effects of normal and shear stresses. When discussing the
force balance equations for linear poroelasticity in Subsection 14.2.3, we will see
that fluid pressure affects only normal stress, not shear stress. The basic constitutive
relations introduced by Biot, which we present in Subsection 14.2.2 by (14.19) and
(14.20), only regard volume change and compressibility; they do not involve shear

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

556 O. Andersen

effects at all. In order to understand how to move from these relations to the full
tensor poroelastic equation of Subsection 14.2.3, the contents of the present section
will be helpful.

We will here develop a way to express the linear relationship between stress and
strain in a way that clearly identifies the separate roles of normal and shear stresses
and strains. For this purpose, Young’s modulus E and Poisson’s ratio ν are not
particularly useful. Instead, we will express relation (14.6) in terms of bulk K and
shear G moduli. The relations linking K and G to E and ν are

K = E

3(1 − 2ν)
G = E

2 + 2ν
. (14.11)

We start by mathematically defining normal (bulk) and shear stress. The stress
tensor can be understood as a sum of a deviatoric stress tensor and a mean normal
stress tensor, also known as hydrostatic stress tensor or volumetric stress tensor.
The latter is given by σ I, where the scalar σ represents the mean of the trace of σ :

σ = 1
3 tr(σ), (14.12)

and the deviatoric stress σ̃ is the remaining part:

σ̃ = σ − σ I. (14.13)

Under the assumptions of Subsection 14.2.1, the mean normal stress represents the
part of the stress tensor that changes the volume of (a compressible) solid when
applied, whereas deviatoric stress leads to a volume-preserving deformation.

Likewise, we can decompose the strain tensor into a mean strain tensor, εI, and
a deviatoric strain tensor, ε̃. The scalar ε = tr(ε) is referred to as dilation or volu-
metric strain and represents a (relative) volume change ∂V/V . On the other hand,
the deviatoric strain, ε̃ = ε − 1

3εI, represents a volume-preserving deformation.
If we reformulate (14.6) in terms of bulk (K) and shear (G) modulus (14.11) and

substitute with definitions (14.12) and (14.13), we obtain after some manipulations:

σ = 2Gε̃ +KεI, (14.14)

which we can further decompose as

σ̃ = 2Gε̃, (14.15)

σ = Kε. (14.16)

As we see here, the bulk modulus K expresses a linear relation between mean strain
(volume change) and mean normal stress, whereas shear modulus G expresses a
linear relation between deviatoric strain and stress. Shear stress does not affect
volume change at all.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 557

Discretization of the Linear Elastic Equations in MRST

The most common way of discretizing the linear elastostatic problem is using the
finite-element method (FEM), which solves the weak formulation of the governing
equations. This can be obtained by posing the elastostatic problem as the minimiza-
tion of an energy functional:

�u = argmin�v∈Vg

(
1

2
a(�v,�v) − f (�v)

)
. (14.17)

In this minimization problem, the bilinear and linear operators are defined as

a(�u,�v) =
∫

�

[
C(x) · εu(x)

] · εv(x) dx, f (�v) =
∫

�

�b · �v dx +
∫

∂�σ

�t0 · �v dx,

where εu and εv are the strain fields associated with displacement fields �u and �v,
and Vg is the set of all admissible displacement fields that equal g0 on �u while
satisfying some additional integrability requirements. Using calculus of variations,
one can show that the equations of the previous section can be derived directly from
(14.17). FEM solves the minimization problem (14.17) on a finite-dimensional
subspace Vg

h ⊂ Vg consisting of (typically low-degree) piecewise polynomials
defined on a discrete mesh, requiring that the unknown �u ∈ Vg

h satisfies

a(�u,�v) = f (�v), ∀�v ∈ V0
h, (14.18)

where the set V0
h is defined like Vg

h except being zero on �g.
FEM is popular for solving problems in linear elasticity because it works well

on this type of elliptic problem and can be applied without trouble as long as the
inner product a(�u,�v) is easy to compute on the finite-dimensional subspaces Vg

h

and V0
h . This is generally the case for simple meshes consisting of simplices or

quadrilaterals but quickly becomes impractical for more complex meshes. This is
a problem for industrial-standard grids used in reservoir modeling, in which cells
may have arbitrary polygonal shapes that are not necessarily convex, may have any
number of vertices, and frequently contain degenerate edges.

The virtual element method (VEM) began to attract attention around 2012 [2]. It
arose from work on extending mimetic finite-difference methods2 to higher-order
schemes. It turned out that this approach was more conveniently understood when
recast in the conceptual framework of the FEM, formulated as the solution of a
variational problem that involves minimization over discretized function spaces,
just like FEM. In fact, VEM can be understood as an extension of finite-element

2 Mimetic methods are a family of finite-difference methods defined on polyhedral grids, constructed to
“mimic” certain properties of the partial differential equations they were used to discretize, such as mass
conservation or maximum principles; see, e.g., [6] or section 6.4 of the MRST textbook [11].

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

558 O. Andersen

theory that involves function spaces described in terms of a richer set of basis
functions than piecewise polynomials [3].

The word “virtual” in VEM stems from the fact that the involved basis functions
are never explicitly computed and remain unknown in the interior of each cell in the
simulation grid. Only the values of the functions at certain points on cell boundaries
are known (for first-order schemes, these would be the nodal values). However, the
discrete function space is constructed so that the bilinear form a(�u,�v) in (14.18)
over a cell K can nevertheless be computed exactly from the given boundary values
when either �u or �v restricted to K is a piecewise polynomial of degree lower than or
equal to the numerical order of the scheme. On the other hand, for nonpolynomial
components of �u and �v, the approximation of the bilinear form is limited to simple
estimates constructed to remain within the right order of magnitude, which ensures
the stability and convergence of the method.

The big advantage that VEM holds over FEM is that it can be easily applied
to complex grids with very general cell shapes. In fact, because a(�u,�v) can be
properly approximated from point-wise boundary values with no need for actually
computing the basis functions in cell interiors, the main complication of FEM just
mentioned is circumvented entirely. The price to be paid is the error introduced
when evaluating the bilinear form on nonpolynomial components of �u and �v, but
such components are often small compared to the polynomial parts and the scheme
still converges. For meshes consisting of simplices (triangles in 2D or tetrahedra in
3D), first-order VEM and FEM are equivalent and translate into the same system
of linear equations.

The vemmech module of MRST provides an implementation of first-order VEM
for linear elasticity problems. Its implementation follows the formulation and ter-
minology used in [7], which provides a practical description of VEM applied to
linear elasticity. A demonstration of the use of the vemmech module is given in
Subsection 14.5.1.

14.2.2 Equations of Linear Poroelasticity

Poromechanics is the study of the coupling between mechanics and fluid flow in a
porous medium, whether that medium is water-filled rock or soil in geomechanics
or blood-filled living tissue in the medical sciences. A poroelastic medium is a
porous medium consisting of an elastic solid matrix whose pores are filled with
a viscous fluid (Figure 14.2). This is the model most commonly used in the study
of geomechanics. In this chapter, we limit ourselves to the case in which the matrix
is linear elastic.

The topic of poromechanics was mostly developed within the last hundred years,
motivated by the need to understand key phenomena such as soil consolidation,

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 559

Figure 14.2 The mechanics of a porous media. The bulk consists of both solid
grains (gray) and fluid-filled voids (blue). Forces acting on/within the system
include the applied stress σ (red), the pore pressure p, and the grain-to-grain
contact stresses σg . Note that the stress on the boundary is here explicitly
represented in terms of normal stress, σN , and shear stress, σT .

storage of water in confined aquifers, and land subsidence following hydrocarbon
extraction [20]. The key concept of effective stress, which will be discussed later
in this chapter, was introduced by Karl Terzaghi [18], who conducted a series of
lab experiments between 1916 and 1925 to understand the behavior of soil as a
foundation material. The first full-fledged theory of poroelasticity was presented
by Maurice Biot in 1941 [4]. Central to this theory were two linear constitutive
relations linking isotropic mean stress σ (see Subsection 14.2.1), volumetric strain
ε = δV/V (see Subsection 14.2.1), fluid pressure p, and the increment of fluid
content ζ . The latter quantity represents the change in fluid volume for a given
reference volume after a change in applied stress or in pressure occurs. As such, it
is a dimensionless quantity (volume divided by volume) just like ε. The constitutive
relations introduced by Biot are

δε = 1

K
δσ + 1

H
δp, (14.19)

δζ = 1

H1
δσ + 1

R
δp. (14.20)

We recognize the bulk modulus K from Table 14.1 linking mean stress and
volumetric strain. In addition, (14.19) and (14.20) present three additional moduli:
H,H1, and R. Assuming the existence of a potential energy density U = 1

2(σε +
pζ), it is straightforward to show that H1 = H [20], and thus the effect of a
change in pore pressure on bulk volume (at constant applied stress) equals the
effect of a change in applied stress on fluid content (at constant pressure). Within
Biot’s framework, three moduli are thus needed to characterize a linear poroelastic

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

560 O. Andersen

medium. The full linear poroelastic equations that include shear also need the shear
modulus, thus bringing the total number of degrees of freedom to four. Note that
this is two more than what was needed to characterize an isotropic linear elastic
medium in Subsection 14.2.1. This is not surprising, considering that a description
of the poroelastic system also needs to account for the separate compressibility of
the fluid, as well a characterization of the interaction between the fluid and the
mechanics of the porous medium.

From K , H , R, and G, a large number of poroelastic moduli can be defined, with
different utility depending on the context. (Although a poroelastic system can be
fully characterized by different choices of four poroelastic constants, at least one of
the constants must include a property related to shear deformation.) We will discuss
some of them further in Section 14.3.

14.2.3 The Linear Poroelastic Equations

Starting from Biot’s constitutive relationships (14.19) and (14.20), the equations
of linear elasticity, and the one-phase flow equation for a porous medium, we will
derive the governing equations of the linear poroelastic system. These can be seen
as a set of elliptic equations expressing the force balance in the solid matrix and
a parabolic equation expressing fluid flow, linked together by coupling terms. We
will start by looking at the force balance of the matrix.

