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Abstract

In this paper we analyze the so-called Parisian ruin probability, which arises when
the surplus process stays below 0 longer than a fixed amount of time ζ > 0. We
focus on a general spectrally negative Lévy insurance risk process. For this class of
processes, we derive an expression for the ruin probability in terms of quantities that
can be calculated explicitly in many models. We find its Cramér-type and convolution-
equivalent asymptotics when reserves tend to ∞. Finally, we analyze some explicit
examples.
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1. Introduction

In risk theory we usually consider the classical Cramér–Lundberg risk process

Xt = x + pt − St , (1)

where x > 0 denotes the initial reserve and

St =
Nt∑
i=1

Ui

is a compound Poisson process. We assume that the Ui, i = 1, 2, . . . , are independent and
identically distributed claims (with distribution function F and tail F := 1 − F ). The arrival
process is a homogeneous Poisson process Nt with intensity λ. Premium income is modeled
by a constant premium density p and the net profit condition is then λν/p < 1, where E(U1) =
ν < ∞. Lately, a more general setting for a spectrally negative Lévy process has been
considered. That is, X = {Xt }t≥0 is a process with stationary and independent increments
with only negative jumps. We will assume that the process starts fromX0 = x and later we will
use the conventions that P(· | X0 = x) = Px(·) and P0 = P. Such a process takes into account
not only large claims compensated by a steady income at ratep > 0, but also small perturbations
arising from a Gaussian component and possibly in addition (when �X(−∞, 0) = ∞ for a
Lévy measure�X of X) compensated by a countable, infinite number of small claims arriving
over each finite time horizon (see, e.g. [15]).

One of the most important characteristics in risk theory is the ruin probability defined by
P(τ−

0 < ∞) for τ−
0 = inf{t ≥ 0 : Xt < 0}. In this paper we extend this notion to the so-called
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Ruin probability with Parisian delay 985

Parisian ruin probability, which occurs if the process X stays below 0 for a longer period than
a fixed time ζ > 0. Formally, we define the Parisian time of ruin by

τ ζ = inf{t > 0 : t − sup{s < t : Xs ≥ 0} ≥ ζ, Xt < 0}
and the Parisian ruin probability by

P(τ ζ < ∞ | X0 = x) = Px(τ
ζ < ∞).

The ζ = 0 case corresponds to the classical ruin problem, which we do not deal with in this
paper. The name for this problem is borrowed from the Parisian option. Depending on the type
of such an option, the prices are activated or canceled if the underlying asset stays above or
below the barrier long enough in a row (see [1], [7], and [10]). We believe that the Parisian ruin
probability could be a better measure of risk in many situations, giving insurance companies
the chance to achieve solvency. The Parisian ruin probability has already been considered by
Dassios and Wu [8], who found the Parisian ruin probability for the classical risk process (1)
with exponential claims and for the Brownian motion with drift. In Dassios and Wu [9], Cramér-
type asymptotics were found for (1). In this paper, using fluctuation theory, we show that these
results could be extended to the case of a general spectrally negative Lévy process. In particular,
we show how to establish these results when the process is the sum of an independent classical
risk process (1) and Brownian or α-stable motion perturbations Additionally, we derive the
asymptotics of the Parisian ruin probability in the convolution-equivalent case, that is, when
the claim size has a heavy-tailed distribution. Other relevant papers are [19] and [20], where,
loosely speaking, the deterministic and fixed delay ζ is replaced by an independent exponential
random variable. Another formula for the Parisian ruin probability was recently also derived
in [21].

This paper is organized as follows. In Section 2 we introduce basic notions and notation. In
Section 3 we give the main representation of the Parisian ruin probability. In Sections 4 and 5
we give asymptotics of the Parisian ruin probability in the Cramér and convolution-equivalent
cases, respectively. Finally, in Section 6 we analyze some particular examples.

2. Preliminaries

On (�,F , {Ft }{t≥0},P) we define the spectrally negative Lévy process X = {Xt }t≥0, that
is, a Lévy process with Lévy measure�X satisfying�X(0,∞) = 0. Assume thatX0 = x > 0
and that Xt → ∞ as t → ∞ almost surely (a.s.) (that is, reserves of the insurance company
increase to ∞ a.s.). This assumption excludes the case of a compound Poisson process with
negative jumps. We also assume that EX1 < ∞. Note that EX1 > 0 by the drift assumption
and Theorem 7.2 of [17]. WithXwe associate the Laplace exponent ϕ(β) := (1/t) log E(eβXt )
defined for all β ≥ 0, and the function 
(q) = sup{θ ≥ 0 : ϕ(θ) = q}. We will also consider
the dual process X̂t = −Xt , which is a spectrally positive Lévy process with Lévy measure
�
X̂
(0, y) = �X(−y, 0). Characteristics of the dual process X̂ are denoted with a ‘hat’ symbol

(caret). For the process X, we define an ascending ladder process (L−1, H) = {(L−1
t , Ht )}t≥0

by

L−1
t :=

{
inf{s > 0 : Ls > t} if t < L∞,

∞ otherwise,

and

Ht :=
{
X
L−1
t

if t < L∞,

∞ otherwise,
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where L = {Lt }t≥0 is a local time at the maximum (see [17, p. 140]). Recall that (L−1, H) is
a bivariate subordinator with Laplace exponent

κ(θ, β) = −1

t
log E(e−θL−1

t −βHt 1{t≤L∞})

and Lévy measure denoted by �H . We define a descending ladder process (L̂−1, Ĥ ) =
{(L̂−1

t , Ĥt )}t≥0 with the Laplace exponent κ̂(θ, β) constructed from the dual process X̂. Recall
that L̂∞ has an exponential distribution with parameter κ̂(0, 0). Moreover, from the Wiener–
Hopf factorization we have

