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The Weil Character of the Unitary Group
Associated to a Finite Local Ring

Roderick Gow and Fernando Szechtman

Abstract. Let R/R be a quadratic extension of finite, commutative, local and principal rings of odd

characteristic. Denote by Un(R) the unitary group of rank n associated to R/R. The Weil representa-

tion of Un(R) is defined and its character is explicitly computed.

1 Introduction

Let R/R be a quadratic extension of finite, commutative, local and principal rings

of odd characteristic. Let Un(R) be the unitary group of rank n associated to R/R

and let Sp2n(R) be the symplectic group of rank 2n over R. Let ψ denote the Weil

character of Sp2n(R) as defined in [CMS], and letΨ be the restriction of ψ to Un(R).

Our main result is the following:

Ψ(g) = (−1)nlε(g)l(−q)N(g), g ∈ Un(R).(1)

Here ε is the unique linear character of order 2 of Un(R), Fq is the residue field of R,

q is a power of an odd prime p, |R| = ql and | ker(g − 1)| = q2N(g) for all g ∈ Un(R).

This extends Gérardin’s formula

Ψ(g)ε(g) = (−1)n(−q)N(g),(2)

proved in [G] for the classical case R = Fq.

In proving (1) we shall make no use whatsoever of Gérardin’s article [G], thereby

giving an independent proof of (2) when q is odd. After preliminary work describing

the structure of the group Un(R) and constructing the Weil character, our method

consists first of all in showing that the restrictionΨ of the Weil character ψ to Un(R)

is rational valued and that Ψ(g) = ±qN(g) for all g in Un(R). The rest of the paper

is devoted to determining the sign in this formula. We first compare Ψ with a gen-

eralized permutation character of Un(R) obtained from its action on V. This enables

us to find the values of Ψ on p ′-elements of Un(R). The values of Ψ on arbitrary

elements are found by exploiting an elementary congruence relation that holds for

character values of any finite group. This procedure works well provided q is not a

Mersenne prime. When q is a Mersenne prime, we obtain the value of Ψ by em-

bedding Un(R) in a unitary group over an extension ring of R and then applying a

comparison theorem for characters already used in the non-Mersenne case.
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2 Basic Notions

This section fixes notation and terminology. It also proves some basic facts about

hermitian spaces and unitary groups over finite local rings, which are well known in

the context of finite fields.

2.1 Finite Local Rings

Let R be a finite, commutative, local and principal ring of odd characteristic. For

instance, R = O/p
l, where O is the ring of integers of an algebraic number field and

p is a prime ideal of O that lies over an odd rational prime.

Let max denote the unique maximal ideal of R and let ω be a generator of max.

Let Fq
∼= R/max denote the residue class field of R. Here q is a power of an odd

prime p. Note that the cardinality of every finite R-module is a power of q. As max

is nilpotent, there is a positive integer l such that maxl
= 0 but maxl−1 6= 0. (For

the sake of uniformity in our notation, we assume here and elsewhere that max0
= R

and ω0
= 1.) Thus ωl

= 0 and ωl−1 6= 0. We then have |R| = ql. The ideals of R

have the form maxk, where 0 ≤ k ≤ l. We have |maxk | = ql−k. The unique minimal

ideal of R is maxl−1.

Let R∗ denote the group of units of R. Since max is the set of non-units of R,

R∗ = R \max and therefore |R∗| = ql− ql−1
= ql−1(q− 1). The elements in 1 + max

form a subgroup of R∗ and since |1+max | = ql−1, it follows that 1+max is the Sylow

p-subgroup of R∗. The unit group R∗ is the direct product of the subgroup 1 + max

and a cyclic subgroup of order q−1, isomorphic to F∗q . We note also that if 0 ≤ k < l

and x is an element of maxk \maxk+1, then we may write x = ωks, where s ∈ R∗.

2.2 Quadratic Extensions of Finite Local Rings

Let R/R be a quadratic extension of finite, commutative, local and principal rings of

odd characteristic. This means that R and R separately enjoy these properties, that R

is a free R-module of rank two and that their residue fields form a quadratic extension

Fq2/Fq. An equivalent formulation is: given R, construct R by adjoining to R a square

root e of a non-square unit e of R. This is possible, as R∗2 has index 2 in R∗.

If I is an ideal of R we shall denote by I = RI the corresponding ideal of R. Thus

the maximal ideal of R is max. The element ω is also a generator of max. We have

|maxk | = q2(l−k) for 0 ≤ k ≤ l.

Associated to R/R one has a unique involution that fixes R elementwise:

r = a + be 7→ r = a− be, a, b ∈ R.(3)

The involution on R gives rise to a norm map R∗ → R∗ given by r 7→ rr. We note

the following property of this norm map.

Lemma 2.1 The norm map R∗ → R∗ is a group epimorphism. Its kernel N has

ql−1(q + 1) elements.
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Proof Consider the homomorphism τ : R∗ → R∗ given by

τ (r) = r−1r.

The kernel of τ is R∗. It is immediate that τ (R
∗) is contained in N. We show that

τ (R∗) = N as follows. Take x ∈ N and λ ∈ R. Set y = λ + λx. Then y = λ + λx

and thus xy = y. Provided y ∈ R∗, we obtain x = τ (y−1), as required. Suppose

then that y is a non-unit for all choices of λ. Then taking λ = 1, it follows that

1 + x ∈ max. Similarly, taking λ = e and making use of the fact that e ∈ R
∗, we infer

that 1 − x ∈ max. It follows that 2x ∈ max. As both 2 and x are units, this cannot

occur. Thus τ (R∗) = N. We deduce

|R∗|

|R∗|
= |τ (R

∗)| = |N|

and thus |N| = ql(q + 1). On the other hand, it is clear that the norm map is a

homomorphism and N is its kernel. A comparison of orders, using |N| = ql(q + 1),

shows that R∗ is the image of the norm homomorphism.

We note that N is the direct product of an abelian p-subgroup of order ql−1 and a

cyclic group of order q + 1. We also note that, since the trace map R+ → R+, given by

r 7→ r + r, restricts to r 7→ 2r in R+ and 2 ∈ R∗, it is an additive group epimorphism.

2.3 Groups and Characters

Suppose that G is a finite group. A p-element of G is an element whose order is a

power of p, while a p ′-element is one whose order is coprime to p. Given x ∈ G, the

p-decomposition of x describes the decomposition

x = us = su,

where u is a p-element and s is a p ′-element. As is well known, the elements u and s

are powers of x and are uniquely determined.

There is a well known concept of the determinant of a complex character. We

wish to extend this concept in an obvious way to generalized characters. Let φ be a

generalized character of G. Write

φ = a1χ1 + · · · + arχr

where each χi is an irreducible character of G and each ai is an integer. We then

define the linear character detφ of G by

detφ = (detχ1)a1 · · · (detχr)
ar .(4)

If φ1 and φ2 are generalized characters of G then (4) gives

det(φ1 + φ2) = (detφ1)(detφ2).(5)

Later, we will require a simple property of the determinant of a real-valued gener-

alized character, which we prove below.
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Lemma 2.2 Let φ be a real-valued generalized character of G. Then detφ has order

dividing 2.