The Force Balance Equations for the Linear Poroelastic Matrix

Starting from relation (14.19) (and disposing of the deltas for notational conve-
nience, while keeping in mind that we are still considering differentials), we can
solve for mean stress to obtain

σ = Kε − αp, (14.21)

where we have introduced the Biot–Willis coefficient α = K
H

. Comparing with the
constitutive relationship for mean stress in linear elasticity, (14.16), we see that
the only difference is that for poroelasticity we have the additional term (−αp),
which expresses the influence of fluid pressure on the mean stress. On the other
hand, deviatoric stress (14.15), which is volume preserving, is considered to remain
unaffected by fluid pressure. The full linear poroelastic stress tensor can thus be
described by simply subtracting αp from the mean stress, resulting in the following
expression (see (14.14)):

σ = 2Gε̃ + (Kε − αp)I = C · ε − αpI, (14.22)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 561

where the second equality assumes that we consider an isotropic medium (see
Subsection 14.2.1). We combine (14.22) with the force equilibrium equation (14.4)
to obtain

∇ · [C(x) · ε(x)
]− ∇(α(x)p(x))+ �b(x) = 0, ∀x ∈ �. (14.23)

This expression is similar to the displacement formulation for linear elasticity
(14.7), with an additional coupling term in pressure.

In the discussion of linear poroelasticity, a frequently encountered concept is that
of effective stress. Moving around the terms of (14.22), we get Cε = σ ′, where σ ′

denotes effective stress, defined as

σ ′ = σ + αpI. (14.24)

We see that the deformation of the rock matrix results both from the applied stresses
σ and an isotropic tensor proportional with pore pressure αpI. One way to inter-
pret σ ′ is the stress needed in a linear elastic (not poroelastic) system to produce
the same deformation as the combined effect of stress and pore pressure in the
poroelastic system with the same stiffness tensor C.

The Flow Equation

The increment of fluid content ζ plays the role of the accumulation term in the fluid
continuity equation with volumetric fluid flux �q and source term Q:

ζ̇ + ∇ · �q = Q. (14.25)

By rearranging terms in (14.19) and (14.20), we can express ζ in terms of volu-
metric strain:

ζ = K

H
ε +

(
1

R
− K

H 2

)
p. (14.26)

We recognize the Biot–Willis coefficient K
H

= α as the coefficient of ε in the
expression in (14.26). The coefficient in front of p is called the specific storage
coefficient at constraint strain. It is a poroelastic modulus with its own symbol Sε :

Sε =
(

∂ζ

∂p

)
ε=const.

=
(

1

R
− K

H 2

)
. (14.27)

Substituting α and Sε into (14.26) and taking the time derivative gives us the
expression of the first term of (14.25) in terms of volumetric strain and pressure
changes:

ζ̇ = αε̇ + Sεṗ. (14.28)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

562 O. Andersen

We use Darcy’s law to express �q in terms of pressure,

�q = − 1

μ
K
(∇p − ρf �g

)
, (14.29)

where μ is the fluid viscosity, ρf is the fluid density, K is the permeability of the
porous medium, and �g is gravitational acceleration (z-axis oriented downwards).

Inserting the expressions for �q and ζ̇ into (14.25) yields

αε̇ + Sεṗ − 1

μ
K
(∇p − ρf �g

) = Q. (14.30)

This is the poroelastic fluid continuity equation, expressed in terms of pressure
and volumetric strain. (Other equivalent expressions are possible, e.g., with the
accumulation term given in terms of pressure and mean stress.) Equation (14.30)
is a standard volumetric fluid continuity equation expressed in terms of pressure,
assuming Darcy flow, and with an extra coupling term αε̇ that describes its depen-
dence on the force balance equations for the solid matrix (14.23). Taken together,
these equations constitute the full system of poroelastic equations describing flow
and mechanical deformation of the system under study. In addition, we need bound-
ary conditions. The mechanical boundary conditions for the solid matrix are those
already given by (14.9) and (14.10) above. In addition, we need to specify the flow
boundary conditions for the fluid phase. To do this, we once again subdivide ∂�

into two nonoverlapping parts, ∂� = �p ∪ ��q , such that pressure is prescribed
(constant or equal to some function p0) on �p and flux is prescribed (typically
zero; i.e., no-flow) on ��q .

The Full Linear Poroelastic Equation System

Taken together, the full poroelastic system of equations with boundary conditions
thus reads:

∇ · [C · ε]− ∇(αp) − ρb �g = 0, in � (matrix), (14.31)

αε̇ + Sεṗ − 1

μ
K
(∇p − ρf �g

) = Q, in � (fluid), (14.32)

with mechanical boundary conditions

�u = �g0, on �u, (14.33)

σ · �n = �t0, on �σ, (14.34)

and flow boundary conditions

p = p0, on �p, (14.35)

�q = �q0, on ��q . (14.36)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 563

Note that in (14.31) we have here replaced the general body force term �b of (14.23)
with gravity −ρb �g, where ρb is the bulk density of the medium, a porosity-weighted
average of the density ρm of the solid matrix and the density ρf of the fluid; i.e.,
ρb = (1 − φ)ρm + φρf .

14.3 Moduli, Moduli, Moduli . . .

For the student starting out to learn poroelastic theory, the subtopic of poroelastic
moduli and coefficients may seem daunting, even intimidating. A large number
of such entities are encountered in the literature, many of which express similar
concepts under subtly different assumptions. Though they all can be derived from
the basic poroelastic constants of Subsection 14.2.2 (plus porosity), they are also
linked between themselves by a much larger number of poroelastic relationships,
many of which may seem to provide little intuition to the beginner – an intractable
jungle of equations with unclear usefulness.

A consolation would be that the most important insight to obtain is an overview
of the different main categories of parameters (compressibilities, storativities,
etc.) and the main types of assumptions involved (e.g., bulk vs. grain, drained vs.
undrained, uniaxial vs. triaxial). A good understanding of these concepts will make
it clear when and how to use them. The student should also rest reassured that these
definitions exist because they are indeed useful and needed in particular contexts.
Knowledge of specific poroelastic moduli often enables quick estimates without
the need of numerical simulation (how much water can this aquifer hold under
hydrostatic pressure?), guides the setup and interpretation of lab experiments, pro-
vides the basis for a range of analytical solutions to particular poroelastic problems
in literature, helps in choosing a mutually compatible set of parameters when
setting up simulations (e.g., choosing a value of the Biot–Willis coefficient that is
compatible with the other chosen parameters in a coupled reservoir simulation),
and enables validation of simulation results, as we will see in Section 14.4.3.

Table 14.2 shows a number of poroelastic parameters, roughly grouped by func-
tion. The ambition of this section is not to provide a full explanation of these but
rather to provide an introduction to some central concepts and categories (drained
and undrained moduli, specific storage coefficients), as well as discuss a handful
of particularly important parameters, such as the Biot–Willis coefficient (which is
central to coupling the poroelastic equations) and Geertsma’s uniaxial expansion
coefficient (which, among other, helps us understand the link with pore volume
multipliers in industry-standard reservoir simulation software). Some other param-
eters that are relevant for the examples of Section 14.5 will also be briefly discussed.
On a first read, the impatient reader may choose to skip parts of the present section
and refer back to it when going through the examples given in Section 14.5.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

564 O. Andersen

Table 14.2 List of elastic and poroelastic parameters. The last column specifies
whether the quantity depends on shear modulus or not.

Symbol Name Shear

Poroelastic constants from Biot’s basic constitutive relationships
K Drained bulk modulus
H Inverse of poroelastic expansion coefficient
R Inverse of unjacketed specific storage coefficient
M Inverse of constrained specific storage coefficient

Compressibilities (other than K)
Ks Unjacketed bulk modulus
Kp Inverse of drained pore compressibility
Kf Inverse of fluid compressibility
Kφ Inverse of unjacketed pore compressibility
Kv Uniaxial drained bulk modulus x

Storativities
S Uniaxial specific storage coefficient x
Sσ Unconstrained specific storage coefficient
Sε Constrained specific storage coefficient
Sγ Unjacketed specific storage

Other parameters from linear elasticity, drained or undrained
Ku Undrained bulk modulus
K

(u)
v Uniaxial undrained bulk modulus x

E Young’s modulus (drained) x
Eu Young’s modulus (undrained) x
λ Lamé’s parameter (drained) x
λu Lamé’s parameter (undrained) x
ν Poisson’s ratio (drained) x
νu Poisson’s ratio (undrained) x
G Shear modulus (drained and undrained) x

Other parameters
α Biot–Willis coefficient
β Effective stress coefficient for pore volume
γ Loading efficiency x
η Poroelastic stress coefficient x
cm Geertsma’s parameter x
B Skempton’s coefficient

Lastly, the large number of relations between poroelastic parameters can make
it hard to find the easiest way to compute some specific value from a given set
of already defined parameters. For instance, in the practical code example pre-
sented in Subsection 14.5.2 to study Terzaghi’s problem, we will need to com-
pute the uniaxial specific storage coefficient S from the given values of Young’s
modulus, Poisson’s parameter, Biot–Willis coefficient, and fluid compressibility.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 565

A code excerpt shows how this can be (painstakingly) done, but another alternative
is also presented, in the form of a utility script called poroParams, provided by
MRST. This utility script, when given an arbitrary selection of input parameters,
will automatically compute as many of the parameters listed in Table 14.2 as pos-
sible from the provided input. This removes the need to manually navigate the
large number of poroelastic relationships in order to arrive at the value of the target
parameter. In Subsection 14.3.5, we will close the discussion of poroelastic moduli
by giving an explanation on how this script can be used.

14.3.1 The Biot–Willis Coefficient, α

The Biot–Willis coefficient α plays a central role in the poroelastic equation system
presented in Subsection 14.2.3, as a factor in the coupling terms. The influence of
pressure on the mechanics equation system (14.31) is through the term ∇(αp),
and the influence of the mechanical strain on the flow equation (14.32) is through
the term αε̇. In Subsection 14.2.3 we gave the definition α = K

H
, but from this

expression it is unclear what α physically represents. We will here take a closer
look at this question.

The most intuitive is perhaps to consider the coupling term αε̇ from flow equa-
tion (14.32), which is the part of the accumulation term that represents an incremen-
tal change in fluid content caused by an incremental change in volumetric strain
(at constant fluid pressure). In other words, if the reference volume expands (or
shrinks) by δε, this results in a change in pore volume of α(δε). The remainder,
(1 − α)δε, represents a change in the volume of the solid matrix itself. If the rock
matrix consists of incompressible rock grains, any change in bulk volume is entirely
due to change in pore volume, in which case α = 1.