κ(θ, β) = 
(θ)+ β, κ̂(θ, β) = θ − ϕ(β)


(θ)− β
; (2)

see [17, pp. 169–170]. Hence,
κ̂(0, 0) = ϕ′(0+). (3)

We introduce a potential measure U defined by

U(dx, ds) =
∫ ∞

0
P(L−1

t ∈ ds, Ht ∈ dx) dt

with Laplace transform
∫
[0,∞)2

e−θs−βxU(dx, ds) = 1/κ(θ, β) and renewal measure

U(dx) =
∫

[0,∞)

U(dx, ds) = E

(∫ ∞

0
1{Ht∈dx} dt

)
.

For the spectrally negative Lévy process, the ascending ladder height process is a linear drift
and, hence, the renewal measure is just the Lebesgue measure:

U(dx) = dx.

Moreover, considering the renewal measure Û (dz) for (L̂−1, Ĥ ), from (2) we have∫ ∞

0
e−θzÛ (dz) = θ

ϕ(θ)
;

see [17, p. 195].
We will also use the first passage times

τ−
x = inf{t ≥ 0 : Xt < x}, τ+

x = inf{t ≥ 0 : Xt > x}.
Suppose now that the probabilities {Px}x∈R correspond to the conditional version of P where
X0 = x is given. We simply write P0 = P. We also define the Esscher transform via

dPcx
dPx

∣∣∣∣
Ft

= Et (c)

E0(c)
(4)

for any c for which E ecX1 < ∞, where Et (c) = exp{cXt−ψ(c)t} is the exponential martingale
under Px . It is easy to check that, under this change of measure, X remains within the class of
spectrally negative processes and the Laplace exponent of X under Pc is given by

ϕc(θ) = ϕ(θ + c)− ϕ(c) for θ ≥ −c. (5)
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Similarly, by (2) applied to Pc, the exponent of the descending ladder process equals

κ̂c(0, β) = ϕ(β + c)− ϕ(c)

β
,

since, owing to the positive drift of X, we have 
(0) = 0.
For q ≥ 0, there exists a function W(q) : [0,∞) → [0,∞), called the q-scale function,

which is continuous and increasing with the Laplace transform∫ ∞

0
e−θyW(q)(y) dy = (ϕ(θ)− q)−1, θ > 
(q). (6)

We define W(0)(y) = W(y). The domain of W(q) is extended to the entire real axis by setting
W(q)(y) = 0 for y < 0. For each y ≥ 0, the function q → W(q)(y) may be analytically
extended to q ∈ C. Moreover, let

Z(q)(y) = 1 + q

∫ y

0
W(q)(z) dz.

It is known that

Ex(e
−θτ+

y , τ+
y < ∞) = e−
(θ)(y−x), (7)

Ex(e
−qτ−

0 , τ−
0 < ∞) = Z(q)(x)− q


(q)
W(q)(x),

Ex(e
vX

τ
−
0 , τ−

0 < ∞) = evx
(
Z(−ϕ(v))v (x)+ ϕ(v)


(−ϕ(v))W
(−ϕ(v))
v (x)

)
, (8)

whereW(−ϕ(v))
v and Z(−ϕ(v))v are scale functions calculated with respect to the measure Pv . We

understand θ/
(θ) in the limiting sense for θ = 0, so that

Px(τ
−
0 < ∞) =

{
1 − ϕ′(0)W(x) if ϕ′(0+) > 0,

1 if ϕ′(0+) ≤ 0.
(9)

For details, see [17] or [18, Remark 3]. If Px(Xτ−
0

= 0, τ−
0 < ∞) > 0 then we say that X

creeps below level 0. This is possible only when the descending ladder process has strictly
positive drift d . In this case the renewal function Û has a strictly positive and continuous density
û on (0,∞) satisfying

Px(Xτ−
0

= 0, τ−
0 < ∞) = dû(x),

where û(0+) = 1/d; see [17, Theorem 5.9 and Problem 5.5].

3. Main representation

The main representation is given in the next theorem.

Theorem 1. The Parisian ruin probability for a spectrally negative Lévy risk process is given
by

Px(τ
ζ < ∞) = Px(τ

−
0 < ∞)P(τ ζ < ∞)

+ (1 − P(τ ζ < ∞))

∫ ∞

0
P(τ+

z > ζ)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz), (10)
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and

Px(τ
−
0 < ∞) = κ̂(0, 0)Û(x,∞) = 1 − ϕ′(0+)W(x), (11)∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz)

= κ̂(0, 0)Û(x,∞)

θ
− κ̂(0, 0)


(θ)
e
(θ)x

∫ ∞

x

e−
(θ)yÛ (dy) (12)

= 1 − ϕ′(0+)W(x)
θ

− 1

θ
e
(θ)x

(
Z
(−θ)

(θ)(x)+ θ


(−θ)W
(−θ)

(θ) (x)

)
. (13)

Proof. On the event {τ ζ = ∞} we decompose the possible trajectory that goes below 0 into
two parts as follows. The first part starts at the undershoot of 0 of size, say, −z < 0, visiting 0
in a continuous way, because of the spectral negativity of X, in a shorter period than ζ . The
second part starts at 0 after this excursion below 0. Using the strong Markov property, we
obtain

Px(τ
ζ = ∞) = Px(τ

−
0 = ∞)

+ P(τ ζ = ∞)

∫ ∞

0
P(τ+

z ≤ ζ )Px(τ
−
0 < ∞, −Xτ−

0
∈ dz).