Proof We first prove the result when φ is a real-valued ordinary character. Let D be

a complex representation of G with character φ and let D be the conjugate represen-

tation of G. As φ is real-valued, D and D are equivalent representations. Thus there

is an invertible n× n matrix A, where n = φ(1), satisfying

D(g) = AD(g)A−1

for all g in G. Taking determinants, we see that det D(g) is real-valued. It follows that

detφ is real-valued and hence has order dividing 2.

Suppose now that φ is a real-valued generalized character. We may writeφ unique-

ly in the form φ = φ1 − φ2, where φ1 and φ2 are ordinary characters with no irre-

ducible constituents in common. As φ is real-valued, the uniqueness of this decom-

position implies that both φ1 and φ2 are also real-valued. The result now follows

from the proof in the first paragraph and the earlier observation (5).

2.4 Hermitian Spaces, Unitary Groups and Symplectic Groups

We assume for the remainder of this paper that V is a free R-module of finite rank n

and ( , ) : V× V → R is a non-degenerate hermitian form relative to the involution

(3). Thus for each v ∈ V, fv : V → R defined by fv(w) = (v,w) is an R-linear

functional and (w, v) = (v,w). Furthermore, the non-degeneracy of the hermitian

form means that for any v not in max V, fv maps V onto R. We say that V is an

hermitian space. We proceed to prove some elementary facts about hermitian spaces

over R, which are well known in the context of finite fields.

Lemma 2.3 There exists a vector u in V with (u, u) = 1.

Proof Let v be an element of V not in max V. Since both fv and the trace map

R
+ → R+ are surjective, there exists w ∈ V with

fv(w) + fv(w) = (v,w) + (v,w) = 1.

Thus we have

1 = (v,w) + (w, v) = (v + w, v + w)− (v, v)− (w,w).

It follows that at least one of the terms on the right above is not in max. Thus we may

find x ∈ V with (x, x) a unit in R. Finally, since the norm map R∗ → R∗ is surjective,

we may find t ∈ R∗ with tt = (x, x)−1. If we set u = tx, we see that (u, u) = 1.

Lemma 2.4 The hermitian space V possesses an orthonormal basis.
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Proof We proceed by induction on the rank, n, of V. By Lemma 2.3, there is some

u ∈ V with (u, u) = 1. Set U = Ru. If n = 1, then V = U and the result follows.

Suppose next that n > 1. Then we have V = U ⊕ U
⊥, where U

⊥ is defined by

U⊥ = {v ∈ V : (v, u) = 0}. Clearly, U⊥ is a non-degenerate hermitian space of

rank n − 1 and thus has an orthonormal basis, by induction. Adjoining u to this

orthonormal basis of U, we obtain an orthonormal basis of V, as required.

Suppose now that n ≥ 2 and u and v are linearly independent elements of V.

Let U = Ru ⊕ Rv. We say that U is a non-degenerate R-submodule of V if the

restriction of the hermitian form to U × U is non-degenerate. In the case that U

is non-degenerate, we say that linearly independent elements x and y in U form a

hyperbolic basis of U if

(x, x) = (y, y) = 0, (x, y) = 1.

Lemma 2.5 Let U be a non-degenerate R-submodule of V of rank 2. Then U has a

hyperbolic basis.

Proof By Lemma 2.4, U has orthonormal basis vectors, say u and v. Let λ be an

element of R satisfying λλ = −1. Then it is straightforward to check that

u + λv,
1

2
(u− λv)

are hyperbolic basis vectors.

We shall require the following lemma in our later investigations.

Lemma 2.6 Suppose that n ≥ 2. Let v be an element of V not in max V and suppose

that (v, v) ∈ max. Then there exists z ∈ V such that v − z ∈ max V and (z, z) = 0.

Proof We first note that, as V is a free R-module, an equality of the form λu = 0,

where λ ∈ R and u ∈ V, implies that either λ = 0 or u ∈ max V. Now, as we

observed previously, fv : V → R is surjective. Thus there exists w ∈ V with (v,w) =

1. We will show that v and w are linearly independent. For suppose that rv + sw = 0

for some r and s in R. Then

(v, rv + sw) = 0 = r(v, v) + s(v,w) = r(v, v) + s.

Hence s = −r(v, v) and we obtain

rv − r(v, v)w = r
(

v − (v, v)w
)
= 0.

By our opening remark, we deduce that either r = 0, in which case s = 0 also, or

else v − (v, v)w ∈ max V. But since (v, v) ∈ max, the latter possibility implies that

v ∈ max V, contrary to hypothesis. Hence r = s = 0, and v and w are indeed linearly

independent.
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We set U = Rv ⊕ Rw. Since (v, v) ∈ max and (v,w) = 1, it is straightforward to

check that U is non-degenerate. By Lemma 2.5, U has a hyperbolic basis, consisting

of, say, vectors x and y. We may now write

v = αx + βy,

where α and β are in R. Since v /∈ max V, at least one of α and β is a unit in R, say

α. Set u = (α)−1 y. Then we have (u, u) = 0 and (u, v) = 1. Finally, set

z = v −
(v, v)

2
u.

It is easy to see that z has the required property.

The unitary group of rank n over R is by definition the group of all automorphisms

g of V that satisfy

(gv, gw) = (v,w)

for all v and w in V. We denote this group by Un(R). Since Lemma 2.4 implies that all

non-degenerate hermitian forms defined on V× V are equivalent, the isomorphism

type of Un(R) is independent of the choice of non-degenerate hermitian form.

Given u and v in V, we may write

(u, v) = [u, v] + e〈u, v〉,(6)

for unique [u, v], 〈u, v〉 in R. If we view V as a free R-module, say V , of rank 2n, then

the formulation above makes 〈 , 〉 into a non-degenerate alternating form on V .

Let Sp2n(R) denote the subgroup of automorphisms of V that preserve 〈 , 〉. We

refer to it as the symplectic group associated to (V, 〈 , 〉). By virtue of the uniqueness

of (6) and the fact that Un(R) preserves ( , ), it follows that Un(R) preserves both 〈 , 〉
and [ , ]. Hence we have the inclusion

Un(R) ⊂ Sp2n(R).(7)

2.5 The Weil Representation

Let H = {(r, v) : r ∈ R, v ∈ V} be the Heisenberg group associated to (V, 〈 , 〉),

where multiplication is given by (r1, v1)(r2, v2) = (r1 + r2 + 〈v1, v2〉, v1 + v2). Observe

that Z(H) = (R, 0) ' R+ and that Sp2n(R) acts naturally on H by means of the

formula
g(r, v) = (r, gv).

A linear character λ : R+ → C∗ is said to be primitive if its kernel does not contain

any non-zero ideals of R. Since maxl−1 is the unique minimal ideal of R, the number

of primitive linear characters of R+ equals |R|−|R/maxl−1 | > 0. We are thus allowed

to choose a primitive linear character λ : R+ → C∗. We view λ as a character of Z(H).