To formalize this, we introduce the poroelastic constant unjacketed bulk modu-
lus: K ′

s = HK
H−K

. Its reciprocal, (K ′
s)
−1, is referred to as unjacketed bulk compress-

ibility and represents the change in volume of a poroelastic sample saturated by, and
submerged in, a fluid when the pressure of that fluid changes. If we assume that the
poroelastic samples consist of a uniform solid material (e.g., solid rock grains all of
the same type), then K ′

s also equals the solid grain modulus Ks , whose reciprocal
expresses the compressibility of the solid material that constitutes the matrix. This
assumption is not true in general but is a frequently made approximation. Substi-
tuting for H in our previous expression of α, we derive

α = K

H
= 1 − K

K ′
s

≈ 1 − K

Ks

. (14.37)

From this relation we see that when the compressibility K−1
s of the solid material

becomes insignificant compared to the compressibility K−1 of the bulk as a whole,
then α → 1. In the general case, α takes on a value between φ (porosity) and 1.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

566 O. Andersen

14.3.2 Drained and Undrained Moduli

In general, the response of a poroelastic material to a change in stress conditions is
time dependent, due to the parabolic nature of the flow equation (14.32). The time
it takes for the material to settle into a new equilibrium depends on the permeability
K of the porous medium; a high value of K allows fluid to rapidly flow and reequi-
librate with an external boundary, whereas a low value of K restricts fluid flow and
increases the transitory time.

It is interesting to consider the two limiting cases, where fluid either (i)
re-equilibrates instantly or (ii) is entirely prevented from flowing through the
medium. These are respectively referred to as drained and undrained conditions
and express the response we can expect from a poroelastic material when applied
stresses change on a timescale either much slower or much quicker than the time it
takes for the fluid to reequilibrate.

Under drained conditions, the fluid pressure remains constant throughout the
change in applied stress, as it instantly equilibrates with the external boundary. As
a consequence, the bulk modulus of the porous medium is just K , as can easily be
seen from Biot’s constitutive relation (14.19) when δp = 0. Hence, the compress-
ibility of the fluid does not contribute to the stiffness of the material at all, which
only depends on the material of the solid matrix.

On the other hand, when conditions are undrained, the fluid remains in place and
thus contributes to increase the stiffness of the porous medium. The bulk modulus
under undrained conditions is denoted Ku and is related to K as follows:

Ku = K

1 − αB
, (14.38)

where B = R/H is known as Skempton’s coefficient. (The physical interpretation
of B is that of the ratio between change in pore pressure and applied stress under
undrained conditions: B = −∂p/∂σ for δζ = 0.) Because αB > 0, we note that
Ku > K , which is to be expected, because the fluid now also contributes to the
stiffness of the material.

Most poroelastic constants have drained and undrained variants. For instance,
the drained Poisson parameter is expressed in terms of K and G as

ν = 3K − 2G

2(3K +G)
, (14.39)

whereas the undrained variant is

νu = 3ν + αB(1 − 2ν)

3 − αB(1 − 2ν)
. (14.40)

An exception to this is the shear modulus, G, which remains unaffected by fluid
pressure and thus has the same value whether or not conditions are drained.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 567

14.3.3 Specific Storage Coefficients

Specific storage coefficients express how much the fluid content of a reference
volume changes as a function of fluid pressure, which is a highly relevant property
in hydrogeology. Different assumptions on boundary conditions lead to different
coefficients. We will here consider the cases of constant stress, constant strain, and
uniaxial strain.

The specific storage coefficient at constant stress, denoted Sσ , represents the
incremental change in fluid content δζ of a reference volume for an incremental
change in pore pressure p, assuming constant mean stress (δσ = 0). From Biot’s
constitutive relation (14.20) we immediately obtain

Sσ = R−1. (14.41)

Conditions under which the assumption of constant mean stress holds are rarely
met in geomechanical applications. The definition of Sσ will nevertheless become
useful in the discussion of coupling strategies in Section 14.4.

We first encountered the specific storage coefficient at constant strain, denoted
Sε , in Subsection 14.2.3, where we derived expression (14.27). It represents the
change in fluid content due to a change in fluid pressure, assuming constant bulk
volume (δε = 0). If we introduce the fluid compressibility K−1

f and porosity φ, it
is also possible to derive the following expression for Sε , assuming that the solid
phase consists of a uniform solid material

Sε = 1

K
(1 − α)(α − φ) + φ

Kf

. (14.42)

(If this approximation cannot be made, yet another poroelastic constant Kφ needs
to be specified for completeness; see [20].) The interesting aspect of this expression
is that we have clearly identified the separate influences of fluid compressibil-
ity K−1

f and bulk compressibility K−1 on the total change in fluid content. We
will see how this becomes very handy when we discuss Geertsma’s coefficient in
Subsection 14.3.4.

The uniaxial specific storage coefficient S is frequently encountered in hydroge-
ology, although hydrogeologists tend to work with head rather than pressure, which
means they would use the form Ss = (ρf g)S. It represents the change in fluid
content from a change in fluid pressure, under the assumption of zero lateral strain
and constant vertical stress. In other words, the reference volume cannot expand or
contract laterally, and all changes to volumetric strain are due to displacements in
the vertical direction. The expression for S is

S = Sσ

(
1 − 4ηB

3

)
, (14.43)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

568 O. Andersen

where η is the poroelastic stress parameter

η = 1 − 2ν

2(1 − ν)
α. (14.44)

Note that contrary to the other specific storage coefficients discussed here, S also
depends on the shear modulus G (through ν).

The particular utility of S is that with the underlying assumptions (zero lateral
strain and constant vertical stress), mean normal stress becomes a function of fluid
pressure only:

σ = −4

3
ηp, (14.45)

which means that the volumetric strain also becomes a function of fluid pressure
alone; see (14.21). As a consequence, the flow equation (14.32) decouples from
the mechanics equations (14.31) and can be solved independently. (As stated in
Subsection 14.2.1, we restrict discussion to isotropic materials satisfying all of the
necessary symmetry relations for (14.6) to hold.) All of the influence of mechanics
on flow is expressed through the parameter S, and no (computationally costly)
mechanical equation system needs to be included.

We round off the discussion of storage parameters by noting that we always have
the following order on magnitudes of the storage coefficients:

Sσ ≤ S ≤ Sε . (14.46)

14.3.4 Geertma’s Uniaxial Expansion Coefficient, Cm

We remain under the assumptions made for S in the previous section, namely, zero
lateral strain and constant vertical stress, and define a corresponding bulk modulus
Kv, referred to as vertical incompressibility or p-wave modulus (Table 14.1). The
following expression can be derived:

Kv = K + 4
3G. (14.47)

From this, we define a new constant, Geertsma’s uniaxial expansion coefficient,

cm ≡ α

Kv

, (14.48)

which represents the ratio of change of vertical strain to pore pressure under con-
ditions of zero lateral strain and constant vertical stress. Note that because lateral
strains are assumed zero, vertical strain is equivalent to total volumetric strain in
this setting. In other words, we have

δε = cmδp. (14.49)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 569

Again, we here implicitly make all the assumptions of Subsection 14.2.1 required
for (14.6) to hold.

If we use (14.49) to replace the coupling term of the poroelastic flow equa-
tion (14.32), we obtain(

αcm + Sε

)
ṗ − 1

μ
K
(∇p − ρf �g

) = Q. (14.50)

Under the assumptions of zero lateral strain and constant vertical stress, we obtain
a flow equation whose only unknown is pore pressure and thus can be solved
independent of the force balance equations (14.31). In other words, we can model
flow without considering the associated mechanics. This is, of course, standard
practice in reservoir simulation, where only flow is considered and the mechanical
response of the porous rock is modeled using a rock compressibility parameter.

A closer look at the accumulation term of (14.50) helps us further understand the
link with reservoir simulation practice. If we insert the expression for Sε given by
(14.42), the accumulation term can be written as[

αcm + 1

K
(1 − α)(α − φ)

]
ṗ + φ

Kf

ṗ. (14.51)

The first term of this sum accounts for bulk expansion and grain compressibil-
ity, whereas the second accounts for fluid compressibility. The use of a rock
compressibility parameter in industry-standard reservoir simulation software
therefore conceptually represents the first term, whereas a fluid compressibility
parameter conceptually accounts for the second. Note that when expressed on this
form, it is easy to see how fluid compressibility can be generalized to the nonlinear
case where fluid density is obtained from an equation of state.

14.3.5 Automatic Computation of Poroelastic Parameters

We have already discussed the existence of a large number of poroelastic param-
eters that can be derived from a small set of fundamental constants, including the
moduli of Biot’s basic constitutive relations (K , H , R), and sometimes porosity,
and/or the shear modulus G. A (not exhaustive) list of parameters is given in
Table 14.2. A large number of relations link these parameter so that in practice
it is sufficient to know a small subset of them (not necessarily K , H , R, and G) to
determine the others. However, identifying the exact set of relations that will help
compute the quantities you do not know from the quantities you know can be labo-
rious. For this reason, the ad-mechanics module provides a utility function called
poroParams. This function takes the parameters you already know, whichever they
may be, and uses them to compute as many as possible of the parameters you do not
know, based on a large set of poroelastic relations hard-coded within the algorithm.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

570 O. Andersen

The algorithm takes two required arguments and a number of optional ones. The
first required argument is porosity (a value strictly between 0 and 1). The second
required argument is a true/false switch specifying whether the algorithm is allowed
to assume uniform solid material (all rock grains have the same compressibility;
see Subsection 14.3.1) or not. Finally, an arbitrary number of poroelastic parameter
names and their values should be provided. If these are insufficient to compute all
unknown poroelastic parameter values, the undetermined ones will be left at NaN
(not-a-number) in the resulting output. On the other hand, if the provided variable
values overdetermine the solution, a warning will be displayed.

We will here provide a quick demonstration of how this utility script can be used.
We start by asking the script to show us which poroelastic variables are supported
and what names they take:

help poroParams

This will list the supported parameters, which happen to be the same as those listed
in Table 14.2. We now try to see what values we can compute by providing the
values for K , H , and R (in addition to porosity), while assuming uniform solid
material:

poroParams(0.25, true, 'K', 1e9, 'H', 1.2e9, 'R', 1.2e9)

ans =
struct with fields:

K: 1.0000e+09
H: 1.2000e+09
R: 1.1000e+09
M: 4.6588e+09

K_s: 6.0000e+09
K_p: 300000000
K_f: 2.1290e+09

K_phi: 6.0000e+09
K_v: NaN
S: NaN

S_sigma: 9.0909e-10
S_epsilon: 2.1465e-10

S_gamma: 7.5758e-11
alpha: 0.8333

beta: 0.9500
gamma: NaN
eta: NaN
c_m: NaN
B: 0.9167

K_u: 4.2353e+09
K_vu: NaN

E: NaN
E_u: NaN

lambda: NaN
lambda_u: NaN

nu: NaN
nu_u: NaN

G: NaN

We see that the algorithm was able to compute quite a few poroelastic parameters
from the provided input but that many remain undetermined. We try to call the
function again, this time also providing a value for shear modulus G:

poroParams(0.25, true, 'K', 1e9, 'H', 1.1e9, 'R', 1.2e9, 'G', 0.9e9)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 571

ans =
struct with fields:

K: 1.0000e+09
H: 1.2000e+09
R: 1.1000e+09
M: 4.6588e+09

K_s: 6.0000e+09
K_p: 300000000
K_f: 2.1290e+09

K_phi: 6.0000e+09
K_v: 2.2000e+09
S: 5.3030e-10

S_sigma: 9.0909e-10
S_epsilon: 2.1465e-10
S_gamma: 7.5758e-11

alpha: 0.8333

beta: 0.9500
gamma: 0.7143

eta: 0.3409
c_m: 3.7879e-10

B: 0.9167
K_u: 4.2353e+09
K_vu: 5.4353e+09

E: 2.0769e+09
E_u: 2.5214e+09

lambda: 4.0000e+08
lambda_u: 3.6353e+09

nu: 0.1538
nu_u: 0.4008

G: 900000000

The algorithm now had sufficient information to compute the full set of parameters.
If we try to overspecify the system by also providing a value for M that is different
from what was computed, we get a warning:

poroParams(0.25, true, 'K', 1e9, 'H', 1.2e9, 'R', 1.1e9, 'G', 0.9e9, 'M', 3e9)

Warning: Some residuals did not vanish. Input parameters might over-specify system.
> In poroParams (line 134)

ans =
struct with fields:
...