This justifies (10). Moreover, the identity

Px(τ
−
0 < ∞) = P(τ̂+

x < ∞)

and the observation that, for x > 0,

P(τ̂+
x < ∞) = κ̂(0, 0)Û(x,∞) (14)

completes the proof of (11) in view of (9) (for (14), see [17, p. 187]). Finally, note that, from (7),

∫ ∞

0
e−θs P(τ+

z > s) ds = 1

θ
(1 − E(e−θτ+

z , τ+
z < ∞)) = 1

θ
(1 − e−
(θ)z). (15)

Furthermore, in the case of downward creeping, the distribution Px(τ
−
0 < ∞, −Xτ−

0
∈ dz)

might have an atom at 0, but it does not have an influence on the right-hand side of (13):∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz)

= 1

θ

∫ ∞

0
(1 − e−
(θ)z)Px(τ

−
0 < ∞, −Xτ−

0
∈ dz)

= Px(τ
−
0 < ∞)

θ
− 1

θ
Ex(e


(θ)X
τ
−
0 , τ−

0 < ∞). (16)

Identity (8) completes proof of (13). Equation (12) follows from the equality

Px(−Xτ−
0

∈ dz, τ−
0 < ∞) = P(X̂τ̂+

x
− x ∈ dz, τ̂+

x < ∞) (17)

and [17, Problem 5.5].
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Remark 1. Note that e−
(θ)xW(x) = W
(−θ)

(θ) (x) and Z(−θ)
(θ)(x) = 1 − θ

∫ x
0 e−
(θ)yW(y) dy.

Moreover,∫ ∞

0
e−βxW(−θ)


(θ) (x) dx = ϕ(β +
(θ))−1, Z
(−θ)

(θ)(x) = 1 − θ

∫ x

0
W
(−θ)

(θ) (y) dy.

Remark 2. Now consider the particular case of the spectrally negative Lévy process

Xt = x + pt − St + σBt ,

where p > 0, σ ≥ 0, St is a subordinator of bounded variation with Lévy measure�
X̂

, and Bt
is a Brownian motion independent of St . Moreover, let

ν0 = −
∫ 0

−∞
z�X(dz) =

∫ ∞

0
�
X̂
(z) dz < ∞,

where�
X̂
(z) = �

X̂
(z,∞). Note that ρ0 = E S1/p < 1 because EX1 > 0. We now recall the

Pollaczek–Khintchine formula (see [14, Theorem 3.1]):

Px(τ
−
0 < ∞) = κ̂(0, 0)Û(x,∞) = 1 − (1 − ρ0)

∞∑
n=0

ρn0 (K
(n+1)∗ ∗Mn∗)(x). (18)

Here

M(dz) = 1

ν0
�
X̂
(z) dz. (19)

When σ > 0, ∫ ∞

0
e−θzK(dz) = pθ

pθ + θ2σ 2/2
;

hence, K(dz) = (2p/σ 2)e−(2pz)/σ 2
dz.

The σ = 0 case. If there is no Gaussian component, that is, Xt is a drift process minus the
subordinator of bounded variation, thenK(dz) = δ0(dz). Equation (18) then allows us to find a
more explicit expression for

∫ ∞
0 e−θs ds

∫ ∞
0 P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz) using (11),

(12), and (19). Moreover,

ρ = P(τ−
0 < ∞) = 1 − EX(1)

p
= E S1

p
= ρ0. (20)

Remark 3. From the proof of Theorem 1, it is transparent that the process that evolves below 0
could be different (have a different Lévy triple) from that which is above 0. This gives the
additional possibility of modeling the costs of debt that an insurance company are liable for
during the so-called red period. To simplify the exposition, we omit this possibility.

To identify the ruin probability Px(τ ζ < ∞), we need to find the constant P(τ ζ < ∞),
which is given in the next theorem.

Denote by p+(s) = Pε(τ
−
0 < s) the probability that the excursion above 0 is shorter than s,

and let

p(s, t) =
∫ ∞

0
P(τ+

z+ε ≤ t)Pε(τ
−
0 < s, −Xτ−

0
∈ dz)+ P(τ+

ε ≤ t)Pε(τ
−
0 < s, Xτ−

0
= 0)
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be the probability that the upper excursion above 0 is shorter than s and the first consecutive
excursion below 0, which is shifted downward by −ε, is shorter then t . Note that p+(s) =
p(s,∞). If the process X is of bounded variation then it can be expressed in the form

Xt = x + pt − St , (21)

where St is a strict subordinator without drift.

Theorem 2. (i) If X is a process of bounded variation then

P(τ ζ < ∞) =
∫ ∞

0 P(τ+
z > ζ)P(τ−

0 < ∞, −Xτ−
0

∈ dz)

1 − ρ + ∫ ∞
0 P(τ+

z > ζ)P(τ−
0 < ∞, −Xτ−

0
∈ dz)

,

where ∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)P(τ−
0 < ∞, −Xτ−

0
∈ dz)

= 1

θp

∫ ∞

0
(1 − e−
(θ)z)�

X̂
(z) dz (22)

= 1

p

(
1


(θ)
− ϕ′(0+)

θ

)
(23)

with p as defined in (21).