Much as in the field case, one may show that (V, 〈 , 〉) admits a symplectic basis

{u1, . . . , un, v1, . . . , vn}. Let M be the R-span of {u1, . . . , un}. Thus M is a maximal
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totally isotropic submodule of V . Consider the normal subgroup A = (R,M) of H

and extend λ to the linear character ρ of A by means of: ρ(r,m) = λ(r), r ∈ R,

m ∈ M. By construction, the inertia group of ρ in H is A itself. Clifford theory thus

ensures that χλ = indH
A ρ is an irreducible character of H. We have

degχλ = [H : A] = [V : M] = |R|n = qnl.(8)

Moreover, remark that

χλ|Z(H) = |R|
nλ and [H : Z(H)] = |R|2n.

It follows from [I, exercise 6.3] thatχλ is the only irreducible character that lies overλ.

Since Sp2n(R) acts trivially on Z(H), the conjugate character χ
g
λ also lies over λ

for each g ∈ Sp2n(R). It follows from the uniqueness of χλ that χλ = χ
g
λ for all

g ∈ Sp2n(R). If Sλ : H → GL(Xλ) is a complex representation with character χλ then

the Sp2n(R)-invariance of χλ ensures that to each g ∈ Sp2n(R) there corresponds an

operator, say Wλ(g), that conjugates Sλ into S
g
λ. It is shown in [CMS, Section 3] that

the operators above can be chosen so that g 7→Wλ(g) is a group homomorphism. In

other words, there exists a representation Wλ : Sp2n(R)→ GL(Xλ) such that

Wλ(g)Sλ(h)Wλ(g)−1
= Sλ(gh), g ∈ Sp2n(R), h ∈ H.(9)

We refer to Wλ as the Weil representation of Sp2n(R) of type λ and denote its charac-

ter by ψλ.

Since Sλ is irreducible, ψλ is uniquely determined by (9) whenever Sp2n(R) is per-

fect, which is always the case unless q = 3 and n = 1 (see [S, Section 2.4] or [K,

Section 3] for the case q > 3).

Definition 2.7 When q = 3 and n = 1, we shall understand by the Weil character of

Sp2n(R) of type λ the only characterψλ of this kind that satisfies (see [S, Section 5.1]):

ψλ(g) =
∑

r∈R

λ(r2),(10)

where g is a symplectic transvection of the form x → x + 〈u, x〉u and u is any basis

vector of V .

This definition makes sense because the Weil character never vanishes (see [CMS,

Theorem 4.5]) and g can detect any of the three linear characters of Sp2n(R) when

q = 3 and n = 1 (see [S, Section 2.4]).

We denote the restriction ofψλ to Un(R) byΨλ and refer to it as the Weil character

of Un(R) of type λ. By (8) its degree is equal to

degΨλ = degψλ = degχλ = qnl.(11)
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2.6 Calculations in the Hermitian Space

Let r be an element of R. We set

V(r) = {v ∈ V : (v, v) = r}

and put Sr
n = |V(r)|. Thus Sr

n equals the number of solutions in R to the equation

x1x1 + x2x2 + · · · + xnxn = r.

Let min denote the minimal ideal of R and let m be a generator of min. Set

Tn = S0
n − Sm

n .

Lemma 2.8

(a) If r ∈ R and t ∈ R∗, then Sr
n = Str

n .

(b) If r ∈ R is different from 0 and−m, then Sr
n = Sr+m

n .

(c) Tn = (T1)n.

Proof (a) Since the norm map is surjective, we may write t = ss for some s ∈ R∗.

The map v→ sv establishes a bijection between V(r) and V(tr).

(b) If r ∈ min, then both m and r + m are generators of min, since r 6= 0,−m. It

follows that r + m = tr, where t ∈ R∗, so (a) ensures that Sr
n = Sr+m

n .

If r /∈ min, then m = tr for some t ∈ max, so r + m = (1 + t)r where 1 + t ∈ R∗.

It follows again from (a) that Sr
n = Sr+m

n .

(c) If n = 1 there is nothing to prove, so we assume that n > 1. The equation

x1x1 + x2x2 + · · · + xn−1xn−1 = −xnxn

has exactly

∑

r∈R

Sr
1S−r

n−1 =

∑

r∈R\min

Sr
1S−r

n−1 +
∑

r∈min \{0}

Sr
1S−r

n−1 + S0
1S0

n−1(12)

solutions. Since r,−r ∈ R∗m for all r ∈ min \{0}, (a) gives

∑

r∈min \{0}

Sr
1S−r

n−1 = (q− 1)Sm
1 Sm

n−1.(13)

Analogously, the equation

x1x1 + x2x2 + · · · + xn−1xn−1 = m− xnxn

has exactly

∑

r∈R\min

Sr
1Sm−r

n−1 +
∑

r∈min \{0,m}

Sr
1Sm−r

n−1 + Sm
1 S0

n−1 + S0
1Sm

n−1(14)
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solutions. By (b)

∑

r∈R\min

Sr
1Sm−r

n−1 =

∑

r∈R\min

Sr
1S−r

n−1,(15)

while it follows as above from (a) that

∑

r∈min \{0,m}

Sr
1Sm−r

n−1 = (q− 2)Sm
1 Sm

n−1.(16)

Substituting (13) in (12) and (15)–(16) in (14), and then subtracting (14) from (12)

we get

Tn = S0
n − Sm

n = (S0
1 − Sm

1 )(S0
n−1 − Sm

n−1) = T1Tn−1.

The result hence follows by induction.

Lemma 2.9 Suppose that l is odd. Then

(a) Sm
1 = ql−1(q + 1).

(b) S0
1 = ql−1.

(c) T1 = −ql.

(d) Tn = (−q)ln.

Proof We may assume that m = ωl−1, since ωl−1 is a generator of min. Suppose that

x ∈ R satisfies xx = ωl−1. We may write x = ωks, where s ∈ R
∗. Then xx = ωl−1

=

ω2kss and it follows that 2k = l − 1 and ss ∈ 1 + max. Conversely, any element of

the form ω(l−1)/2s, where ss ∈ 1 + max, has norm equal to ωl−1. Now since the norm

map is surjective, there are exactly ql−1(q + 1)ql−1 elements s ∈ R∗ with ss ∈ 1 + max.

Finally, since ω(l−1)/2s = ω(l−1)/2s ′ if and only if s ′ − s ∈ ω(l+1)/2
R, there is a total of

ql−1(q + 1)ql−1/(q2)(l−1)/2
= ql−1(q + 1) elements x = ω(l−1)/2s whose norm is equal

to ωl−1. This proves part (a). For part (b), the argument above implies that the set

of elements of norm 0 coincides with max(l+1)/2. Since |max(l+1)/2 | = ql−1, part (b)

follows. Parts (c) and (d) are now clear.

2.7 On the Structure of the Unitary and Symplectic Groups

Let π denote the canonical ring homomorphism

R→ R/max ∼= Fq2 .