On the other hand, if we remove the assumption of uniform solid material,
there are still a few parameters remaining that the algorithm was not able to
determine:

poroParams(0.25, false, 'K', 1e9, 'H', 1.2e9, 'R', 1.1e9, 'G', 0.9e9)

ans =
struct with fields:

K: 1.0000e+09
H: 1.2000e+09
R: 1.1000e+09
M: 4.6588e+09

K_s: 6.0000e+09
K_p: 300000000
K_f: NaN

K_phi: NaN
K_v: 2.2000e+09

S: 5.3030e-10
S_sigma: 9.0909e-10

S_epsilon: 2.1465e-10
S_gamma: 7.5758e-11
alpha: 0.8333

beta: NaN
gamma: 0.7143

eta: 0.3409
c_m: 3.7879e-10

B: 0.9167
K_u: 4.2353e+09
K_vu: 5.4353e+09

E: 2.0769e+09
E_u: 2.5214e+09

lambda: 4.0000e+08
lambda_u: 3.6353e+09

nu: 0.1538
nu_u: 0.4008

G: 900000000

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

572 O. Andersen

Finally, we note that the system can be specified by any selection of parameters, as
long as they are compatible and do not overspecify the system:

poroParams(0.25, true, 'nu', 0.15, 'B', 1, 'alpha', 0.9, 'c_m', 1e-10)

ans =
struct with fields:

K: 4.0588e+09
H: 4.5098e+09
R: 4.5098e+09
M: 4.5098e+10

K_s: 4.0588e+10
K_p: 1.1275e+09
K_f: 4.0588e+10

K_phi: 4.0588e+10
K_v: 9.0000e+09

S: 1.1217e-10
S_sigma: 2.2174e-10

S_epsilon: 2.2174e-11
S_gamma: 1.2925e-26
alpha: 0.9000

beta: 0.9722
gamma: 0.8915
eta: 0.3706
c_m: 1.0000e-10

B: 1
K_u: 4.0588e+10
K_vu: 4.5529e+10

E: 8.5235e+09
E_u: 1.0789e+10

lambda: 1.5882e+09
lambda_u: 3.8118e+10

nu: 0.1500
nu_u: 0.4557

G: 3.7059e+09

14.4 Coupling Strategies

The full linear poroelastic system presented in Subsection 14.2.3 consists of one
mechanics equation (14.31), whose primary unknown is the displacement field �u,
and one flow equation (14.32), whose primary unknown is the fluid pressure p. In
the following discussion, we respectively refer to these equations as Em and Ef .
The two equations are linked with coupling terms, so that the mechanics equation
depends on the gradient of the fluid pressure through the term α∇p, and the flow
equation depends on the time derivative of the volumetric strain, ε̇.

14.4.1 Fully Coupled and Sequentially Split Schemes

The equations Em and Ef , with associated boundary conditions, describe an evolu-
tion in the poroelastic system (�u,p) over time. If we consider a time discretization
tn = n�t , the evolution of the system from time tn to time tn+1 can be expressed
in an abstract sense as

(�un,pn)
A−→(�un+1,pn+1), (14.52)

where A is the operator representing the combined system (Em,Ef), and the time
derivative of Ef has been approximated using a backward Euler time discretization.
Combined with a spatial discretization of �u, p, and A, the timestep can be computed
by solving one combined system of equations. (In our case, for the MRST examples
presented in this chapter, the spatial discretization will be virtual elements for the
mechanics equation and finite volumes for the flow equation.) Note that for pure

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 573

linear poroelastic systems these equations would be linear but not necessarily so in
the more general case; e.g., when working with an extension of the flow equation
to the multiphase setting. We refer to this as solving the fully coupled problem.

Another approach to solving the equation system (Em,Ef) would be to employ
operator splitting, in which the two parts of the equation system are solved sequen-
tially, with some approximation of the coupling term that does not depend on
variables not explicitly covered by the equation. We could, for example, imagine
the following scheme:

(�un,pn)
Ads

m−→(�un+1,pn)
Ads

f−→(�un+1,pn+1). (14.53)

Here, Ads
m is an operator that solves the mechanical equation Em for �un+1, where the

coupling term α∇p is evaluated from the already available pn. Likewise, Ads
f is an

operator that solves the flow equation Ef for pn+1 using the newly computed dis-
placements un+1 to compute the coupling term ε̇. The approach (14.53) is referred
to as the drained split scheme (hence the superscript “ds”). Its name comes from
the fact that keeping pressure constant at pn when solving for �un+1 amounts to
considering fully drained conditions (see Subsection 14.3.2).

An important motivation for employing operator-splitting schemes is the ability
to employ different, existing numerical codes to solve the mechanics and the
flow equations. This enables the combined use of highly sophisticated existing
mechanical and flow simulators to address the coupled poroelasticity problem.
A typical example would be TOUGH-FLAC [16], in which TOUGH2 is used
to compute multiphase flow, whereas the geomechanical equations are solved
using the commercial FLAC3D simulator. Another potential advantage of operator-
splitting schemes over the fully coupled scheme (14.52) could be computational
efficiency, although this highly depends on the operator-splitting scheme used, the
size of the discretized system, and other factors such as the nature of the linear
solver and the degree of hardware parallelism employed [1, 9, 10, 14]. Another
aspect relevant to computational efficiency of an operator-splitting approach is
whether the scheme is applied in a staggered (single-pass) or iterative manner.
In the staggered approach, the operator-splitting procedure (e.g., (14.53) for the
drained split scheme) is only applied once per timestep, whereas an iterative
approach repeats the procedure until convergence before proceeding to the next
timestep. The former is less precise per timestep than the latter but allows the
computation of a larger number of timesteps for a given computational cost.

14.4.2 The Fixed Stress Split Scheme

The main advantage of the drained split scheme (14.53) is that it is easy to explain
and implement. Otherwise, it does not have much going for it. It is only stable

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

574 O. Andersen

for weakly coupled problems (regardless of timestep size) and is generally not
convergent for a fixed number of iterations (such as the staggered approach). In
the general case, a much better approach is the fixed stress split method. Whereas
the drained split approach solves the mechanics equation first by keeping pressure
constant, the fixed stress split solves the flow equation first by keeping the rate of
mean stress change constant. The accumulation term of the flow equation (14.32)
reads:

αε̇ + Sεṗ = α

K
σ̇ +

(
α2

K
+ Sε

)
ṗ, (14.54)

where the expression on the right was obtained by substituting (14.21) into the
expression on the left. We discretize in time and use �n to denote the forward
difference �na = an+1 − an to obtain

α

K
�nσ +

(
α2

K
+ Sε

)
�np. (14.55)

The fixed-stress approach considers the rate of change of stress to be constant,
�nσ = �n−1σ , which enables us to write

α

K
�n−1σ +

(
α2

K
+ Sε

)
�np. (14.56)

We use relation (14.21) again to substitute back for σ(
α�n−1ε − α2

K
�n−1p

)
+
(

α2

K
+ Sε

)
�np. (14.57)

Note that the terms inside the first parentheses are all known at timestep n, and
this grouping plays the role of an additional source term in the discretized flow
equation. When we replace the accumulation term of a time-discretized version of
the flow equation (14.32) by the expression (14.57), we obtain(

α2

K
+ Sε

)
�np −�nt

K
μ

(∇pn+1 − ρf �g
) = �ntQ−

(
α�n−1ε − α2

K
�n−1p

)
.

(14.58)

This is a modified equation expressed in terms of pressure only. The fixed-stress
scheme first computes pn+1 from (14.58) and then uses the new pressure to compute
σn+1 from the mechanics equation. Schematically,

(�un,pn)
Afss

f−→(�u∗,pn)
Afss

m−→(�un+1,pn+1), (14.59)

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 575

Table 14.3 Coupled flow and mechanics models in ad-mechanics.

Name Solver Flow model

MechWaterModel fully coupled one-phase flow
MechOilWaterModel fully coupled two-phase flow
MechBlackOilModel fully coupled three-phase black-oil

flow

MechFluidFixedStressSplitModel fixed stress split one-phase, two-phase,
or three-phase black-oil
(chosen when setting up
the model)

where Afss
f represents the computation of pn+1 from (14.58), and Afss

m represents
the ensuing computation of �un+1 using the mechanics equations. Note that �u∗ is
here used as a placeholder in the diagram to represent the displacements associated
with fixed stress between timesteps but is never actually computed.

The fixed-stress split scheme has many favorable properties. In the fully implicit
form just outlined, it is unconditionally stable regardless of timestep size or cou-
pling strength and nonoscillatory and converges quickly in most cases when used in
iterative schemes. It also converges to the correct solution when using a staggered
approach. This is the splitting approach chosen for the MRST implementation of
coupled flow and geomechanics discussed in Subsection 14.4.3.

The stability, convergence, and performance of sequential methods for coupled
geomechanics have been studied extensively, and the interested reader may refer to
[9] and [14] for in-depth detail and analysis.

14.4.3 The ad-mechanics Module in MRST

Coupled flow and geomechanics within the linear elastic framework is imple-
mented in MRST in the ad-mechanics module. The module provides models for
solving the coupled flow and mechanics problem for the cases of one-phase, two-
phase, and three-phase (black-oil) flow and implements both a fully coupled solver
and a solver based on operator splitting using the fixed-stress split scheme.