(ii) If X is a process of unbounded variation then

P(τ ζ < ∞) = lim
b→∞ lim

ε↓0

p+(b)− p(b, ζ )

1 − p(b, ζ )
. (24)

Proof. If X is a process of bounded variation then, by [3, Corollary VII.5], 0 is irregular
for (−∞, 0). Since, by the drift assumption, we excluded the case of a compound Poisson
processX, 0 is regular for (0,∞). Now (22) follows from Theorem 1 by taking x = 0, and using
identity (20) and [17, p. 105 and Corollary 7.5] (see also [14, Corollary 4.5]). Equation (23)
follows from the representation of the Laplace exponent ϕ(θ) = pθ − ∫ ∞

0 (1 − e−θz)�
X̂
(dz)

and the identity θ = ϕ(
(θ)).
To prove (ii), we adapt the ideas of the proofs of the main results of Dassios and Wu [8],

[10].
Let δ±0 = 0. First we define the sequence of stopping times

σ+
n = inf{t > δ+n : Xt ≤ −ε}, δ+n+1 = inf{t > σ+

n : Xt = 0},
σ−
n = inf{t > δ−n : Xt = ε}, δ−n+1 = inf{t > σ−

n : Xt ≤ 0},
and the processes

X±
t =

{
Xt ± ε if δ±n ≤ t < σ±

n ,

Xt if σ±
n ≤ t < δ±n+1.

Moreover, let b > 0 and

τb = inf{t > 0 : t − sup{s < t : Xs ≤ 0} > b, Xt > 0},
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with the convention that sup{s < t : Xs ≤ 0} = 0 if Xs > 0 for all s ≤ t . We similarly define
the stopping times τ±

b and τ ζ± for X±. Observe that

P(τ ζ+ < τ+
b ) ≤ P(τ ζ < τb) ≤ P(τ ζ− < τ−

b ). (25)

To find P(τ ζ+ < τ+
b ), we first decompose the path of the process X+ into excursions above and

below 0. Formally, the probability of event Aj , the first excursion below 0 of length greater
than ζ is the j th excursion and it happens before the first excursion above 0 longer than b, is

P(Aj ) = p(b, ζ )j−1(p+(b)− p(b, ζ )).

Summing over j = 1, 2, . . . gives

P(τ ζ+ < τ+
b ) = p+(b)− p(b, ζ )

1 − p(b, ζ )
.

Similarly,

P(τ ζ− < τ−
b ) = P(τ+

ε > ζ)+ P(τ+
ε ≤ ζ )

p+(b)− p(b, ζ )

1 − p(b, ζ )
.

Recall that the process of bounded variation X was excluded from our considerations and,
hence, 0 is regular for (0,∞) (see [17, Theorem 6.5, p. 142]). Straightforward consequences
of this fact are that limε↓0 P(τ+

ε ≤ ζ ) = 1, and that P(τ ζ− < τ−
b ) and P(τ ζ+ < τ+

b ) have the
same limits as ε ↓ 0. From (25) we then derive the assertion of the theorem.

Remark 4. The probability 1 − p(s, t) could be identified using a double Laplace transform.
Indeed, by [17, Exercise 6.7(i), p. 176] and (7),

βω

∫ ∞

0

∫ ∞

0
(1 − p(s, t))e−βte−ωs dt ds = 1 − e−
(β)ε Eε(e

−
(β)X
τ
−
0

−ωτ−
0
)

= 1 − E(e
(β)Xeω 1{−Xeω>ε})
E e
(β)Xeω

,

where eω is an independent ofX exponential random variable with intensityω. Moreover, from
[18] we know that

E e
(β)Xeω = ω(
(β)−
(ω))


(ω)(β − ω)

and that
P(−Xeω ∈ dz) = ω


(ω)
W(ω)(dz)− ωW(ω)(z) dz.

Note also that there always exists a function n(ε) such that the limit

m(ω) = lim
ε↓0

P(−Xeω ≤ ε)

n(ε)
(26)

is well defined and finite. We can set, for example, the denominator of (26) such thatm(w) = 1.
For any n(ε) satisfying (26), we have

lim
ε↓0

1 − p(s, t)

n(ε)
= q(s, t),
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where ∫ ∞

0

∫ ∞

0
e−βte−ωsq(s, t) dt ds = m(ω)
(ω)(β − ω)

βω2(
(β)−
(ω))
.

Then we also have

P(τ ζ < ∞) = lim
b→∞

q(b, ζ )− q(b,∞)

q(b, ζ )
. (27)

4. Cramér’s estimate

In this section we derive the exponential asymptotics of the Parisian ruin probability. Assume
that Cramér’s conditions are satisfied, that is, there exists a γ > 0 satisfying

ϕ̂(γ ) = ϕ(−γ ) = 0, (28)

and ϕ̂(θ) is finite in the neighborhood of γ . Then E e−γX1 < ∞ and we can define a new
measure P−γ via (4). Define Ûγ (dx) = Û

(0)
γ (dx) := eγ xÛ(dx) and

µ =
∫ ∞

0
xÛ (1)γ (dx),

where Û (q)γ (dx) = ∫ ∞
0 e−(qt+γ x) P(Ĥt ∈ dx) dt for q ≥ 0. Note from [4] that Ûγ is a renewal

function of the ladder height process calculated on P−γ . Moreover, from [4] we have

µ = ∂κ̂−γ (0, β)
∂β

∣∣∣∣
β=0

= ∂κ̂(0, β)

∂β

∣∣∣∣
β=−γ

. (29)

Note also that the drift of X̂ on P−γ is positive, since, by (5), its Laplace exponent equals

ϕ̂−γ (θ) = ϕ(−γ − θ),

and, hence, ϕ̂′−γ (0+) = −ϕ′(−γ−) > 0. Thus,

P−γ (τ̂+
x < ∞) = 1. (30)

Theorem 3. We assume that Cramér’s conditions (28) hold. We also assume that the support
of �̂ is not lattice when �̂(R) < ∞. We have

lim
x↑∞ eγ x Px(τ

ζ < ∞) = P(τ ζ < ∞)
κ̂(0, 0)

γµ
+ (1 − P(τ ζ < ∞))f (c)(ζ ), (31)

where ∫ ∞

0
e−θsf (c)(s) ds = κ̂(0, 0)

γµθ
− 1

(γ +
(θ))2µ

and P(τ ζ < ∞) is given in Theorem 2. If µ = ∞ then the left-hand side of (31) is understood
to be 0.