Since max is invariant under the involution of R, π induces an involution ∗ on

R/max, defined by π(r)∗ = π(r). This involution is non-trivial on R/max, as

e /∈ max. Since R/max is isomorphic to the field Fq2 , ∗ must coincide with the

canonical involution x → xq defined on Fq2 . We also let π denote the natural homo-

morphism V → V/max V. Clearly, π(V) is a vector space of dimension n over Fq2 .

We may define a sesquilinear form f : π(V)× π(V)→ Fq2 by

f
(
π(v), π(w)

)
= π(v,w).
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It is elementary to check that f is a non-degenerate hermitian form with respect to

∗. Finally, given g in Un(R), we define an automorphism π(g) of π(V) by

π(g)π(v) = π(gv).

It is again elementary to see that π(g) is an isometry of f and that π induces a homo-

morphism from Un(R) into Un(Fq2 ). We intend to investigate the kernel and image

of this group homomorphism in the next few lemmas. (We trust that context will

make it clear which homomorphism is signified by π.)

Let w be any element of V satisfying (w,w) = 0 and let λ be any element of R

satisfying λ + λ = 0. Define an automorphism g = gλ,w of V by

gv = v + λ(w, v)w

for all v in V. We readily check that g is an element of Un(R), which we call a unitary

transvection. The image π(g) of g is a unitary transvection in Un(Fq2 ) in the usual

field-theoretic sense. Here, as a matter of convenience, we consider the identity map-

ping to be transvection. We show now that every transvection in Un(Fq2 ) is the image

of a transvection in Un(R).

Lemma 2.10 Let ρ be a unitary transvection in Un(Fq2 ). Then there is a unitary

transvection g in Un(R) with π(g) = ρ.

Proof As ρ is a unitary transvection, it acts on π(V) according to the formula

ρπ(v) = π(v) + π(µ) f
(
π(w), π(v)

)
π(w),

where v,w ∈ V, f
(
π(w), π(w)

)
= 0 and µ ∈ R satisfies π(µ) + π(µ)∗ = 0. If

π(w) = 0 then ρ = 1π(V) = π(1V) = π(g0,0). Thus we may suppose that π(w) 6= 0.

Let µ = a + be, where a, b ∈ R. Then as π(µ) + π(µ)∗ = 0, it follows that 2a ∈ max.

Thus a ∈ max, as 2 is a unit in R. If we now define ν = be, we have ν + ν = 0 and

π(ν) = π(µ). Furthermore, by Lemma 2.6, we can find z ∈ V with (z, z) = 0 and

π(z) = π(w). Then g = gν,z is a unitary transvection in Un(R) satisfying π(g) = ρ.

Lemma 2.11 The group homomorphism π : Un(R) → Un(Fq2 ) is surjective and its

kernel is a p-group.

Proof We have seen in Lemma 2.10 that all unitary transvections of Un(Fq2 ) are con-

tained in π
(

Un(R)
)

. Now the subgroup of Un(Fq2 ) generated by the transvections is

the special unitary group SUn(Fq2 ) (see, for example, the proof of Theorem 10.20 of

[T]). Thus, SUn(Fq2 ) is contained in the image of π.

Fix now an orthonormal basis of V and let β be an element of order q + 1 in N.

Let d be the element of Un(R) whose matrix with respect to this basis is diagonal

of the form diag(β, 1, . . . , 1) and let D be the cyclic subgroup generated by d. It

is straightforward to see that π(d) is an element of order q + 1 in Un(Fq2 ), whose
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determinant has order q + 1. Thus π(D) complements SUn(Fq2 ) and Un(Fq2 ) is the

semi-direct product of SUn(Fq2 ) and π(D). This establishes that π is surjective.

Suppose that g ∈ kerπ. Then we have gv − v ∈ max V for all v ∈ V. Let A

be the matrix of g with respect to the chosen basis of V. Then A − I = ωB, where

ω generates max and B is an n × n matrix whose entries lie in R. We will prove by

induction on m that

Apm

= I + ωm+1Bm,

where Bm is an n× n matrix whose entries lie in R. This is clearly true when m = 0.

Suppose now that

Apr

= I + ωr+1Br.

Then

Apr+1

= (I + ωr+1Br)
p
= I + pωr+1Br +

∑

i≥2

(
p

i

)
ω(r+1)iBi

r.

Since p1 is in max, it is a multiple of ω and the induction step is complete. Finally, as

ωl
= 0, it follows that Apl−1

= I and thus the order of g is a power of p dividing p l−1.

This implies that kerπ is a p-group.

Corollary 2.12 The commutator quotient group Un(R)/Un(R) ′ is the direct product

of an abelian p-group with a cyclic group of order q + 1 that is the canonical image of the

subgroup D introduced in the proof of Lemma 2.11. In particular, Un(R) has a unique

linear character ε of order 2, which is determined by its restriction to D.

Proof Let G denote Un(R) and L denote Un(Fq2 ). The epimorphism π : G → L,

described in Lemma 2.11 induces an epimorphism π : G/G ′ → L/L ′. The kernel of

π is (G ′ kerπ)/G ′ ∼= kerπ/G ′ ∩ kerπ. Since we have seen that kerπ is a p-group

and L/L ′ is well known to be cyclic of order q + 1, the first statement of the corollary

follows. The existence and uniqueness of ε is straightforward.

There is likewise a canonical ring homomorphism

σ : R→ R/max ∼= Fq.

This induces a homomorphism V → V/max, which we again denote by σ. It is clear

that σ(V ) is a vector space of dimension 2n over Fq. We may define a non-degenerate

alternating bilinear form h : σ(V )× σ(V )→ Fq by the formula

h
(
σ(v), σ(w)

)
= σ(〈v,w〉).

This in turn induces a homomorphism, also denoted by σ, from Sp2n(R) into

Sp2n(Fq). We may show that σ maps Sp2n(R) onto Sp2n(Fq) as follows. Let w be

any element of V . Consider the automorphism g of V defined by

gv = v + λ〈w, v〉w,
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where λ ∈ R. A straightforward calculation shows that g is an element of Sp2n(R).

We call g a symplectic transvection. The image σ(g) is a symplectic transvection in

Sp2n(Fq) in the usual sense. It is elementary to prove that each symplectic transvec-

tion in Sp2n(Fq) arises as the image under σ of a symplectic transvection in Sp2n(R).

(We remark that the proof required is considerably simpler than that given in

Lemma 2.10, as each element of V is isotropic with respect to the alternating form.)

Since Sp2n(Fq) is generated by its transvections (see, for example, [T, Theorem 8.5]),

it follows that σ is surjective. Furthermore, kerσ is a p-group, as the the argument

used in the proof of Lemma 2.11 implies.

The main conclusion we wish to draw from these discussions is the following,

whose proof follows from the fact that Sp2n(Fq) is perfect when q is odd, except when

q = 3 and n = 1. In the exceptional case, the commutator quotient group of Sp2(F3)

has order 3. (See, for example, [T, Theorem 8.7].)

Corollary 2.13 The commutator quotient group Sp2n(R)/ Sp2n(R) ′ is a p-group.