The mechanics equations are discretized using the first-order VEM, whereas
the flow equations are discretized using standard finite volumes with two-point
flux and a fully implicit first-order Euler scheme in time. Table 14.3 outlines the
available models. We will see some examples of their application to (idealized)
model problems in Section 14.5, but they have also been applied with success on
real industry-sized reservoir grids.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

576 O. Andersen

14.5 Numerical Examples

In this section, we will demonstrate the linear elastic and poroelastic solvers of
MRST on a few basic examples. We start with a simple case of compression
of a solid cylinder (a pure linear elastic problem), which shows how to set up
a grid’s mechanical properties, define boundary conditions, and compute the
corresponding displacements. We also use the result to demonstrate the physical
meaning of Poisson’s parameter, as well as illustrate the difference between the
bulk modulus K and the vertical incompressibility Kv. We then consider the same
cylinder in a poroelastic setting, which brings us to the well-known Terzaghi
problem [18, 20], for which we can compare the numerical solution with the
known analytic one. For this problem, we choose to use the fixed-stress split model
MechFluidFixedStressSplitModel from the ad-mechanics module.

We then move on to model another well-known poroelastic problem, Mandel’s
problem [13, 20]. This problem demonstrates the Mandel–Cryer effect, a distinct
poroelastic phenomenon that was first predicted theoretically by Jean Mandel and
later confirmed by results of laboratory testing [19]. For this problem, we use the
fully coupled MechWaterModel model.

14.5.1 Compression of a Dry Sample

Computing the deformation of a solid cylinder from a set of applied stresses is a
linear elastic problem that we can solve directly using the MRST virtual element–
based mechanics solver from the vemmech module. We will look at a simple
uniaxial compression example and examine the impact of two different lateral
boundary conditions: (i) “zero stress” and (ii) laterally constrained boundaries.
The full MRST script for the problem developed in the present and following
section is provided in the ad-mechanics module within the file examples/

terzaghi.m.
To start off, we load the vemmech module and turn off gravity, because we have

no interest in body forces in this example and the analytic solutions assume no
gravity:

mrstModule add vemmech
gravity off

The first step is to define the grid representing the cylinder. To do this, we first
define an approximately circular 2D grid using triangleGrid and pebi from

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 577

Figure 14.3 Left: undeformed cylinder; middle: cylinder deformed under zero
stress lateral boundary conditions; right: cylinder deformed under “roller” bound-
ary conditions.

MRST’s core module and then extrude it vertically in 3D using makeLayeredGrid
to produce the grid shown to the left in Figure 14.3:

P = [];
layers = 20;
for r = linspace(0.2, 1, 5)

[x, y, ~] = cylinder(r^1.5, 16);
P = [P [x(1,:); y(1,:)]];

end
P = unique([P'; 0, 0], 'rows');
aG = pebi(triangleGrid(P));
G = makeLayeredGrid(aG, layers);
G = computeGeometry(G);
G = createAugmentedGrid(G); % add geometric information for VEM mechanics

Existing functionality in the vemmech module makes it most convenient to use
Young’s modulus and Poisson’s parameter to define elastic properties. We set
these to be respectively 5 GPa and 0.3 in the following. We also set density to
2 000 kg/m3, although this value will not influence the result unless we turn on
gravity:

density = 2000 * kilogram / (meter̂ 3);
Nc = G.cells.num;
E = 5 * giga * Pascal; % Young's modulus
nu = 0.3; % Poisson's parameter

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

578 O. Andersen

We proceed to define the boundary conditions. In general, this task can be a bit
complicated because it requires us to identify the specific boundary nodes (for dis-
placements) and faces (for forces) that constitute the different parts of the boundary.
For the current problem this can be done using simple geometric considerations, but
in the general case the task can quickly become more involved:

bottom_nodes = find(G.nodes.coords(:,3) == max(G.nodes.coords(:,3)));
top_nodes = find(G.nodes.coords(:,3) == 0);
top_faces = find(G.faces.centroids(:,3) == 0);
bottom_innermost = ...

find(sqrt(sum(G.nodes.coords(bottom_nodes, 1:2).^2, 2)) < 0.1);

The last line in this code snippet is used to identify the single central node at
the bottom of the cylinder. We will use this node to “anchor” the model, in the
sense that the position of this node will be locked completely in place. In general,
such anchoring is necessary to ensure unicity of the solution whenever the imposed
boundary conditions are insufficient to fully prevent translations and rotations (rigid
body motion) of the full model.

Boundary conditions for the linear elastic problem are specified by a structure
by convention called el_bc in MRST. This struct has two fields, which themselves
are structures: disp_bc and force_bc. As the names imply, these fields specify
displacement and stress boundary conditions, respectively.

The following code defines the displacement boundary conditions, which consist
of constraining the z-coordinate of bottom nodes. The nodes can still move in the
x and y directions, except for the innermost node, which is locked completely
in place. The targeted node indices are specified in the nodes field and the 3D
displacements in the uu field. The mask field specifies for which of the three coor-
dinate directions a particular constraint is active. In the code, only the innermost
bottom node is constrained in the lateral directions:

% zero vertical displacement for bottom nodes (and zero displacement for
% innermost node to anchor the problem)
el_bc.disp_bc.nodes = bottom_nodes;
el_bc.disp_bc.uu = repmat([0, 0, 0], numel(bottom_nodes), 1);
el_bc.disp_bc.mask = repmat([false, false, true], numel(bottom_nodes), 1);
el_bc.disp_bc.mask(bottom_innermost, 1:2) = true;

At the top of the cylinder, we apply a downwards force σo = 10 MPa (megapas-
cals). For this, we use the force_bc field, where we specify the faces and the 3D
force vector applied to each of these faces. In this example, the force is normal to
the faces and only has a z-component:

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 579

top_force = 1e7 * Pascal; % force applied at top boundary
el_bc.force_bc.faces = top_faces;
el_bc.force_bc.force = repmat([0, 0, top_force], numel(top_faces), 1);

Finally, we specify the body force, which should be given as a function of the
position x, which could be a single position or a set of N positions given as an
N x 3 array. Because we have turned gravity off, this function will not influence
the result, but we specify it nevertheless for completeness:

load = @(x) repmat(density * gravity(), size(x, 1), 1);

We are now almost ready to solve the linear elastic system; i.e., compute
the corresponding displacements. The solution is computed by the function
VEM_linElast, which takes a grid G, the elasticity tensor C for each cell, the
boundary conditions el_bc, and the load function load. The final step before
calling VEM_linElast is thus to compute the full cell-wise elasticity tensor
from our elastic parameters (Young’s modulus E and Poisson’s parameter nu),
which is done using the function Enu2C. Nodal displacements are returned from
VEM_linElast as a (G.nodes.num x 3) matrix of row-wise 3D displacement
vectors:

% solve the linear elastic system
C = Enu2C(E * ones(Nc, 1), nu * ones(Nc, 1), G);
uu = VEM_linElast(G, C, el_bc, load);

The following code snippet plots the deformed grid (exaggerating displacements
by a factor of 100) and shows it in profile view, using a color coding that indicates
the Euclidean norm of the displacement, shown in the middle plot of Figure 14.3:

plotNodeDataDeformed(G, sqrt(sum(uu.^{2}, 2)), uu * 100);

From the plot, we see that the cylinder has not only shortened in length but also
slightly widened. The ratio of widening to shortening per unit length of a material
under uniaxial strain is exactly what Poisson’s parameter expresses. To verify that
our simulation honors this relation, we calculate the simulated ratio and compare it
with the value used for Poisson’s parameter in the simulation:

L = max(G.nodes.coords(:,3)) - min(G.nodes.coords(:,3)); % length
R = max(G.nodes.coords(:,1)); % radius - should equal 1
axial_strain = uu(top_nodes(1), 3) / L;
radial_strain = max(uu(:,1)) / R;

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

580 O. Andersen

measured_nu = radial_strain / axial_strain;
relative_err = (measured_nu - nu)/nu;
fprintf('Real nu: %1.5f. Measured nu: %1.5f\n', nu, measured_nu);
fprintf('Relative error: %1.2e\n', relative_err);

Real nu: 0.30000. Measured nu: 0.30007
Relative error: 2.20e-04

The difference between the theoretical and the simulated value is quite small (the
small discrepancy is a result of our model only being approximately cylindrical).

We now repeat the experiment but with laterally constrained side boundaries. In
other words, points on the side boundary are allowed to move up and down but not
along the x or y axes. We identify the lateral boundary nodes by a geometric trick
and redefine the displacement part of our boundary structure:

side_nodes = find(sqrt(sum(G.nodes.coords(:,1:2).^2, 2)) > 0.9);
side_nodes = setdiff(side_nodes, bottom_nodes);
[Nb, Ns] = deal(numel(bottom_nodes), numel(side_nodes));

el_bc.disp_bc.nodes = [bottom_nodes; side_nodes];
el_bc.disp_bc.uu = repmat([0, 0, 0], Nb + Ns, 1);
el_bc.disp_bc.mask = [repmat([true, true, true], Nb, 1); ... % locked btm.

repmat([true, true, false], Ns, 1)]; % roller side bnd.

Note that we remove from the side boundaries the nodes that belong to both the
bottom and side boundaries, to avoid defining these twice in el_bc. We rerun the
solver and plot the result, which is shown to the right in Figure 14.3:

% solving the linear elastic system
uu = VEM_linElast(G, C, el_bc, load);

% plot result
plotNodeDataDeformed(G, sqrt(sum(uu.^2, 2)), uu * 100);

From the two rightmost plots in Figure 14.3, we see that the length of the cylinder
has changed less in the laterally constrained case than in the case with free lateral
boundaries. The deformation is one of zero lateral strain and constant lateral stress,
which is described by the vertical incompressibility modulus introduced in Subsec-
tion 14.3.4 in (14.47). We end the first part of this exercise by verifying that the
displacement is consistent with the one predicted by Kv:

K = E / (3 * (1-2*nu)); % compute bulk modulus from E and nu
Kv = 3 * K * (1-nu)/(1+nu); % compute vertical incompressibility
axial_strain = uu(top_nodes(1), 3) / L;
predicted_strain = top_force / Kv;

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 581

relative_err = (axial_strain - predicted_strain)/predicted_strain;
fprintf('Predicted strain: %1.5f. Measured strain: %1.5f\n', ...

predicted_strain, axial_strain);
fprintf('Relative error: %1.2e\n', relative_err);

Predicted strain: 0.00149. Measured strain: 0.00149
Relative error: -5.37e-14

This time, the simulation outcome matches the predicted value to a very high degree
of precision.

14.5.2 Compression of a Wet Sample: The Terzaghi Problem

We now move into the poroelastic setting. We depart from the previous example3

(the compression of a laterally constrained cylindrical sample) and make the fol-
lowing modifications:

• We change the cylinder from a solid elastic medium to a fluid-filled poroelastic
medium.

