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ON THE SPECTRUM OF STEIN QUASIGROUPS

F.E. BENNETT AND N.S. MENDELSOHN

In this paper we investigate the spectrum of a variety of quasi-

groups satisfying the 2-variable identity x(xy) = yx , called

Stein quasigroups. Stein quasigroups are known to be self-

orthogonal and have been given a considerable amount of attention

because of this property. It is known that there are no Stein

quasigroups of order 2, 3, 6, 7, 8, 10, 12, Ik . The object of

this paper is to show that for all but 36 values of n 5 15

there exists a Stein quasigroup of order n . In particular, the

spectrum of Stein quasigroups contains all n 5 191 •

1 . Introduction

The problem of determining the spectrum of quasigroups satisfying the

identity x(xy) = yx was raised by Stein in [74]. Stein [74] and

Mendelsohn [&] used Galois fields to obtain such quasigroups of order

km, where the square-free part of m does not contain any prime

p i 2 or 3 (mod 5) . In [75], Stein used balanced incomplete block

designs (see Hanani [5]) to construct quasigroups of orders 12/c + 1 ,

12k + h , 20k + 1 , 20k + 5 . Lindner [7] further enlarged the spectrum

by using the singular direct product of Sade [73]. More recently, Pel I ing

and Rogers [70] used pairwise balanced designs in conjunction with the

singular direct product to show that Stein systems exist for all orders

n > 101+2 . In [7/], they also showed that orders 2, 3, 6, 7, 8, 10, 12,

±h are impossible and investigated certain varieties of Stein systems.

In this paper, we further enlarge the spectrum of Stein systems
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studied in [70], [7 7]. It is shown that for all but 36 values of n > 15

there exists a Stein system of order n . In particular, Stein systems

exist for all orders n > 191 . Our method of construction is similar to

that employed in [70]. Hovever, much credit is owed to Brouwer, whose

constructions in [2] helped to establish the main lemmas of Section 3.

2. Prelimi n a r i e s

The following information on designs will be quite useful in most of

our constructions and the reader is referred to Hanani [5].

DEFINITION 2.1. Let K be a set of positive integers. A pairwise

balanced design of index unity B(K, 1; v) is a pair (X, B) , where X

is a u-set (of points) and B is a collection of subsets of X (called

blocks) with sizes in K such that every pair of distinct points of X is

contained in exactly one block of B . \x\ is called the order of the

pairwise balanced design.

DEFINITION 2.2. Let K and M be sets of positive integers. A

group divisible design GD{K, 1, M; v) is a triple (X, G, B) , where

(i) X is a y-set (of points),

(ii) G is a collection of non-empty subsets of X (called

groups) with sizes in M and which partition X ,

(iii) B is a collection of subsets of X (called blocks), each

with size at least two in K ,

(iv) no block meets a group in more than one point, and

(v) each pairset {x, y} of points not contained in a group

is contained in exactly one block.

If all groups g € G have size \g\ > 2 , then a group divisible

design (X, G, B) is a pairwise balanced design (X, G u B) in which a

collection of blocks which partition X has been distinguished. We shall

write B(k, 1; v) for B({k), 1; v) and similarly, GD{k, 1, m; v) for

GD({k), 1, {m}; v) . Note that a star appealing on an element of K . (or

M ) means that there is exactly one block (or group) of that size in the

pairwise balanced design (or group divisible design). We observe that a

pairwise balanced design B(k, 1; v) is a balanced incomplete block design

with parameters v, k , and X = 1 .
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DEFINITION 2.3. A transversal design T(k, 1; m) is a group

divisible design GD(k, 1, m; km) , where each block is a transversal of

the collection of groups.

DEFINITION 2.4. Let [X, B) be a pairwise balanced design

B(K, 1; v) . A parallel class in {X, B) is a collection of disjoint

blocks of 5 , the union of which equals X . (X, B) is called resolvable

if the blocks of B can be partitioned into parallel classes. A group

divisible design GD(K, 1, M; v) is resolvable if its associated pairwise

balanced design B(K u W, 1; v) is resolvable with M as a parallel class

of the resolution.

It is known [5] that the existence of a resolvable transversal design

RT{k, 1; m) is equivalent to the existence of a transversal design

T(k+1, 1; m) . It is also fairly well-known [4] that the existence of a

T(k, 1; m) is equivalent to the existence of a set of k - 2 mutually-

orthogonal latin squares of order m . We state with references some of

the fundamental results which will be used in subsequent sections.

THEOREM 2.5. A resolvable design RB(3, 1; v) , called a Kirkman

triple system, exists if and only if v = 3 (mod 6) (see [72]).