We remark that, in the corollary above, the commutator quotient is in fact trivial

unless q = 3 and n = 1. Indeed this follows from [S, Section 2.4] or [K, Section 3] if

q > 3. When n = 1 and q = 3, the commutator quotient is non-trivial.

2.8 The Action of Un(R) on V

Given g ∈ Un(R), let Vg
= ker(g− I). It is clear that Vg is an R-module and, since the

residue field associated to R has order q2, it follows that |Vg | is a power of q2. Thus

we may write |Vg | = q2N(g) for some non-negative integer N(g).

Lemma 2.14 Let s be a p ′-element of order t in Un(R). Let

P = t−1
∑

g∈〈s〉

g.(17)

Then P is a self-adjoint projection. Thus if V0 = Im P and V1 = ker P, then

V0 ⊕ V1 = V(18)

is a decomposition of V into the direct sum of orthogonal hermitian spaces, the first of

which coincides with Vs.

Proof Since t is coprime to p, the element t is a unit in R, so that (17) makes sense.

A straightforward calculation shows that we have P2
= P and

(Pv,w) = t−1
∑

g∈〈s〉

(gv,w) = t−1
∑

g∈〈s〉

(v, g−1w) = (v, Pw), v,w ∈ V.

Since P is a projection, (18) holds and since P is self-adjoint, Im P and ker P are

orthogonal. But V is non-degenerate, therefore so must be V0 and V1, and these are

free R-modules because they are projective and R is local. Finally, it is elementary to

see that V0 = Vs.
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Lemma 2.15 If l is even and s is a p ′-element of Un(R), then N(s) is even.

Proof Consider the decomposition V = V0 ⊕ V1 of Lemma 2.14. Then

q2N(s)
= | ker(s− I)| = |V0| = q2l rank V0 ,

so N(s) = l rank V0 is even.

Given any element α in N, let zα denote the central element of Un(R) that acts on

V according to v 7→ αv.

Lemma 2.16 Let α 6= 1 be an element of p ′-order in N and let z = zα. Then

Vz
= {0}.

Proof If zv = v then (α−1)v = 0. Here α−1 is a unit, since α /∈ 1+ max. It follows

that v = 0, as required.

3 Rationality of the Weil Character

Proposition 3.1 Let λ be a primitive linear character of R+. Then

ψλ(g)ψλ(g) = |V g |, g ∈ Sp2n(R).

Therefore

Ψλ(g)Ψλ(g) = |Vg | = q2N(g), g ∈ Un(R).

Proof This follows at once from [CMS, Theorem 4.5].

Theorem 3.2 Let λ : R+ → C be a primitive linear character. Let I be an ideal of R of

square (0) and let Xλ(I) be the set of fixed points in Xλ of the subgroup B = (0, IV ) of

H. Let J be the annihilator of I in R and let K be the conductor of J in I. Let Sp2n(K) =

{g ∈ Sp2n(R) | gv ≡ v mod KV} be the congruence subgroup of Sp2n(R) associated

to K and let Un(K) = {g ∈ Un(R) | gv ≡ v mod KV} be the congruence subgroup of

Un(R) associated to K. Then

(a) Xλ(I) is a non-trivial subspace of Xλ.

(b) The restriction of the Weil representation of Sp2n(R) to Sp2n(K) is trivial on Xλ(I).

(c) The restriction of the Weil representation of Un(R) to Un(K) is trivial on Xλ(I).

Proof Parts (a) and (b) are respectively proven in Sections 4 and 5 of [CMS]. The

proof of part (b) given in [CMS] requires that Sp2n(R) is perfect. A proof for the

imperfect case may be found in Section 7.1 of [S]. Part (c) follows immediately from

(b) and the inclusion Un(K) ⊂ Sp2n(K).

If λ : R+ → C
∗ is primitive and r ∈ R, we let λ[r] denote the linear character of R+

given by s 7→ λ(sr). The primitivity of λ ensures that λ[r] = λ[s] if and only if r = s.

Thus all linear characters of R+ are of the form λ[r], this being primitive precisely

when r ∈ R∗.
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Theorem 3.3 The Weil characters of Un(R) of all primitive types are equal, that is, if

λ and µ are primitive linear characters of R+,Ψλ = Ψµ.

Proof Let λ and µ be primitive linear characters of R+. As noted above, there exists

an element k ∈ R∗ with

µ(r) = λ(kr)

for all r ∈ R. Lemma 2.1 shows that there exists an element t of R∗ with tt = k. We

now define an automorphism θ of H by

θ(r, v) = (ttr, tv) = (kr, tv).

We note that as every g ∈ Un(R) is R-linear, θ commutes with the action of Un(R)

on H.

Let Sλ be the irreducible complex representation of H with character χλ. We de-

fine the conjugate representation Sθλ of H by

Sθλ(r, v) = Sλ
(
θ(r, v)

)
.

It is straightforward to see that the character χθλ of Sθλ lies over µ, implying that Sθλ
and Sµ are equivalent representations of H. It follows that there is an isomorphism

D : Xµ → Xλ satisfying

Sµ = D−1SθλD.

Since θ commutes with the action of Un(R) on V, we easily see that

Wµ(g)−1D−1Wλ(g)D

centralizes Sµ for each g ∈ Un(R). Schur’s Lemma implies that

D−1Wλ(g)D = η(g)Wµ(g), g ∈ Un(R),(19)

where η is a linear character of Un(R).

Consider the ideal I of R defined by

I =

{
max(l+1)/2 if l is odd

maxl/2 if l is even.

Certainly, I2
= (0). Let J =

(
(0) : I

)
and K = (I : J). Then

K =

{
max if l is odd

R if l is even.

In either case, max ⊆ K.

Let B be the subgroup (0, IV ) of H. We easily check that B is θ-invariant. We claim

now that D maps Xµ(I) onto Xλ(I). For let v be an element of Xµ(I). Then

Sµ(h)v = v
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for all h in B. It follows that

Sλ(θh)Dv = Dv.

Since B is θ-invariant, Dv ∈ Xλ(I) and we see that DXµ(I) ≤ Xλ(I). Similarly,

D−1Xλ(I) ≤ Xµ(I) and the equality follows.

By Theorem 3.2, Xµ(I) is non-trivial and Un(max) acts trivially on Xµ(I). Let v

be an element of Xµ(I) and g an element of Un(max). Then Wµ(g)v = v. Since

Dv ∈ Xλ(I), we also have Wλ(g)Dv = Dv. It follows from the equality in (19) that

η(g)v = v and thus η(g) = 1 for all g in Un(max). Now Un(max) is the kernel of

the homomorphism π studied in Lemma 2.11. Thus Un(R)/Un(max) is isomorphic

to Un(Fq2 ) and we may thus consider η as a linear character of Un(Fq2 ). Since the

commutator quotient of this group is a p ′-group, it follows that η has p ′-order.

We have shown in Corollary 2.13 that the commutator quotient of Sp2n(R) is a

p-group. It follows that both detWλ and det Wµ have order a power of p. Taking

determinants in (19), we deduce that the order of η is also a power of p, since both

Wλ and Wµ have degree qnl.

It follows that η is trivial and thus the characters Ψλ and Ψµ of Wλ and Wµ are

equal, as asserted.