• We initialize fluid pressure to zero inside the cylinder.

• We add no-flow boundary conditions to the bottom and lateral sides, while allow-
ing fluid to flow across the top boundary by imposing a constant pressure of zero
here.

This example, known as Terzaghi’s problem, was formulated by Karl Terzaghi
in his work leading up to his consolidation theory in the early part of last century
[18] and was key to the development of his consolidation equation [20]. In the
experiment, a constant force is applied to the top boundary, causing a compression
of the medium and the internal fluid pressure to rise. As the fluid is gradually
evacuated through the top boundary, fluid pressure slowly returns to its initial value.
As such, the system goes through a gradual transition from fully undrained to fully
drained conditions, which also implies a gradual change in the level of compression
of the solid matrix.

The loading efficiency γ is a poroelastic parameter that describes the response
in fluid pressure to the application of a vertical load on a poroelastic sample under
undrained, laterally constrained conditions. Formally, it can be written as

γ = −
(

δp

δσzz

)
εxx=εyy=ζ=0

. (14.60)

3 The code discussed herein is found in the same file in ad-mechanics as that of the previous section, namely,
examples/terzaghi.m

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

582 O. Andersen

It can be derived from other elastic parameters and expressed in several ways; for
instance, in terms of the poroelastic stress parameter η from (14.44), the shear
modulus G, and the uniaxial specific storage coefficient S from (14.43):

γ = η

GS
. (14.61)

In Terzaghi’s problem, the initial rise in fluid pressure after applying the constant
vertical force to the top boundary will therefore be δp = γ σo, where σo is the
applied downward top force.

In (14.38), we introduced the drained and undrained bulk moduli, K and Ku.
We also introduced the (drained) vertical incompressibility Kv in (14.47). To
describe the initial response of the system studied in this example, we also need
to define an undrained vertical incompressibility, which we denote K(u)

v and
which can be computed from the shear modulus G and the undrained Poisson’s
parameter νu:

K(u)
v = G

2 − 2νu

1 − 2νu

. (14.62)

The knowledge of γ and K(u)
v enables us to predict the initial response of the

(undrained) system; i.e., pore pressure and vertical strain immediately after the top
force has been applied. Terzaghi showed that the evolution of the ensuing pore pres-
sure is described by the one-dimensional homogeneous diffusion equation. When
the system reaches equilibrium, the pore pressure will thus have returned to its
initial condition and vertical strain can be computed using Kv, as per the previous
example. We will use these relations to validate the following numerical simulation.

Because we are dealing with a poroelastic problem, we need to load ad-mechanics,
along with a few other modules:

mrstModule add ad-mechanics ad-core ad-props ad-blackoil

We define basic poroelastic and flow properties of the system, including permeabil-
ity, porosity, fluid (in)compressibility, the Biot–Willis coefficient, and the reference
pressure for fluid density, which we set equal to the initial pressure (i.e., zero):

perm = 300 * milli * darcy; % permeability
poro = 1/4; % porosity
pRef = 0; % zero reference pressure for fluid density
alpha = 0.9; % Biot-Willis coefficient
Kf = 1.96 * giga * Pascal; % fluid incompressibility

The next step is to create the poroelastic model. Here, we choose to use the fixed-
stress split MechFluidFixedStressSplitModel, but we could equally well

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 583

have used the fully coupled MechWaterModel. Setting up this model requires
providing a rock structure that contains the values of permeability, porosity, and
Biot–Willis parameter for all cells in the grid, as well as a fluid object that provides
information on density, viscosity, fluid compressibility, and pore volume multiplier.
Before defining our fluid, we compute the pore volume multiplier to be consistent
with our choice of poroelastic parameters, as explained in Subsection 14.3.4 and
(14.51).

rock = struct('perm', perm * ones(Nc, 1), ...
'poro', poro * ones(Nc, 1), ...
'alpha', alpha * ones(Nc, 1));

pvMult = (1-alpha) * (alpha-poro) / poro / K; % pore volume multiplier,
fluid = initSimpleADIFluid('phases', 'W', ...

'mu' , 1 * centi * poise, ...
'rho' , 1000 * kilogram / meter^3, ...
'c' , 1 / Kf, ...
'cR' , pvMult, ...
'pRef', pRef);

mech_problem = struct('E', E * ones(Nc, 1) , ...
'nu' , nu * ones(Nc, 1), ...
'el_bc', el_bc, ...
'load' , load);

model = MechFluidFixedStressSplitModel(G, rock, fluid, mech_problem);

Note that we reused the grid and boundary conditions defined in the last example.
Like other models using the object-oriented, automatic differentiation frame-

work in MRST, simulation will be executed by a call to simulateScheduleAD

[11]. To call this function, an initial state and a schedule must be provided. The
schedule defines the timesteps and the (potentially time-dependent) driving forces
that act on the system.

To define the initial state, we must define the initial nodal displacements and
pore pressure values. These are all zero, so the only slightly nontrivial task is to
determine the number of displacement values that must be provided. In general,
each node of the 3D grid is associated with three degrees of freedom, except for
boundary nodes, where fixed displacements may be imposed in one or more direc-
tions. The total number of degrees of freedom is therefore equal to the number
of nodal displacements that are not imposed as Dirichlet boundary conditions,
which is what we compute on the first line of the following code listing (remember
also that in the previous example, we defined Nc to equal the number of cells in
the grid):

num_mech_unknowns = sum(~model.mechModel.operators.isdirdofs);
initState = struct('pressure', pRef * ones(Nc, 1), ...

'xd', zeros(num_mech_unknowns, 1));
initState = addDerivedQuantities(model.mechModel, initState);

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

584 O. Andersen

The call to addDerivedQuantities in the last line adds additional fields to
initState, including u and uu (full lists of displacement values, also including
the fixed displacement values associated with imposed boundary conditions), as
well as the vdiv, stress, and strain fields, which provide cell-wise volumetric
strains, stress tensors, and strain tensors.

To define a suitable schedule, we must decide over what time span we wish to
simulate the behavior of the system; i.e., a time span within which most of the
interesting behavior of the system response can be observed. From the analytical
solution of the equation describing pressure evolution (i.e., the 1D homogeneous
transport equation, not further discussed here), one can identify a characteristic time
L2/c, where c = |K|/(μS) is the uniaxial hydraulic diffusivity of the system. Note
that hereK represents the permeability of the porous medium (not the bulk modulus
K), whereas μ is fluid viscosity and S the uniaxial specific storage coefficient
defined in (14.43). By letting the dimensionless time τ = ct/L2 run from 0 to 1,
we will capture most of the relevant response in our simulation.

To compute c, we need to compute S, which requires us to compute several other
parameters in the code, as outlined in the following code excerpt:

Ks = K / (1-alpha); % grain compressibility
H = K / alpha;
S_sigma = (1/K - 1/Ks) + poro*(1/Kf - 1/Ks); %specific storage, const. stress
R = 1 / S_sigma;
B = R / H; % Skempton's coefficient
eta = (1 - 2*nu) / (2*(1 - nu))*alpha; % poroelastic stress parameter
S = S_sigma * (1 - 4*eta*B/3); % uniaxial specific storage
c = perm / (fluid.muW(pRef)*S); % uniaxial hydraulic diffusivity

As pointed out in Section 14.3, it is generally time consuming to find a minimal
sequence of formulas to evaluate a given parameter value from the ones that specify
the problem. Using poroParams, we introduce a little computational overhead but
save a lot of manual work. The following line eliminates the need of explicitly
specifying the steps shown in the previous code listing:

params = poroParams(poro, true, 'E', E, 'nu', nu, 'alpha', alpha, 'K_f', Kf);
c = perm / (fluid.muW(pRef)*params.S);

Once we have computed c, we define a time span running from 0 to L2/c, divided
into 50 equal timesteps plus an initial ministep that enables us to capture the imme-
diate completely undrained response in our simulation. Following the standard in
MRST, the simulation schedule is then defined as a structure holding the two sub-
structures control and step. The first specifies the set of fluid driving forces that
can be associated with specific time steps, whereas the latter specifies the timestep
values and associates specific controls with these. In our case, we use a single

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 585

control for all timesteps, consisting of no-flow bottom and lateral boundaries and
fixed-pressure boundary at the top. The full code listing for creating the schedule
and running the simulation is the following:

nsteps = 50;
tsteps = [0, linspace(1e-5, 1, nsteps+1)]* L^2 / c;
schedule = struct('step', struct('val', diff(tsteps), ...

'control', ones(nsteps+1, 1)), ...
'control', struct('W', [], 'bc', bc));

[~, states, report] = simulateScheduleAD(initState, model, schedule);

Upon completion of the simulation, we can graphically examine the development
of the column pressure profile over time by picking and plotting selected timesteps.
The result is shown in Figure 14.4, where we have scaled the x-axis by column
length and the y-axis by the theoretical initial pressure response pinit = γ σo. The
selected curves are labeled in terms of their corresponding dimensionless time τ .
As is apparent from the figure, the initial pressure response is constant and equal to
pinit across the whole column and then gradually dissipates over time. At τ = 1, the
pressure has not fully dissipated but reaches only approximately 10% of its initial
value at the bottom of the column:

% compute max pressure (undrained response pressure)
% 'gamma' can be taken directly from the result of poroParams()
pmax = top_force * params.gamma;

% plot development of column pressure profile over time
z_cells = [1:G.cells.num/layers:G.cells.num]';
z_depths = [0; G.cells.centroids(z_cells, 3)]/L;
ixs = [0, 1, 2, 5, 20, 50] + 1;
figure; hold on
for ix = ixs

plot(z_depths, [0; states{ix}.pressure(z_cells)/pmax]);
end

We also plot the vertical displacement of the top surface as a function of dimen-
sionless time (Figure 14.5):

% plot vertical displacement of top surface over time
w_top = [0; cellfun(@(s) s.uu(top_nodes(1), 3), states)];
plot(tsteps * c / L^2, w_top * 100, 'linewidth', 1.5);

We see that there is an immediate response of approximately 1.6 cm after apply-
ing the force, after which the column keeps compressing further over time as fluid
pressure drops. We compare the initial displacement observed in the simulation
with the theoretical initial displacement for the undrained system based on K(u)

v ,
which we obtain directly from the previous call to poroParams:

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

586 O. Andersen

0 0.2 0.4 0.6 0.8 1
z/L

0

0.2

0.4

0.6

0.8

1

o

 = 10 –5

 = 0.02
 = 0.04
 = 0.1
 = 0.4
 = 1

Figure 14.4 Development in the column pressure profile over time for our
simulated Terzaghi’s problem; τ = ct/L2 is the dimensionless time.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

cm

Figure 14.5 Vertical displacement of the top surface in our simulation of Terza-
ghi’s problem as a function of dimensionless time τ .

w_0 = w_top(2); % observed initial displacement
w_0_theory = top_force * L / params.K_vu; % theoretical init. displacement

rel_err = (w_0 - w_0_theory)/w_0;
fprintf('Expected init. displacement: %1.5f m.\n', w_0_theory)
fprintf('Measured displacement: %1.5f m\n', w_0);
fprintf('Relative error: %1.2e\n', rel_err);

Expected init. displacement: 0.01614 m.
Measured displacement: 0.01614 m
Relative error: -1.93e-04

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 587

Figure 14.6 The geometry for Mandel’s problem. Small circles are used to
illustrate roller boundaries where movement is unrestrained in the x-direction but
constrained to remain in contact with the rigid plates in the y-direction.