THEOREM 2.6. A design B{h, 1; v) exists if and only if v = 1 or

h (mod 12) (see [5]).

THEOREM 2.7. A resolvable design RB(h, 1; v) exists if and only if

v = h (mod 12) (see [6]).

THEOREM 2.8. A design S(5, 1; v) exists if and only if v = 1 or

5 (mod 20) (see [5]).

THEOREM 2.9. A transversal design T(5, 1; m) exists for all

positive integers m with the exception of m = 2, 3, 6 and possibly

excepting m = 10 and 1*» (see [5], [9], [J6]).

The following theorem has been used extensively in investigating the

spectrum of quasigroup models of certain collections of 2-variable

identities. As in [JO], it forms the basis of our paper.

THEOREM 2.10. Let V be a variety of algebras which is idempotent

and which is based on 2-variable identities. Suppose there is a pairwise

balanced design B(K, 1; u) such that for each k € K there is a model of

V of order k , then there is a model of V of order v .
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At th i s s tage, we point out that Stein quasigroups are necessarily

idempotent and self-orthogonal ( [3 ] ) . Thus Theorem 2.10 wil l be very much

applicable in our constructions and the resu l t s can be interpreted in terms

of self-orthogonal Latin squares. However, i t i s known [7] that there are

self-orthogonal Latin squares of a l l orders n # 2, 3, 6 .

3 . The ma in 1emmas

The auxiliary results of this section are based mainly on the use of

resolvable designs and transversal designs (see [2]). We shall let B(K)

denote the set of integers v for which a pairwise balanced design

B(K, 1; v) exists. Unless otherwise stated, a starred element of K

means that there is a unique block of that size in the pairwise balanced

design B(K, 1; v) .

Suppose (X, B) is a resolvable design (pairwise balanced design) on v

r
points, where B = U B- is a partition of B into parallel classes. If

i=l %

1 < m 5 r , we may obtain a design on v + m points by adding to X a set

5 = {a , a , ..., a } of m new points. We then replace each block

b € 5. by b u {a.} for 1 £ i < m and take 5 as a block of size m .

By applying this technique to a resolvable design RB(3, 1; 6k+3) (Kirkman

triple system), which has 3& + 1 parallel classes, and a resolvable

design RB(h, 1; 12&+M , which has hk + 1 parallel classes, we readily

obtain the following two lemmas.

LEMMA 3.1. If k > 1 , then 9k + h € B[h, (3fc+l)*) .

LEMMA 3.2. If l 5 m < hk+1 , then 12k + m + h € B(h, 5, m*) ,

where, in case m = h or 5 , the star means that a block of size m is

distinguished while all other blocks are of size h or 5 .

The following lemma is proved in [2].

LEMMA 3.3. A pairwise balanced design B({k, 7*}, 1; v) exists if

and only if v = 7 or 10 (mod 12) , v * 10, 19 .

If we start with a transversal design r(5, 1; m) and delete m - n

points from a particular group, assuming 0 5 n - m , we obtain a group

divisible design GD({h, 5), 1, im, n); hm+n) , called a truncated

https://doi.org/10.1017/S0004972700011291 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011291


S t e i n q u a s i g r o u p s 51

transversal design (see [5 ] ) . In view of Theorem 2.9, we can s ta te the

following useful r e s u l t .

LEMMA 3.4. If m # 2, 3, 6, 10, lk and 0 5 n 5 m , then there

exists a group divisible design GD{{k, 5>, 1 , {m, n}; km+n) .

From Lemma 3 . ^ , we obtain immediately

LEMMA 3.5. If m t 2, 3, 6, 10, lk and 0 5 w s m , tTzen

1+m + n + 1 € B(U, 5, m+1, rc+l) .

Proof. We take the blocks of a GD({h, 5>, 1, {m, n} ; km+n) and

each group with a fixed additional point adjoined.

More generally we have

LEMMA 3.6. Suppose m / 2, 3, 6, 10, ll» and 0 £ n 5 m . Tfren we

have

(£.) km + n + r € B{k, 5, m+r) , i / /n + r ^ S(U, 5, r*) and

n + r € S(U, 5, r*) ,

(ii) km + n + r € 5(U, 5, n+r) , t/ m + r € S(U, 5, r*) , where

in case r = k or 5 , the star means that a block of size

r is distinguished while all other blocks are of size k

or 5 .