Proof. By (14) and the key renewal theorem, which states that Ûγ (dx) on (0,∞) converges
weakly as a measure to µ−1 dx (see [4] and [17, p. 188]), we have

lim
x↑∞ eγ x P(τ̂+

x < ∞) = κ̂(0, 0) lim
x↑∞ eγ xÛ(x,∞) = κ̂(0, 0) lim

x↑∞ Ûγ (x,∞) = κ̂(0, 0)

γµ
.
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Moreover, by (16) and (17),∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz)

= P(τ̂+
x < ∞)

θ
− 1

θ
E[e−
(θ)(X̂

τ̂
+
x

−x)
, τ̂+
x < ∞],

and, by (30), the optional stopping theorem, and [17, Problem 5.5], we have

lim
x↑∞ eγ x E[e−
(θ)(X̂

τ̂
+
x

−x)
, τ̂+
x < ∞]

= lim
x↑∞ E−γ [e−(
(θ)+γ )(X̂

τ̂
+
x

−x)
, τ̂+
x < ∞]

= lim
x↑∞ E−γ [e−(
(θ)+γ )(X̂

τ̂
+
x

−x)]

= κ̂−γ (0,
(θ)+ γ ) lim
x↑∞

∫ ∞

x

e−(
(θ)+γ )(y−x)Ûγ (dy)

= κ̂−γ (0,
(θ)+ γ ) lim
x↑∞

∫ ∞

0
e−(
(θ)+γ )yÛγ (x + dy)

= ϕ(
(θ))

(γ +
(θ))2µ

= θ

(γ +
(θ))2µ
.

Taking f (c)(s) = ∫ ∞
0 P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz) in the above observations com-

pletes the proof in view of Theorem 1.

5. Convolution-equivalent case

In this section we deal with a Lévy process X for which �
X̂

, the Lévy measure of its dual
process, belongs to the class S(α). This class is defined as follows (see [16] for the analysis of
the classical ruin probability).

Definition 1. (Class L(α).) For a parameter α ≥ 0, we say that the measureG on [0,∞) with
tail G(x) = G(x,∞) belongs to the class L(α) if

(i) G(x) > 0 for each x ≥ 0,

(ii) limu→∞G(u− x)/G(u) = eαx for each x ∈ R, and G is nonlattice,

(iii) limn→∞G(n− 1)/G(n) = eα if G is lattice (then assumed of span 1).

Definition 2. (Class S(α).) We say that G belongs to the class S(α) if

(i) G ∈ L(α),

(ii) for some M0 < ∞, we have

lim
u→∞

G∗2(u)

G(u)
= 2M0,

where G∗2(u) = 1 −G∗2(u) and ‘∗’ denotes the convolution.
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For all a ∈ R such that the following integral is finite, we define the moment generating
function δ such that

δa(G) =
∫ ∞

0
eauG(du). (32)

Similar definitions could be given for a tail of any other measure.
Recall that X̂ = −X is a spectrally positive Lévy process. Throughout this section, we

assume that, for X̂ and some fixed α ≥ 0, we have

(C1) if α > 0,
�
X̂

∈ S(α), (33)

and ∫ x

0
�
X̂
(y) dy ∈ S(0), (34)

(C2) if α > 0,
ϕ̂(α) < 0, (35)

(C3) for q = limβ↓0 −ϕ̂(−β)/κ(0,−β),
e−qδα(Ĥ ) < 1. (36)

By δα(Ĥ )we denote the moment generating function (32) of the distribution function of Ĥ1.
Condition (C1) gives

�
Ĥ

∈ S(α).

Condition (C3) has a force when α > 0; by the drift assumption, for α = 0, this condition is
automatically satisfied.

We write f (x) ∼ g(x) if and only if limx→∞ f (x)/g(x) = 1.

Theorem 4. Under assumptions (33)–(36), the asymptotic Parisian ruin probability equals

Px(τ
ζ < ∞) ∼ EX1

(
α

ϕ̂(α)

)2

(P(τ ζ < ∞)+ (1 − P(τ ζ < ∞))f (e)(ζ ))

∫ ∞

x

�
X̂
(y) dy,

where ∫ ∞

0
e−θsf (e)(s) ds = 1

θ

∫ ∞

0
(1 − e−
(θ)z)B(z) dz (37)

and

B(z) = e−αz

EX1

(
−ϕ̂(α)+ α

∫ ∞

z

eαy�
X̂
(y) dy

)
.

For α = 0, the term −ϕ̂(α)/α is understood in the limiting sense and equals −ϕ̂′(0+) = EX1.

Proof. From [16, Theorem 6.2] we have

P(τ̂+
x < ∞) = κ̂(0, 0)Û(x,∞) ∼ EX1

(
α

ϕ̂(α)

)2 ∫ ∞

x

�
X̂
(y) dy

and
P(X̂τ̂+

x
− x ∈ dz | τ̂+

x < ∞)
d= B(z) dz

as x ↑ ∞, where

B(z) = − d

dz

e−αz

EX1

(
− ϕ̂(α)

α
+

∫ ∞

z

(eαy − eαz)�
X̂
(y) dy

)
.