The agreement is reasonable. In the previous example, we also calculated the verti-
cal strain of the drained system to be approximately 1.49 ·10−3. By multiplying this
by the column length L = 20 m, we compute the theoretical final displacement to
be 2.98 ·10−2 m, which seems about right from examining the asymptotic behavior
of the curve in Figure 14.5.

14.5.3 Mandel’s Problem

In the Terzaghi problem just explored, pore pressure is uncoupled from the (con-
stant) vertical stress and satisfies the one-dimensional homogeneous diffusion equa-
tion. The pressure evolution can be determined completely independent of the
mechanical deformation problem. Mandel’s problem, on the other hand, is often
cited as an example of a poromechanical effect exhibiting nonmonotonous pressure
behavior that cannot be accounted for without considering the two-way coupling of
fluid pressure and mechanical deformation.

The problem considers a rectangular slab of poroelastic material, interposed
between two parallel, rigid, impermeable plates, as illustrated in Figure 14.6. The
two sides of the slab in contact with the plates (top and bottom on the figure)
are free to move laterally, whereas the left and right sides are fully free to move;
i.e., zero-stress boundaries. The dimensions of the slab equal 2L in the x-direction
(width) and H in the y-direction (thickness). It is infinitely long in the z-direction.
Because everything remains constant along the z-direction, the problem reduces to
a plane strain problem in the (x,y) plane. There are no body forces. Initially, fluid
pressure and all forces are zero. At time t = t0, a nonzero force F is suddenly
applied normally to the rigid plates and then held constant. This leads to a gradual
compression of the porous slab, as the pore fluid gradually evacuates through the
side boundaries driven by the increased pore pressure. In this process, the fluid

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

588 O. Andersen

pressure in the center of the slab does not uniformly decrease over time but first
goes through a period where it increases. This nonmonotonic behavior is a uniquely
poromechanical phenomenon referred to as the Mandel–Cryer effect, which we aim
to demonstrate in the scripted example following next.

Mandel’s problem is symmetric across the plane x = 0, which implies that the
rigid plates remain parallel and aligned with the x-axis at all times. As a conse-
quence, the pressure and stress fields are constant in the y coordinate and thus
only depend on x and t . In particular, this means that fluid flow only occurs along
the x direction and that σxx(x,y) = 0. However, the complete rigidity of the
vertical plates in combination with the applied normal force and the roller bound-
ary conditions lead to a particular complication when formulating the boundary
conditions in a numerical code. For t > t0, the normal force F is not uniformly
applied along the x-direction but must be distributed to keep the interface flat.
This distribution is a priori unknown and can therefore not be explicitly specified
before simulation begins. However, we know that the sum of the integrated normal
stress along the interface should equal F = −2p0L, where p0 is understood as the
constant, “average” normal stress:

F = −2p0L =
∫ L

−L

σyy(x,H,t) dx. (14.63)

In the example, we will show how we can setup the simulation to obey this condi-
tion, although it requires a somewhat unorthodox use of simulateScheduleAD.
The full source code for the example can be found in the ad-mechanics module
within the file examples/mandel.m.

We start by loading all of the required MRST modules and then define a standard
Cartesian grid representing the poroelastic slab:

mrstModule add ad-mechanics ad-core ad-props ad-blackoil vemmech
gravity off

L = 10 * meter; H = 1 * meter;
G = computeGeometry(cartGrid([50, 10], [L, H]));

Due to the plane symmetry, we only model the x > 0 part of the domain. The
rigid plates do not form part of this grid, and their effect will be modeled by careful
application of nonconstant boundary conditions, as explained further shortly.

We proceed by defining the rock and mech_problem objects, much as we
did for Terzaghi’s problem. However, we hold off the specification of mechanical
boundary conditions (the el_bc structure) for now.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 589

E = 0.1*giga*Pascal; % Young's modulus
nu = 0.2; % Poisson's parameter
alpha = 1; % Biot-Willis coefficient
top_press = 1*mega*Pascal;
rock = makeRock(G, 200*milli*darcy, 0.1);
rock.alpha = alpha * ones(G.cells.num, 1);
mech_problem.E = E * ones(G.cells.num, 1);
mech_problem.nu = nu * ones(G.cells.num, 1);
mech_problem.load = @(x) 0*x; % no body force applied

In the same way, we set up the fluid parameters and construct a fluid object:

muW = 0.89 * milli * Pascal / second; % fluid viscosity
rhoW = 1000 * kilogram / meter̂ 3; % fluid density
cW = 1.0e-10 * Pascal^-1; % fluid compressibility
pRef = 0; % reference pressure (zero)
fluid = initSimpleADIFluid('phases', 'W', 'mu', muW, 'rho', rhoW, ...

'c', cW, 'pRef', pRef);

We now proceed to define initial-boundary conditions. Most of these will remain
constant throughout the simulation, with the exception of the displacement along
the top (y = H) boundary, which will be dynamically modified during simulation.
The first step is to identify all relevant boundary faces and nodes:

facenodes = ... % lambda function to identify nodes for a set of faces
@(f) unique(G.faces.nodes(mcolon(G.faces.nodePos(f), ...

G.faces.nodePos(f+1)-1)));

% identify bottom faces and nodes
bfaces = find(G.faces.centroids(:,2) == min(G.faces.centroids(:,2)));
bnodes = facenodes(bfaces); % bottom nodes
nbn = numel(bnodes); % number of bottom nodes (and top nodes)

% identify top faces and nodes
tfaces = find(G.faces.centroids(:,2) == max(G.faces.centroids(:,2)));
tnodes = facenodes(tfaces);

% identify left boundary faces and nodes
xmin_faces = find(G.faces.centroids(:,1) == 0);
lnodes = facenodes(xmin_faces);
nln = numel(lnodes); % number of nodes on left side

% identify right boundary faces (no need for nodes)
xmax_faces = find(G.faces.centroids(:,1) == max(G.faces.centroids(:, 1)));

The boundary conditions for flow are zero for the top (y = H) and bottom (y = 0)
boundaries. Flow is also zero at the left (x = 0) boundary due to symmetry.
Because no-flow is the default boundary condition for flow, we only have to spec-

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

590 O. Andersen

ify the conditions at the right (X = L) side, where we impose a fixed pressure
of zero:

bc = addBC([], xmax_faces, 'pressure', pRef);

As for the mechanics boundary conditions, we impose zero displacement along the
x-axis for nodes on the left boundary and zero displacements along the y-axis for
nodes on the bottom and top boundaries (the latter will be changed later):

% setup displacement boundary conditions (actual displacement value for top
% nodes to be determined later)
disp_bc = struct('nodes', [1:G.nodes.num]', ...

'uu', zeros(size(G.nodes.coords)), ...
'mask', false(G.nodes.num, 2));

disp_bc.mask(tnodes, 2) = true;
disp_bc.mask(bnodes, 2) = true;
disp_bc.mask(lnodes, 1) = true;

Because some nodes belong to both the bottom and side boundaries, for which
different restrictions are applied, we employ a slight trick to keep the code as simple
as possible. We list all nodes (internal or not) in the disp_bc structure but only
activate restrictions for the targeted boundary nodes and coordinate directions (the
three last lines).

The next step is to define the initial state. To do this, we must identify the indices
of the active degrees of freedom of the mechanical problem; i.e., node displacement
that are not part of the imposed displacement boundary conditions. In the Terzaghi
example, we did this by querying the mechModel.operators.isdirdofs field
of the poroelastic model instance. To do the same here, we create a temporary
instance of the fully coupled model, MechWaterModel, which will not be used for
simulation in the following, because the mechanical boundary conditions still are
not correct:

% initial state
mech_problem.el_bc = struct('disp_bc', disp_bc, 'force_bc', []);
model = MechWaterModel(G, rock, fluid, mech_problem);
mech_unknowns = ~model.mechModel.operators.isdirdofs;

initState.pressure = pRef * ones(G.cells.num, 1);
initState.xd = zeros(nnz(mech_unknowns), 1);
initState = addDerivedQuantities(model.mechModel, initState);

As for the Terzaghi problem, we complete the definition of the initState by a
call to addDerivedQuantities.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 591

We also compute a characteristic time that will be used when determining the
total simulation time. This characteristic time is expressed as Tchar = L2/c (squared
length over uniaxial hydraulic diffusivity) and we compute it in a manner very
similar to what we did in the Terzaghi example:

ppar = poroParams(poro, true, 'E', E, 'alpha', alpha, 'nu', nu, 'K_f', 1/cW);
c = perm / (muW * ppar.S);
Tchar = L^2 / c; % charateristic time

We now get to the central part of the scripting example: the actual simulation.
For the Terzaghi problem and most other poroelastic problems encountered
in practice, the boundary conditions could be set in advance, and a schedule
could be defined that allowed us to simulate all timesteps of the problem by
a single call to simulateScheduleAD. This is how simulations are generally
intended to be defined and run in the object-oriented, automatic differentiation
framework, but because we are here dealing with variable and a priori unknown
boundary stresses, we cannot specify everything in advance. Instead, we will
have to run the simulation one timestep at a time and search for the exact
boundary conditions as we go along. This is done by using a simple iterative
scheme that converges to the correct boundary condition. Instead of imposing a
uniform force along the top boundary (which would be incorrect), we impose a
uniform displacement and compute the corresponding force post hoc. As long as
the resulting force (tforce_sim * 2L) differs significantly from the desired
F (top_press * 2L), a corresponding adjustment is made to the imposed
displacement and the timestep is run again until convergence. As we go along,
the computed state for each timestep is collected in the states cell array. This
iteration is implemented as follows:

for step = 1:tsteps
while (true)

disp_bc.uu(tnodes, 2) = dy_init; % initial guess, vert. displ.