Definition 3.4 By the Weil character Ψ of Un(R) we understand the restriction to

Un(R) of the Weil character of Sp2n(R) of any primitive type.

Theorem 3.3 ensures that the definition above makes sense.

Theorem 3.5 Ψ is rational valued and for all g ∈ Un(R), we haveΨ(g) = ±qN(g).

Proof The complex conjugate of the character χλ lies over λ = λ[−1], whenceχλ =
χλ[−1] by uniqueness. It follows that ψλ is a Weil character of type λ[−1].

In the perfect case there is only one such character, so ψλ = ψλ[−1]. Suppose next

that q = 3 and n = 1, and let g be the symplectic transvection used in Definition 2.7.

We have

ψλ =
∑

r∈R

λ(r2) =
∑

r∈R

λ(−r2) = ψλ[−1](g).

Thus, by definition, ψλ is the Weil character of type λ[−1].

In either case ψλ = ψλ[−1]. Thus the complex conjugate of Ψλ is Ψλ[−1]. Since

we know from Theorem 3.3 that Ψλ = Ψλ[−1], it follows that Ψλ is real-valued. The

formula in Proposition 3.1 now implies that for g ∈ Un(R),Ψ(g) = ±qN(g), and thus

Ψ = Ψλ is rational-valued and takes the stated values.

Corollary 3.6 detΨ = 1.

Proof This is clear when Sp2n(R) is perfect. When Sp2n(R) is not perfect, we know

from Corollary 2.13 that the order of detψ, and hence that of detΨ, is a power of p,

which is odd. But sinceΨ is rational valued, so must be detΨ and therefore the order

of detΨ divides 2. All in all, the order of detΨ divides 1, and hence detΨ is trivial.
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4 A Comparison Theorem for Characters

We prove here a slight generalization of a theorem of R. Knörr [Kn, Proposition 1.1].

We note here that in the statement of Knörr’s result, the quantity z defined as the sum

of the character values should be the product of these values. Our proof follows that

of Knörr closely for most of its argument.

Theorem 4.1 Let G be a finite group. Let φ and ϕ be generalized characters of G with

the property that for each p ′-element g of G we have

φ(g) = ±ϕ(g) = ±pm(g),

where m(g) is a non-negative integer. Suppose also that φ(1) = ϕ(1). Then there exists

a linear character η of G of order dividing 2 such that

φ(g) = η(g)ϕ(g)

for each p ′-element g of G.

Proof Let W denote the complex vector space of complex-valued functions which

are defined on the set of p ′-elements of G and which are constant on the conjugacy

classes of p ′-elements. W has a basis consisting of the characteristic functions of

the conjugacy classes of p ′-elements and thus its dimension equals the number, r

say, of conjugacy classes of p ′-elements of G. W also has a basis consisting of the

irreducible Brauer characters of G for the prime p by Theorem 15.10 of [I]. Let L

be the integral lattice in W consisting of generalized Brauer characters of G. Thus L

consists of rational integral sums of Brauer characters of G and has rank r as a lattice.

We may identify L with the lattice generated by the restrictions to p ′-elements of the

generalized complex characters of G by Theorem 15.14 of [I]. Thus the restrictions

of φ and ϕ to p ′-elements of G are elements of L.

We define a linear transformation T of W by setting

T(χ)(g) = ϕ(g)χ(g)

for each function χ in W and each p ′-element g of G. Since ϕ is a generalized char-

acter of G, T maps L into itself. By evaluating T on the characteristic functions of the

conjugacy classes of p ′-elements of G, we see that

det T = ϕ(g1) · · ·ϕ(gr),

where g1, . . . , gr are representatives of the conjugacy classes of p ′-elements of G. As

each ϕ(gi) is a power of p, det T is a power of p. Since T(L) is a sublattice of index

det T in L, we deduce that there is an integer a ≥ 0 with and some χ in L with

T(χ) = paφ̂,

where φ̂ is the restriction of φ to p ′-elements. Our hypothesis on the values of φ and

ϕ shows that χ(g) = ±pa for all p ′-elements g. Now χ is a rational integral linear
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combination of irreducible Brauer characters. Since the irreducible Brauer characters

are linearly independent modulo p (see, for example, [I, Theorem 15.5]), it follows

that p−aχ is also in L. We set η ′ = p−aχ. We now have T(η ′) = φ̂, η ′(g) = ±1 for

all p ′-elements g and η ′(1) = 1.

Finally, we extend η ′ to a class function η on the whole of G by setting

η(x) = η ′(s),

where x = us = su is the p-decomposition of x. It follows from the proof of Theo-

rem 15.14 of [I] that η is a generalized character of G. Since η takes only the values

±1, it is clear that the inner product of η with itself is 1. On the other hand, as η is

a rational integral combination of irreducible complex characters, this is only possi-

ble if ±η is an irreducible complex character. Since η(1) = 1, η is a complex linear

character of degree 1 whose square is trivial, as required.

We note here the following elementary result, which will prove to be very effective

in subsequent arguments. For a proof, see, for example, [I, Theorem 8.20].

Lemma 4.2 Let % be a rational-valued character of a finite group G. Let x ∈ G and

let x = us = su be the p-decomposition of x. Then

%(x) ≡ %(s) mod p.

5 A Generalized Character of Un(R)

Recall from Section 2.6 that V(r) = {v ∈ V : (v, v) = r} for all r ∈ R. Let m denote a

generator of the minimal ideal min of R.

Definition 5.1 Let ν1 be the permutation character of Un(R) acting on V(0), let

ν2 be the permutation character of Un(R) acting on V(m) and if l is even, let ν3

be the permutation character of Un(R) acting on max l/2 V. Define the generalized

permutation character ν of Un(R) by means of:

ν =

{
(−1)n(ν1 − ν2) if l is odd

ν3 if l is even.
(20)

Proposition 5.2 Let s be a p ′-element in Un(R). Then

ν(s) = (−1)nl(−q)N(s).

Proof Suppose first that l is odd. In view of Lemma 2.9 (d) and Lemma 2.14 we have:

ν(s) = (−1)n
(
|V(0)s| − |V(m)s|

)

= (−1)n
(
|V(0)s ∩ V

s| − |V(m) ∩ V
s|
)

= (−1)n
(
|Vs(0)| − |Vs(m)|

)

= (−1)n(−q)l rank V
s

= (−1)n(−q)N(s).
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Assume now that l is even. In view of Lemmas 2.14 and 2.15 we have:

ν(s) = |(ωl/2
V)s| = |ωl/2

V ∩ V
s| = |ωl/2

V
s| = ql rank V s

= qN(s)
= (−q)N(s).

Proposition 5.3 det ν = εl.

Proof As ν is rational-valued, it follows from Lemma 2.2 that the order of det ν
divides 2. Hence det ν = εi , where the parity of the integer i can be determined by

examining the restriction of det ν to the subgroup D of Corollary 2.12.