Equations (15) and (17), dominated convergence theorem and Theorem 1 complete the proof.
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6. Examples

6.1. General classic risk process (1)

For the process (1), we have �
X̂
(dz) = λF(dz) and ϕ(θ) = pθ − λ+ λ

∫ ∞
0 e−θzF (dz).

By [14, Corollary 4.5] and [17, Corollary 4.12, p. 105],

P(τ−
0 < ∞, −Xτ−

0
∈ dz) = λ

p
F(z) dz,

and, hence, ∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)P(τ−
0 < ∞, −Xτ−

0
∈ dz)

= λ

θp

∫ ∞

0
(1 − e−
(θ)z)F (z) dz. (38)

The probability P(τ ζ < ∞) could be found using Theorem 2 with (38) and

ρ = P(τ−
0 < ∞) = λν

p
,

where ν = ∫ ∞
0 yF(dy). Theorem 1 then gives the Parisian ruin probability Px(τ ζ < ∞) for

all x ≥ 0.
To find the Cramér asymptotics, note that 
(θ) and γ solve the equations∫ ∞

0
e−
(θ)zF (dz) = λ− p
(θ)+ θ

λ
,

∫ ∞

0
eγ zF (dz) = λ+ pγ

λ
.

Moreover, from (3) we have

κ̂(0, 0) = ϕ′(0+) = p − λν.

By (29), using the fact that ϕ(−γ ) = 0, we have

µ = λ

∫ ∞

0
yeγy�

X̂
(y,∞) dy = λ

∫ ∞

0
yeγyF (y) dy,

and, hence,

lim
x↑∞ eγ x Px(τ

ζ < ∞) = P(τ ζ < ∞)
p − λν

γµ
+ (1 − P(τ ζ < ∞))f (c)(ζ ),

where ∫ ∞

0
e−θsf (c)(s) ds = 1

µ

(
p − λν

γ θ
− 1

(γ +
(θ))2

)
.

If F ∈ S(α) for α ≥ 0 then P(τ ζ < ∞) is as given in Theorem 4.

6.2. Classic risk process (1) with exponential jumps

Corollary 1. Assume thatXt is the Cramér–Lundberg risk process (1) with exponential claims
F(dz) = ξe−ξz dz, where ξ = 1/ν. Then, for x ≥ 0,

Px(τ
ζ < ∞) = λ

pξ
e−(pξ−λ)x/p

(
pξD

pξ − λ(1 −D)

)
, (39)
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where

D = 1 −
∫ ζ

0

√
pξ

λ
e−(λ+pξ)t t−1I1(2t

√
pλξ) dt

and I1(x) is the modified Bessel function of the first kind.

Proof. From (6) and (11) (see also [2, p. 63]), we have

κ̂(0, 0)Û(x,∞) = λ

pξ
e−(pξ−λ)x/p. (40)

Moreover, by the lack-of-memory property of exponential distributions, the distribution of the
undershoot of 0 is also exponential with intensity ξ . Hence,∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz) = λ

pξ
e−(pξ−λ)x/p 
(θ)

θ(
(θ)+ ξ)
(41)

and, by (38),∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)P(τ−
0 < ∞, −Xτ−

0
∈ dz) = λ

pξ


(θ)

θ(
(θ)+ ξ)
. (42)

Inverting the Laplace transforms (41) and (42) with respect to θ (see [12]) gives∫ ∞

0
P(τ+

z > ζ)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz) = λ

pξ
e−(pξ−λ)x/pD (43)

and ∫ ∞

0
P(τ+

z > ζ)P(τ−
0 < ∞, −Xτ−

0
∈ dz) = λ

pξ
D.

Furthermore, from Theorem 2 we have

P(τ ζ < ∞) = λD/pξ

(pξ − λ)/pξ + λD/pξ
. (44)

Representation (10) given in Theorem 1 and identities (40), (43), and (44) complete the proof
of (39).

The Parisian probability in this case has already been identified in [8].

6.3. Brownian motion with drift

Corollary 2. Assume that
Xt = x + σBt + pt,

where σ, p > 0 and Bt is a standard Brownian motion. Then, for x ≥ 0,

Px(τ
ζ < ∞) = e−(2pσ−2)x

(
�

(
p

σ

√
ζ

2

)
− p

σ

√
ζπ

2

)(
�

(
p

σ

√
ζ

2

)
+ p

σ

√
ζπ

2

)−1

, (45)

where
�(x) = 2

√
πxN (

√
2x)− √

πx + e−x2

and N (·) is a cumulative distribution function for the standard normal distribution.
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Proof. Note that ∫ ∞

0
P(τ+

z > ζ)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz) = 0.