% combine displacement and force boundary conditions
mech_problem.el_bc = struct('disp_bc', disp_bc, 'force_bc', []);

% model
model = MechWaterModel(G, rock, fluid, mech_problem);

% define an initial guess, to ensure the correct values for imposed
% displacements are respected when the time step is simulated
initGuessState = addDerivedQuantities(model.mechModel, state0);

% simulate a single time step
[~, state] = simulateScheduleAD(state0, model, schedule, ...

'initialGuess', initGuessState);

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

592 O. Andersen

% comparing simulated mean stress with the target
tstress_eff = state{1}.stress(tcells, 2);
tpress = state{1}.pressure(tcells);
tforce_sim = mean(-tstress_eff + alpha * tpress);
if abs((top_press - tforce_sim)/top_press) < 1e-4

% close enough to target, save results and proceed to next step
break;

else
% adjust displacement boundary condition and try again
dy_init = dy_init * top_press / tforce_sim;

end
end
states = [states, state];
state0 = state{1};

end

A few additional comments to this listing:

• For the Terzaghi problem in the previous example, we used the fixed-stress split
model MechFluidFixedStressSplitModel. Here, we use the fully coupled
model MechWaterModel. The only reason we use different models for the two
examples is to demonstrate the use of them both. They produce practically the
same result.

• Each time boundary conditions are changed, a new instance of MechWaterModel
has to be generated. This is because unlike the flow boundary conditions, which
are specified in the schedule structure, mechanical boundary conditions form
an integral part of the model itself. Because there is currently no established way
of changing mechanical boundary conditions inside an already created model,
which would entail reassembling all of the associated discrete operators, we have
to create a new model each time.

• The state structure computed by simulateScheduleAD for a given timestep
contains all of the updated degrees of freedom of the problem (i.e., free node
displacements and pressure values). The values of the imposed displacements
(Dirichlet boundary conditions) are not recomputed but are inherited from the
previous timestep. This is usually what one wants, but not in our case, where the
imposed displacements change from iteration to iteration. However, if we provide
the function with an initial guess, imposed displacements will be inherited from
this initial guess instead. This is why we define an initGuessState at each
iteration in the loop, which is computed from addDerivedQuantities applied
on the updated model.mechModel. It is not particularly elegant, but it gets the
work done.

• An ad-hoc, one-timestep schedule is created in advance and passed to each call
to simulateScheduleAD. It specifies a single-timestep simulation and provides
the correct timestep size.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 593

Figure 14.7 Pressure profile inside the poroelastic slab after simulating Mandel’s
problem for a period of one characteristic time.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/L

0

0.2

0.4

0.6

0.8

1

2p
/p

0

= 0.01
= 0.1
= 0.5
= 1.0
= 2.0

Figure 14.8 Pressure profiles along the x-axis of the slab in Mandel’s problem for
different multipliers of the characteristic time τ . The center of the slab is located
at x = 0 and the boundary is located at x = L.

The code just outlined uses simulateScheduleAD in a rather unconventional
way. It should be emphasized that in situations where boundary conditions are spec-
ified in advance, typically the case for most problems, you should use the approach
shown in the code listing of the Terzaghi problem, where a full schedule is defined
for the whole simulation and simulateScheduleAD is called exactly once.

With the parameters given in the code listing, the characteristic time is 4 063
seconds or approximately 1 hour and 8 minutes. We have simulated a total of two
times this interval, using 200 timesteps. We can visualize the pressure inside the
slab half-way through the simulation using plotCellData; see Figure 14.7. From
the plot, we can visually verify that the pressure field does not depend on the
y coordinate. To get a sense of the pressure development over time, we plot the
pressure of the top cells (which is equal to the pressure along any horizontal line
inside the slab) for various multipliers of the characteristic time.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

594 O. Andersen

The outcome, with characteristic time τ ranging from 0.01 to 2.0, is displayed
in Figure 14.8. For the very early time (τ = 0.01), pore pressure is more or less
constant in the central part of the slab and drops to zero toward the boundary.
For τ = 0.1, the pressure drop is more gradual, but the pressure at the center has
actually increased. The reason for this temporary pressure increase can be intu-
itively understood as the effect of the fluid in the central part of the slab having to
carry more of the applied load as the peripheral part of the slab gradually drains.
In a later phase (τ ≥ 0.5), the pressure drops monotonously in time throughout
the slab. This happens when the effect of the drainage process on pore pressure
becomes sufficiently important also in the central part, shifting more of the load to
the solid matrix.

14.6 Concluding Remarks

In this chapter we have provided a brief overview of linear elasticity and poroe-
lasticity theory and introduced a number of poroelastic moduli and coefficients.
We also discussed the practical solution of the equations involved in MRST.
A VEM-based linear elasticity solver is given by the vemmech module, and
the ad-mechanics module provides a model for time-dependent poroelasticity
problems, which also generalizes to a multiphase setting. The practical examples
discussed herein are well known from poroelastic theory. Historically, Terzaghi’s
problem was studied in the context of understanding soil consolidation, whereas
the Mandel problem demonstrates a phenomenon that can only be understood in
light of the two-way coupling between mechanics and fluid flow. Such couplings
have often been ignored or simplified in the past, but new focus on the impact of
geomechanics in several disciplines and improved high-performance computing
capabilities have made the modeling of such coupled problems increasingly
relevant and practical.

The focus of this chapter (and indeed the whole book) has been on subsurface
applications, but poromechanical modeling is also highly relevant in many other
application domains. The motivated reader might therefore be interested in employ-
ing the functionality of the modules discussed in this chapter to other applications
and settings for which the hypotheses of linear poroelasticity apply. This type
of “alternative” use should be straightforward to implement, because MRST to a
large extent is developed with generic functionality and interfaces in mind, despite
the “R” in its acronym.

Acknowledgement. The author acknowledges Halvor Møll Nilsen and Xavier
Raynaud as primary architects of the MRST software modules presented in this
chapter.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.020

Introduction to Poroelasticity and Coupled Geomechanics and Flow 595

References

[1] M. Beck, A. P. Rinaldi, B. Flemisch, and H. Class. Accuracy of fully coupled and
sequential approaches for modeling hydro- and geomechanical processes. Computa-
tional Geosciences, 24:1707–1723, 2020. doi: 10.1007/s10596-020-09987-w.

[2] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo.
Basic principles of virtual element methods. Mathematical Models and Methods in
Applied Sciences, 23(1):199–214, 2013. doi: 10.1142/S0218202512500492.

[3] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo. The hitchhiker’s guide to
the virtual element method. Mathematical Models and Methods in Applied Sciences,
24(8):1541–1573, 2014. doi: 10.1142/S021820251440003X.

[4] M. A. Biot. General theory of three-dimensional consolidation. Journal of Applied
Physics, 12(2):155–164, 1941. doi: 10.1063/1.1712886.

[5] S. Chen, R. Huang, and K. Ravi-Chandar. Linear and nonlinear poroelastic analysis
of swelling and drying behavior of gelatin-based hydrogels. International Journal of
Solids and Structures, 195:43–56, 2020. doi: 10.1016/j.ijsolstr.2020.03.017.

[6] L. B. da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite Difference Method
for Elliptic Problems. Volume 11 of MS&A – Modeling, Simulation and Applications.
Springer International Publishing, 2014. doi:10.1007/978-3-319-02663-3.

[7] A. L. Gain, C. Talischi, and G. H. Paulino. On the Virtual Element Method for three-
dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer
Methods in Applied Mechanics and Engineering, 282:132–160, 2014. doi: 10.1016/j.
cma.2014.05.005.

[8] A. Ghassemi. A review of some rock mechanics issues in geothermal reservoir
development. Geotechnical and Geological Engineering, 30(3):647–664, 2012. doi:
10.1007/s10706-012-9508-3.

[9] J. Kim. Sequential methods for coupled geomechanics and multiphase flow. PhD
thesis, Stanford University, 2010. URL pangea.stanford.edu/ERE/pdf/
pereports/PhD/Kim10.pdf

[10] A. E. Kolesov, P. N. Vabishchevich, and M. V. Vasilyeva. Splitting schemes for poroe-
lasticity and thermoelasticity problems. Computers & Mathematics with Applications,
67(12):2185–2198, 2014. doi: 10.1016/j.camwa.2014.02.005.

[11] K.-A. Lie. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave:
User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge
University Press, Cambridge, UK, 2019. doi: 10.1017/9781108591416.

[12] A. Malandrino and E. Moeendarbary. Poroelasticity of living tissues. In R. Narayan,
ed., Encyclopedia of Biomedical Engineering, pp. 238–245. Elsevier, Oxford, UK,
2019. doi: 10.1016/B978-0-12-801238-3.99932-X.

[13] J. Mandel. Consolidation des sols (étude mathématique) [Soil consolidation (a mathe-
matical study)]. Geotechnique, 3(7):287–299, 1953. doi: 10.1680/geot.1953.3.7.287.

[14] A. Mikelić and M. F. Wheeler. Convergence of iterative coupling for coupled flow
and geomechanics. Computational Geosciences, 17(3):455–461, 2013. doi: 10.1007/
s10596-012-9318-y.

[15] J. N. Reddy. An Introduction to Continuum Mechanics, 2nd ed. Cambridge University
Press, 2013. doi: 10.1017/CBO9781139178952.

[16] J. Rutqvist. Status of the TOUGH-FLAC simulator and recent applications related
to coupled fluid flow and crustal deformations. Computers & Geosciences, 37(6):
739–750, 2011. doi: 10.1016/j.cageo.2010.08.006.

[17] J. Rutqvist. The geomechanics of CO2 storage in deep sedimentary formations.
Geotechnical and Geological Engineering, 30(3):525–551, 2012. doi: 10.1007/
s10706-011-9491-0.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

pangea.stanford.edu/ERE/pdf/pereports/PhD/Kim10.pdf
pangea.stanford.edu/ERE/pdf/pereports/PhD/Kim10.pdf
https://doi.org/10.1017/9781009019781.020

596 O. Andersen

[18] K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage [The Mechanics
of Earth Construction Based on Soil Physics]. F. Deuticke, Leipzig, Germany, 1925.

[19] A. Verruijt. Theory and Problems of Poroelasticity. Delft University of Technol-
ogy, 2016. URL geo.verruijt.net/software/PoroElasticity2016b
.pdf.

[20] H. F. Wang. Theory of Linear Poroelasticity with Applications to Geomechanics and
Hydrogeology, Volume 2 of Princeton Series in Geophysics. Princeton University
Press, Princeton, NJ, 2000.

https://doi.org/10.1017/9781009019781.020 Published online by Cambridge University Press

http://geo.verruijt.net/software/PoroElasticity2016b.pdf
http://geo.verruijt.net/software/PoroElasticity2016b.pdf
https://doi.org/10.1017/9781009019781.020