Proof. Let (X, G, B) be the GD({k, 5>, 1, {m, n}; km+n) of Lemma

3.^. Let g , g , g , a> be the four groups of size m and let g be

the group of size n in G . Let S be a set of r fixed points

disjoint from X . We add these points to the group divisible design. In

order to prove (i), we construct a B({k, 5, m+r], 1; km+n+r) on X u S

as follows:

(1) take the blocks of B ,

(2) replace the group o by a B({>, 5, 2°*}, 1; n+r) on the

set S u j , which has 5 among its blocks,

(3) for i = 1, 2, 3 , replace each group g. by a
1r

B{{k, 5, r*}, 1; m+r) on the set 5 u g. with 5 among

its blocks, and finally,
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CO replace the group g< and the block 5 by the single block

S v g> of size m + r .

The result is a B({h, 5, m+i>}, 1; hm+n+r) and (i) is proved. In order to

prove (ii) , we construct a 5({U, 5, n+r}, 1; W+n+r) by taking the blocks

of B , then we replace the groups g. , 1 S i 5 1 , liy a
Is

B({h, 5, }**}, 1; m+r) on the set 5 u g. which has 5 among its blocks
Is

and finally, we replace the group g„ and the block 5 by the single

block S u g of size n + v . This completes the proof of the lemma.

As an application of Lemma 3.6, we state the following two important

results.

LEMMA 3.7. If 1 2 s 5 k-1 , then

h8k + 12s + 10 € B(U, 5, (l2fc+7)*) •

Proof. We choose m = 12k , n = 12s + 3 , and v = 7 in Lemma 3.6.

By Lemma 3.3, 12fe + 7 € B(U, 7*) for all fe £ 2 and 12s + 10 6 B(h, 7*)

for all s - 1 , and the result follows immediately from Lemma 3.6 (i) .

LEMMA 3.8. If 1 5 s 5 k , then

U8k + 12s + 22 € B(l+, 5, (l2fe+10)*) .

Proof. We choose m = 12fe + 3 , n = 12s + 3 , and r = 7 in Lemma

3.6. By Lemma 3.3, 12fe + 10 € B(l», 7*) for all k > 1 and

12s +10 € B(l*. 7*) for all s > 1 . The result follows from Lemma 3.6

The technique of adding a set of fixed points to a truncated trans-

versal design will be quite instrumental in most of our constructions.

Some special cases of importance are the following.

LEMMA 3.9. If 1 S s 5 k , then hQk + 12s + 26 € B(U, 5, 11*) .

Proof. We choose m = 12k + It and n = 12s + h in Lemma 3.1*, and

let, (X, G, B) be the GD{{h, 5}, 1, (l2fe+it, 12s+U>; !*8fe+12s+20) . Let

9-. •> 9ni 9-i> 9h b e t h e four groups of size 12k + h and let g be the

group of size 12s + k in G . Let b = {a a ao> aj,> ac} tie a block

of B of size 5 where & n o. = {a.} , 1 5 i < 5 . Now we add to the
tr If
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group divisible design a set S of size 6 disjoint from X . We

construct a S({U, 5, 11*}, 1; kQk+12s+26) on X u S as follows:

(1) take the blocks B - {£>} ,

(2) for i = 1, 2, 3, k , replace each group g. by a

B({k, 7*}, 1; 12&+10) on the set S v g. with S u {a.}

as its unique block of size 7 ,

(3) replace the group g by a B({k, 7*}, 1; 12S+10) on the

set S u g with S u {a_} as its unique block of size

7 , and finally,

{k) replace the five blocks S u {a.} , 1 5 t 5 5 , t y the

single block Sub of size 11 .

I t is readi ly checked that the r e su l t i s a B({k, 5, 11*}, 1; i»8fe+12s+26)

and the lemma is proved.

Similarly, we have

LEMMA 3.10. If 1 < s 2 fe-1 , then Wfc + 12s + lU (. B(h, 5, 11*) .

Proof. We choose m = 12k + 1 and n = 12s + k in Lemma 3-h and

s ta r t ing with the GD({U, 5}, 1, {l2k+l, 12s+U}; l+67c+12s+8) , we add a set

of 6 new points . By using the existence of a B({h, 7*}, 1; 12&+7) for

k > 2 and a B{{k, 7*}, 1; 12s+10) for s > 1 together with the

technique used in the proof of Lemma 3.9, we may construct a

B{{k, 5, 11*}, 1; h8k+12s+lk) to obtain the desired r e su l t .

Since Lemma 3.2 guarantees the existence of a

B({k, 5, 7*}, 1; 12&+11) for a l l k i 2 , we may further obtain

LEMMA 3.11. If k > 2 and 1 < s < fe , then

l»8fc + 12s + 30 € B(h, 5, 11*) .