Moreover, using

ϕ(β) = pβ + σ 2β2

2
and (6), we have

W(x) = 1

p
(1 − e−(2pσ−2)x),

and, hence, from (11),

Px(τ
−
0 < ∞) = e−(2pσ−2)x . (46)

The first passage probability τ+
ε has inverse Gaussian distribution and

P(τ+
ε < ζ) = N

(
p

σ

√
ζ − ε

σ
√
ζ

)
+ e2pεσ−2

N

(
−p
σ

√
ζ − ε

σ
√
ζ

)
. (47)

Similarly,

Pε(τ
−
0 < b) = e−2pεσ−2

N

(
p

σ

√
b − ε

σ
√
b

)
+ N

(
−p
σ

√
b − ε

σ
√
b

)
. (48)

From (47) and (48), using the continuity of Brownian paths, we have

lim
ε↓0

p+(b)− p(b, ζ )

1 − p(b, ζ )

= lim
ε↓0

Pε(τ
−
0 < b)P(τ+

ε > ζ)

1 − Pε(τ
−
0 < b)P(τ+

ε ≤ ζ )

=
(√

b�

(
−p
σ

√
ζ

2

)
− p

σ

√
bζπ

2

)(√
b�

(
−p
σ

√
ζ

2

)
+ √

ζ�

(
p

σ

√
b

2

))−1

=
(√

b�

(
p

σ

√
ζ

2

)
− p

σ

√
bζπ

2

)(√
b�

(
p

σ

√
ζ

2

)
+ √

ζ�

(
p

σ

√
b

2

))−1

,

where we used the fact that �(−x) = �(x). Note also that

lim
b→∞

√
ζ

b
�

(
p

σ

√
b

2

)

= lim
b→∞

√
ζ

b

(
2
√
π
p

σ

√
b

2
N

(
p

σ

√
b

)
− √

π
p

σ

√
b

2
+ e−(p/σ)2b/2

)

= √
ζ
p

σ

√
π

2
.

Substituting (24) and (46) into (10) completes the proof of (45).

Probability (45) was also given in [8].
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6.4. General classic risk process perturbed by independent Brownian motion

One of the main goals of this paper was to identify the Parisian ruin probability for more
complex spectrally negative Lévy processes, typical examples of which we now analyze. We
assume that

Xt = x + pt −
Nt∑
i=1

Ui + σBt ,

where p, σ > 0, and Bt is independent of the Poisson process Nt with intensity λ and claim
arrival sequence {Ui}i=1,2,.... Then ϕ(θ) = pθ − λ+ λ

∫ ∞
0 e−θzF (dz)+ σ 2θ2/2 and 
(θ)

solves the equation∫ ∞

0
e−
(θ)zF (dz) = 1

λ

(
λ− p
(θ)− σ 2

2

2(θ)+ θ

)
.

The Parisian ruin probability Px(τ ζ < ∞) is as given in Theorem 1 and all terms appearing
there are given in Remark 2, except for P(τ ζ < ∞).

Using Theorem 2(ii) and Remark 4, we will find P(τ ζ < ∞). Since X has a Gaussian
component, thenW(ω)(0+) = 0, and from the Tauberian theorem (see, e.g. [5, Theorem 1.7.1’]),
it follows that

lim
ε↓0

W(ω)(ε)

ε
= 2

σ 2 . (49)

Thus, n(ε) = ε and

m(ω) = 2ω

σ 2
(ω)
.

The Parisian ruin probability P(τ ζ < ∞) is given in (27) for∫ ∞

0

∫ ∞

0
e−βte−ωsq(s, t) dt ds = 2(β − ω)

σ 2βω(
(β)−
(ω))
. (50)

Cramér asymptotics Px(τ ζ < ∞) are as given in Theorem 3, where γ solves the equation∫ ∞

0
eγ zF (dz) = 1

λ

(
λ+ pγ − σ 2γ 2

2

)

and κ̂(0, 0) = ϕ′(0+) = p − λν. Furthermore,

µ = λ

∫ ∞

0
yeγyF (y) dy + σ.

Assume now that the claim size has an exponential distribution F(dz) = ξe−ξz dz. Then,
by [22] (see also [11]),

Px(τ
−
0 < ∞) = κ̂(0, 0)Û(x,∞) = 1 +

2∑
i=1

cie
−�ix,

where

�1 = (ξσ 2/2 + p)− √
(ξσ 2/2 + p)2 − 2σ 2(ξp − λ)

σ 2 ,

�2 = (ξσ 2/2 + p)+ √
(ξσ 2/2 + p)2 − 2σ 2(ξp − λ)

σ 2 ,
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c1 = σ 2�2
2 − 2p�2

σ 2(�2
2 − �2

1)− 2p(�2 − �1)
,

c2 = −σ 2�2
1 + 2p�1

σ 2(�2
2 − �2

1)− 2p(�2 − �1)
.

We have ∫ ∞

0
e−θs ds

∫ ∞

0
P(τ+

z > s)Px(τ
−
0 < ∞, −Xτ−

0
∈ dz)

= 1

θ
Px(τ

−
0 < ∞)

(
1 − ξ

∫ ∞

0
e−(
(θ)+ξ)s ds

)

= 1

θ
Px(τ

−
0 < ∞)

(
1 − ξ


(θ)+ ξ

)
, (51)

where 
(θ) solves the equation

−σ
2

2

3(θ)−

(
ξ
σ 2

2
+ p

)

2(θ)+ (λ+ θ − pξ)
(θ)+ ξθ = 0,

and by inverting this Laplace transform we can identify
∫ ∞

0 P(τ+
z > ζ)Px(τ

−
0 < ∞, −Xτ−

0
∈

dz).
We now obtain

P(τ ζ < ∞) = lim
b→∞ lim

ε↓0

(1 − p(b, ζ ))− Pε(τ
−
0 > b)

1 − p(b, ζ )
(52)

for the exponential claim size with intensity ξ . Note that, by (51), the Laplace transform
(1/θ)(1 − ξ/(
(θ)+ ξ)) is then the only single Laplace transform that must be inverted at the
point s = ζ to derive the Parisian ruin probability Px(τ ζ < ∞) (compare with (50), where the
double Laplace transform must be inverted).