Suppose first that l is odd. Then Proposition 5.2 gives:

ν|D(x) =

{
−ql(n−1) if x 6= 1

qln if x = 1.
(21)

Let ρD be the regular character of D. Since D is a cyclic group of even order, det ρD

has order 2. By virtue of (21) we have:

ν|D + ql(n−1) · 1D = ql(n−1) (ql + 1)

q + 1
· ρD.(22)

Since ql(n−1) (ql+1)
q+1

is an odd natural number, (5) and (22) show that det ν|D = det ρD

has order 2. Hence det ν = ε by our opening remark.

Suppose now that l is even. Then Proposition 5.2 gives

ν|D(x) =

{
ql(n−1) if x 6= 1

qln if x = 1,
(23)

so

ν|D − ql(n−1) · 1D = ql(n−1) (ql − 1)

q + 1
· ρD.(24)

Since ql(n−1) (ql−1)
q+1

is an even natural number, (5) and (24) show that det ν|D is trivial.

Hence det ν = 1 by our opening remark.

6 Computing the Weil Character of Un(R)

Theorem 6.1 Let s be a p ′-element of Un(R). Then

Ψ(s) = (−1)nlε(g)l(−q)N(s).(25)

Proof We have ν(1) = qnl by Proposition 5.2 andΨ(1) = qnl. Moreover,

ν(s) = ±qN(s)
= ±Ψ(s)

https://doi.org/10.4153/CJM-2002-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-047-5


The Weil Character of the Unitary Group 1247

for all p ′-elements s of Un(R), due to Proposition 5.2 and Theorem 3.5. Thus the

hypotheses of Theorem 4.1 are met, ensuring the existence of a linear character η of

Un(R) with η2
= 1 that satisfies

ν(s) = (Ψη)(s)(26)

for each p ′-element s of Un(R). By Corollary 2.12 we know that η is trivial or equal

to ε and can be determined by its restriction to D.

Taking determinants in (26) applied D we get

det ν|D = detΨ|Dη
qnl

|D .

Since detΨ = 1 by Corollary 3.6 and qnl is odd, the above translates into

det ν|D = η|D,

hence Proposition 5.3 gives

η = det ν = εl.(27)

By virtue of (26), (27) and Proposition 5.2 we get that for all p ′-elements s of Un(R)

Ψ(s) = (−1)nlε(s)l(−q)N(s).

Theorem 6.2 Let x ∈ Un(R) and let x = us = su be the p-decomposition of x.

Suppose that Vs
= {0}. Then

Ψ(x) = (−1)nlε(x)l.(28)

Proof By Lemma 4.2 and Theorem 3.5

Ψ(x) ≡ Ψ(s) mod p,(29)

while by Theorem 6.1 and hypothesis

Ψ(s) = (−1)nlε(s)l.(30)

Thus

Ψ(x) ≡ (−1)nlε(s)l mod p.(31)

But if Vs
= {0}, it follows that Vx

= {0} also, since s is a power of x. Thus we have

N(s) = N(x) = 0 and soΨ(x) = ±1 by Theorem 3.5. Thus the only explanation for

(31) is that Ψ(x) = (−1)nlε(s)l. Now since u has odd order, it follows that ε(u) = 1

and thus ε(x) = ε(s). We thus obtain the desired formula.

Before proving our next result on the Weil character, we require a well known

characterization of Mersenne primes.
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Lemma 6.3 Suppose that q + 1 has no odd prime divisor. Then q = p is a Mersenne

prime.

Proof Clearly, q + 1 must be a power of 2. Since q = pa for some positive integer a,

we have pa + 1 = 2b, for some positive integer b. It is well known, and easy to prove,

that in this case a must equal 1 and b must be a prime. Thus q = p is a Mersenne

prime.

Theorem 6.4 Suppose that q is not a Mersenne prime. Then for x ∈ Un(R),

Ψ(x) = (−1)nlε(x)l(−q)N(x).

Proof Write

Ψ(x) = δ(x)qN(x),

where δ(x) = ±1, in accordance with Theorem 3.5. Let r be an odd prime divisor of

q + 1 and suppose first that r does not divide the order of x. Let z = zα, where α is an

element of N of order r, and set w = xz. Let w = us = su be the p-decomposition

of w. We claim that Vs
= {0}. For, since x has order coprime to r, z is a power of s.

Moreover, Vz
= {0} by Lemma 2.16, and thus Vs

= {0} also, proving our claim. It

follows from Theorem 6.2 that

Ψ(w) = (−1)nlε(w)l.

Lemma 4.2 implies that

δ(x)qN(x) ≡ Ψ(x) ≡ Ψ(w) ≡ (−1)nlε(w)l mod r.(32)

We note that q ≡ −1 mod r and thus qN(x) ≡ (−1)N(x) mod r. Therefore

δ(x)qN(x) ≡ δ(x)(−1)N(x) mod r.(33)

It follows from (32) and (33) that

δ(x)(−1)N(x) ≡ (−1)nlε(w)l mod r

and since r is odd, we must have the actual equality

δ(x)(−1)N(x)
= (−1)nlε(w)l.

Therefore,

δ(x) = (−1)nl(−1)N(x)ε(w)l.

Finally, since ε is a homomorphism and z has odd order,

ε(w) = ε(xz) = ε(x)ε(z) = ε(x).
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Thus we obtain

Ψ(x) = (−1)nl(−1)N(x)qN(x)ε(x)l
= (−1)nlε(x)l(−q)N(x).

Suppose now that r divides the order of x. Let x = hg = gh be the r-decomposition

of x, where g has r ′-order and the order of h is a power of r. We know that

Ψ(g) = (−1)nlε(g)l(−q)N(g)

and we have

δ(x)qN(x) ≡ Ψ(x) ≡ Ψ(g) ≡ (−1)nlε(g)l(−q)N(g) mod r.(34)

Since (−q)N(g) ≡ 1 mod r, qN(x) ≡ (−1)N(x) mod r and δ(x) = ±1, (34) yields

δ(x) = (−1)nlε(g)l(−1)N(x).

Finally, we also have ε(x) = ε(g), since h has odd order. Thus,

δ(x) = (−1)nlε(x)l(−1)N(x)

and the result is proved.

7 The General Case

We do not impose here any restrictions on q, except for our general assumption that

q is the power of an odd prime. Note that q3 cannot be a Mersenne prime.

Lemma 7.1 Let G1 ⊆ G2 be finite abelian groups. Suppose that the 2-Sylow subgroups

of G1 and G2 coincide. Then G2
1 = G2

2 ∩ G1, that is, if a ∈ G1, then a has a square root

in G1 if and only if a has a square root in G2.

Proof Since G1 and G2 are the direct products of their Sylow subgroups and squar-

ing is an automorphism of an odd order Sylow subgroup, we may assume without

loss of generality that G1 and G2 coincide with their 2-Sylow subgroups. Since by

assumption these Sylow subgroups are equal, the result follows.

The ring epimorphism R→ Fq yields a ring epimorphism of the polynomial rings

R[t] → Fq[t], by reduction modulo max. There certainly exists a cubic irreducible

polynomial in Fq[t]. Lift this polynomial to a cubic polynomial p(t) ∈ R[t].