Proof. We choose m = 12k + 5 and « = 12s + h in Lemma 3.U and l e t

U , G, B) be the GD({lf, 5}, 1, {l2fe+5, 12s+l+}; l*8fc+12s+2l*) . Let
the four srcmps of size 12& + 5 and let g be the

group of size 12s + 1* in G . Let b = {a±, a , a , a, , a } be a block

of B of size 5 where i n j . = ja.) . We add to the group divisible
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design a set S of s ize 6 dis joint from X and construct a

B({k, 5, 11*}, 1; hBk+12s+3Q) on X vS as follows:

(1) take the blocks B - {b} ,

(2) for i = 1, 2, 3, h , replace each group g. by a

B{ik, 5, 7*}, 1; 12fc+ll) on the set S u g. with 5 u {a.}

as i t s unique block of size 7 ,

(3) replace the group gv by a fl({U, 7*}, 1; 12s+10) on the

set 5 u g with 5 u [a } as i t s unique block of size

7 , and f ina l ly ,

(k) replace the five blocks S u {a .} , 1 S t 5 5 , Ijy the

single block Sub of s ize 11 .

The resu l t ing design is a B({k, 5, 11*}, 1; l(8A:+12s+30) and the lenuna is

proved.

The following lemma i s a consequence of Theorem 2.8.

LEMMA 3.12. If n i 1 or 5 (mod 20) and k = 1, k , or 5 ; then

n - k € B(h, 5) •

Proof. We take a B(5, 1; n) and delete k points which are

contained in the same block. The resu l t follows.

4. Existence theorems

In what follows we shall use the notation of [/0] and write R{v) if

there exists a Stein system of order V . In order to establish the main

result, the following well-known theorem (see [8], [.141) will be used in

conjunction with the results of the previous sections.

THEOREM 4.1. R(p) , if p is a prime congruent to 0, 1, h (mod 5),

and R(p ) , if p is a prime congruent to 2, 3 (mod 5) .

REMARK 4.2. For our purposes, it will suffice to note that Theorem

U.I guarantees R{n) for n = h, 5, 9, 11, 19 , and 31 . If we can show

that v € B(h, 5, 9, 11, 19, 31) , then it follows from Theorem 2.10 that

R(v) holds. It is important to note that in most of our constructions we

tacitly use the fact that if v 6 B(K') and K' c B(K) , then v € B(K) .
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THEOREM 4 . 3 . If V = 0 or 1 (mod k) and v # 8, 12 , then

v € B(it, 5, 9, 11) and #(*>) •

Proof. I f k 2 1 and u = 12fc+l, 12k+h, 12k+5, 12fc+8, 12&+9 , then

U € B(lt, 5) follows from Theorem 2.6 and Lemma 3 .2 . If fe > 5 , then

12&+2U € S(U, 5, 20*) by Lemma 3 .2 . Consequently, 12k+2k € S(U, 5) for

fc > 5 . I f u = 2k, 36, 60 , then v € B(U, 5) follows from Lemma 3.12.

For the cases V = it8 and 72 , we apply Lemma 3.** as fol lows:

U8 = U.11 + It € B(lt, 5, 11) , and 72 = It.17 + k € B(k, 5, 17) £ B(U, 5) .

This completes t he proof of the theorem.

THEOREM 4 .4 . If v = 3 (mod 12) and v * 3 , 15 , 27, 39 , then

v € B(lt, 5, 11) and R{v) .

Proof. If k > 3 , then , by Lemma 3 .2 , 12/c+15 £ B(*t, 5, 11*) and

the r e s u l t fol lows.

THEOREM 4 . 5 . If v = 11 (mod 12) and v t 23, 35 , then

v € B(k, 5, 11, 19) and B(v) .

Proof. If k > 5 , then 12?c+23 6 B(U, 5, 19*) follows from Lemma

3.2. In addition, we have

hf = (it.9+7) + k € B(k, 5, 11) by Lemma 3.6 f i i ; ,

59 = (it.12+7) + k i B{k, 5, 11) by Lemma 3.6 (ii) ,

71 = (it.15+10) + 1 € B(k, 5, 11) by Lemma 3 . 5 .

This completes t he proof of the theorem.

THEOREM 4 .6 . If v i 7 (mod 12) and v * 7 , k3 , then

v € B{k, 5, 1 1 , 19, 31) and R{v) .

Proof. I f & > 13 , then 12&+55 € B(it, 5, 11) follows from Lemma

3.2 and the fact t h a t 51 £ B(k, 5, 11) by Theorem it.lt. Thus, for v =7

(mod 12) and V > 211 , we have v € B(U, 5, 11) . I f k 2 2 , then

(lt(l2fc-l)+10) + 1 € B(lt, 5, 11) follows from Lemma 3.5 and

12k (. B(k, 5, 11) • In p a r t i c u l a r , {103, 151, 199> S B(k, 5, 11) . I f

k ^ 1 , then we have

k(l2k+8) + 11 € B(lt, 5, 11) by Lemma 3.it and 12&+8 £ B(h, 5) ,

Ml2fc+5) + 11 € B(U, 5, 11) by Lemma 3.it and 12&+5 € B(it, 5) .