Recall that

p(b, ζ ) = (Pε(τ
−
0 < b)− Pε(τ

−
0 < b, Xτ−

0
= 0))ξ

∫ ∞

0
P(τ+

z+ε ≤ ζ )e−ξz dz

+ P(τ+
ε ≤ ζ )Pε(τ

−
0 < b, Xτ−

0
= 0),

and note that

Pε(τ
−
0 < b, Xτ−

0
= 0) = Pε(τ

−
0 < ∞, Xτ−

0
= 0)

−
∫ ∞

0
Pz(τ

−
0 < ∞, Xτ−

0
= 0)Pε(τ

−
0 ≥ b, Xb ∈ dz). (53)

Thus, from (53) and ([17, Theorem 5.9, p. 122], we obtain

lim
ε↓0

Pε(τ
−
0 < b)− Pε(τ

−
0 < b, Xτ−

0
= 0)

ε
= −dû′(0+)+ d

∫ ∞

0
û(z)g1(b, dz)− g3(b),

where

g1(b, dz) = lim
ε↓0

Pε(τ
−
0 ≥ b, Xb ∈ dz)

ε
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and

g3(b) = lim
ε↓0

Pε(τ
−
0 > b)

ε
.

Then from (52) we have

P(τ ζ < ∞) = g2 + g4(∞)− g3(∞)

g2 + g4(∞)
,

where

g4(b) = d

(
−û′(0+)+

∫ ∞

0
û(z)g1(b, dz)

)(
1 − ξ

∫ ∞

0
P(τ+

w ≤ ζ )e−ξw dw

)

+ g3(b)ξ

∫ ∞

0
P(τ+

w ≤ ζ )e−ξw dw,

g2 = limε↓0 P(τ+
ε > ζ)/ε, and gi(∞) = limb→∞ gi(b), i = 1, 3, 4. The probability P(τ+

w ≤
ζ ) appearing in g4 could be found using Kendall’s identity, which states that if the spectrally
negative Xs has a density m(s,w) at w then τ+

w also has a density at s and

P(τ+
w ∈ ds)

ds
= w

s
m(s,w), (54)

where in our case

m(s,w) =
∫ ∞

x

dy

σ
√
s
φ

(
y − ps

σ
√
s

)
e−λs−ζ(y−x)

√
λsξ√
y − x

I1(2
√
λsξ(y − x)).

For Kendall’s formula, see [3, Corollary VII.3], [6], and the references therein. We now find
the functions gi for i = 1, 2, 3.

To find g1(b, dz), note that the resolvent of the killed processXt when entering the negative
half-line has the following resolvent density (see [17, p. 226]):

r(q)(x, y) = e−
(q)yW(q)(x)−W(q)(x − y).

Hence, for z > 0,∫ ∞

0
e−qb Pε(τ

−
0 ≥ b, Xb ∈ dz) db = (e−
(q)zW(q)(ε)−W(q)((ε − z)+)) dz,

and then, by (49), ∫ ∞

0
e−qbg1(b, dz) db = 2

σ 2 e−
(q)z dz,

since W(q)(0+) = 0 in our case. Moreover, from (7) we have

g1(b, dz)

dz
= P(τ+

z ∈ db)

db
,

where P(τ+
z ∈ db) is identified via (54).

The function g3(b) can be found by integrating g1(b, dz) using the dominated convergence
theorem.

Finally, from (54) we have g2 = ∫ ∞
b
(m(s, 0)/s) ds.
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6.5. General classic risk process perturbed by an α-stable motion

We will now assume that

Xt = x + pt −
Nt∑
i=1

Ui + Zt , (55)

where p > 0, and Zt is a spectrally negative α-stable motion with α ∈ (1, 2), independent
of the Poisson process Nt , with intensity λ and claim arrival sequence {Ui}i=1,2,.... Note that,
for α ∈ (1, 2), process Z is of unbounded variation. Moreover, process X has no Gaussian
component and it does not creep downward. Then ϕ(θ) = pθ − λ+ λ

∫ ∞
0 e−θzF (dz)+ cθα

for some c > 0 and 
(θ) solves the equation∫ ∞

0
e−
(θ)zF (dz) = λ− p
(θ)− c
α(θ)+ θ

λ
.

Then from [13] we have

Px(τ
−
0 < ∞) = κ̂(0, 0)Û(x,∞) = 1 − (1 − ρ0)

∞∑
n=0

ρn0 (K
(n+1)∗ ∗Mn∗)(x), (56)

where ρ0 = λν/p, M(dx) = (1/ν)F (x) dx, and K(x) = ∑∞
n=0(−p)nx(α−1)n/�(1 + (α −

1)n).
Finally, Px(τ ζ < ∞) can be found using the main representation given in Theorem 1, (12),

and identity (56). Using Theorem 2(ii) and Remark 4, we can also identify P(τ ζ < ∞), where
similarly to the Brownian perturbation case we have W(ω)(0+) = 0 and

lim
ε↓0

W(ω)(ε)

εα−1 = 1

c�(α)
.

Thus, n(ε) = εα−1 and

m(ω) = ω

c�(α)
(ω)
.

Note also that, for process (55), we have

�
X̂
(dy) = c

y1+α dy + λF(dy). (57)

Assuming that F(x) = o(x−α) for large x we derive that�
X̂

∈ S(0). From Theorem 4 we have

Px(τ
ζ < ∞) ∼ 1

EX1
(P(τ ζ < ∞)+ P(τ ζ = ∞)f (e)(ζ ))

c

α(α − 1)
x−α+1

as x → ∞, where the Laplace transform of f (e)(·) is given in (37) for �
X̂

defined in (57).
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