Set T = R[t]/
(

p(t)
)

and T = T[t]/(t2− e). Recall at this point that e ∈ R∗ \R∗2

and that we obtained R by adjoining to R a square root e. Let us now make the specific

choice e = t + (t2 − e) ∈ T.
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Lemma 7.2

(a) T/T is a quadratic extensions of finite, commutative, principal and local rings of

odd characteristic.

(b) R is a subring of T and T is a free R-module of rank 3.

(c) The involution of T that fixes T restricts to the involution of R that fixes R.

(d) The residue field of T is equal to Fq3 and |T| = (q3)l.

Proof It is clear that T and T are finite commutative rings of odd characteristic. We

claim that T is a local ring with maximal ideal T max. Indeed, let a be an element of

T that does not belong to T max. Setting d = t +
(

p(t)
)
∈ T, we may write a = r(d),

where 0 6= r(t) ∈ R[t] has degree ≤ 2 and does not vanish modulo max. Note that

the reductions of r(t) and p(t) modulo max are coprime polynomials in Fq[t]. Thus,

there exists s(t) ∈ R[t] such that r(d)s(d) ∈ 1 + max[d]. Since max is nilpotent,

1 + max[d] ⊂ T∗, whence a = r(d) is invertible. This proves the claim.

As max is principal, so is T max. It follows that every maximal ideal of T is prin-

cipal, whence T is principal ring.

We contend that the residue field of T is Fq3 . Indeed, since T is a free R-module

with basis {1, d, d2}, we have

|T/T max | = |R[d]/max[d]| = q3,

as required. Remark that the nilpotency degree of T max is also equal to l. It follows

that |T| = (q3)l and |T∗| = q3(l−1)(q3−1). Observe that part (d) has been established.

We proceed to show that e /∈ T∗2. We know that the unit groups R∗ and T∗ have

orders ql−1(q−1) and q3(l−1)(q3−1) = q3(l−1)(q2 +q+1)(q−1), respectively. As ql−1

and q3(l−1)(q2 + q + 1) are odd, Lemma 7.1 applies to yield e /∈ T∗2. This completes

the proof of part (a).

It is clear that R is a subring of T. Moreover, T is a free R-module of rank 6

with basis {1, d, d2, e, ed, ed
2}, whence T is a free R-module of rank 3 with basis

{1, d, d2}. This demonstrates part (b). As part (c) is obvious, the proof is complete.

Lemma 7.3 For all g ∈ Un(R) we have

ε(g) =

{
1 if det g ∈ N2

−1 otherwise.
(35)

Proof As N has order ql−1(q + 1) and the subgroup of N of order q + 1 is isomorphic

to the one-norm subgroup of Fq2 and hence cyclic, it follows that N2 has index 2 in

N. Since the determinant map of Un(R) takes values in N, we deduce that the right

hand side of (35) does define a linear character of Un(R) of order 2, hence equality

prevails in (35) by uniqueness (cf. Corollary 2.12).

Fix an orthonormal R-basis {v1, . . . , vn} of V. Set Y = T ⊗R V and define a

non-degenerate hermitian T-form on Y by declaring {1 ⊗ v1, . . . , 1 ⊗ vn} to be an
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orthonormal basis of Y. Given g ∈ Un(R) let g ∈ Un(T) be defined by

g(t⊗ v) = t⊗ g(v), t ∈ T, v ∈ V.

Observe that Un(R) 3 g 7→ g ∈ Un(T) is a group monomorphism.

Lemma 7.4 Let εT denote the linear character of order 2 of Un(T). Then for all g ∈
Un(R) we have

εT(g) = ε(g).

Proof Clearly det g = det g. Also, the one-norm groups N and NT of R and T have

orders ql−1(q + 1) and q3(l−1)(q3 + 1) = q3(l−1)(q2 − q + 1)(q + 1), respectively. As

ql−1 and q3(l−1)(q2 − q + 1) are odd and N ⊂ NT by Lemma 7.2 (c), we may apply

Lemmas 7.1 and 7.3 to obtain the desired result.

Lemma 7.5 For all g ∈ Un(R) we have

| ker(g − IY)| = | ker(g − IV)|3.

Proof Note that ker(g − IY) = ker(g − IV). We claim that ker(g − IV) is equal to

T ⊗R ker(g − IV). The inclusion T ⊗R ker(g − IV) ⊆ ker(g − IV) is clear. To see

the reverse inclusion, let w ∈ ker(g − IV). In view of Lemma 7.2 (b) there exists an

R-basis {t1, t2, t3} of T. Accordingly, we may write w uniquely as

w = t1 ⊗ v1 + t2 ⊗ v2 + t3 ⊗ v3,

where the vi ∈ V. Now

0 = (g − IV)w = t1 ⊗
(

g(v1)− v1

)
+ t2 ⊗

(
g(v2)− v2

)
+ t3 ⊗

(
g(v3)− v3

)
,

whence g(vi) = vi for all i by uniqueness. This proves our claim. It follows that

| ker(g − IY)| = | ker(g − IV)| = |T⊗R ker(g − IV)| = | ker(g − IV)|3.

Lemma 7.6 For all g ∈ Un(R) we have

N(g) = N(g).

Proof In light of Lemma 7.5 we have

(q3)2N(g)
= | ker(g − IY)| = | ker(g − IV)|3 = (q2N(g))3.

Let ΨT denote the Weil character Un(T).

Lemma 7.7 For all g ∈ Un(R) we have

ΨT(g) = (−1)nlε(g)l(−q3)N(g).
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Proof As q3 is not a Mersenne prime, this follows at once from Theorem 6.4 and

Lemmas 7.2 (d), 7.4 and 7.6.

Lemma 7.8 For all g ∈ Un(R) we have

ΨT(g) = Ψ(g)3.

Proof By Lemma 7.7 and Theorem 3.5 we have

ΨT(g) = ±Ψ(g)3, g ∈ Un(R).

Moreover, note that

ΨT(1) = Ψ(1)3.

In view of Theorem 4.1 there exists a linear character η of Un(R) of order dividing

2 such that for all g ∈ Un(R),

ΨT(g) = η(g)Ψ(g)3.

Taking determinants above and making use of the fact that the Weil character has

determinant 1 we get ηq3nl

= 1. Since 2 and q3nl are coprime it follows that η = 1, as

desired.

Theorem 7.9 Let R/R be a quadratic extension of finite, commutative, local and prin-

cipal rings of odd characteristic. Let Un(R) be the unitary group of rank n associated to

R/R. Let Fq be the residue field of R. Let ε be the only linear character of Un(R) of

order 2, that is

ε(g) =

{
1 if det g ∈ N2

−1 otherwise,

where N is the subgroup of R
∗ of all elements having norm equal to 1. Write |R| = ql

and | ker(g − I)| = q2N(g) for each g ∈ Un(R). Let Ψ be the Weil character of Un(R).

Then for all g in Un(R),

Ψ(g) = (−1)nlε(g)l(−q)N(g).

Proof As Ψ is rational valued, this follows at once from Lemmas 7.7 and 7.8.
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