In p a r t i c u l a r , (79, 9 1 , 127, 139, 175, 187} <£B(k, 5, 11) . For the cases
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v = 55, 67, 115, 163 , we have

55 = 5.11 € S(5, 11) by Theorem 2.9 .

61 = I*.l6 + 3 € B(U, 5, 19) by Lemma 3.6 (i) , using 19 € B(k, 5, 3")

by Lemma 3.2.

115 = U.28 + 3 € B(!t, 5, 31) by Lemma 3.6 (i; , using

31 € S(U, 5, 3*) by Lemma 3.2.

163 € B(h, 5, 11) as follows: let (X, G, B) be a

G£>(U, 1, 38; 152) , which exists by Lemma 3.k. Add to the group divisible

design a set S of size 11 disjoint from X . Since we have

k9 = k.ll + 5 £ B(U, 5, 11) , we may replace each group g of size 38 in

G by a B({U, 5, ll}, 1; 1+9) on the set Sag which has 5 as one of

its blocks and we get the desired result. This completes the proof of the

theorem.

REMARK 4.7. In the proof of Theorem It.6, we realize that

163 = k.36 + 19 (. B(k, 5, 19) . However, it is important to note that we

have essentially proved that 12k+7 (. B(k, 5, 11) for all k 2 h ,

k it 5, 9 .

THEOREM 4.8. if v = 2 (mod 12) and

v t 2, lU, 26, 38, 50, 62, Ik, 98, 110, 158 ,

then v € B(k, 5, ll) and R(v) .

Proof. We shall apply Lemmas 3.9 and 3.10 as follows: if in Lemma

3.10 we put s = 1 , then

k8k + 26 € B(h, 5, 11) for k > 2 .

If in Lemma 3-9 we put s = 1, 2, 3 , then, respectively,

k8k + 38 € B(k, 5, 11) for k > 1 ,

k8k + 50 € B(k, 5, 11) for k 2 2 ,

l»8fc + 62 € B(it, 5, 11) for k > 3 .

These results guarantee u € B(l+, 5, ll) for all u stated in the theorem

and the proof is complete.

THEOREM 4.9. If v = 6 (mod 12) and

v + 6, 18, 30, U2, 51*, 66, 78, 90, 102, lilt, 126, 162, 17U ,
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then V € B(k, 5, 11) and B(v) .

Proof. We apply Lemma 3.11 as follows: if in Lemma 3.11 we put

s = l, 2, 3, h , then, respectively,

+ U2 € B(U, 5, 11) for fc > 2 ,

kQk + 5U € B(k, 5, 11) for & > 2 ,

1+8& + 66 6 S(U, 5, 11) for fc 2 3 ,

i*8fe + 78 £ B(k, 5, 11) for k > k .

The above results give V ? S(l(, 5, ll) for all V stated in the theorem,

with the exception of V = 222 . For the case V = 222 , we first observe

that 51 = U.ll + 7 i B(k, 5, 11, 7*) by Lemma 3.U. Next we put m = hk

and n = 39 in Lemma 3.U and let {X, G, B) be the

GD(ik, 5>, 1, t1*1*, 39); 215) obtained. Let g^ g^ gy gk be the four

groups of size kh and let g be the group of size 39 in G . We add

a block 5 of size 7 disjoint from X to the group divisible design.

We replace the group g by a B({k, 1*}, 1; ̂ 6) on the set S u g . with

5 as a block and replace each group g. , i = 1, 2, 3 , by a
"if

B(lk, 5, 11, 7*}, 1; 51) on the set S u g. with S as a block.

Finally, replace the block 5 and the group g^ by a

B({lt, 5, ll}, 1; 51) on the set S u g^ . The result is a

B((U, 5, ll}, 1; 222) on the set X u S . The proof of the theorem is

complete.

THEOREM 4.10. If v = io (mod 12) and

v # 10, 22, 3h, 1(6, 70, 82, 106, 130, 1U2, 178, 190

then v € B(l», 5, 9, ll, 19, 31) and R{v) .

Proof. We apply Lemma 3.7 as follows: i f in Lemma 3.7 we put

s = 1, 2, 3, h , then respec t ive ly ,

kQk + 22 € B(h, 5, 12J:+7) for k > 2 ,

U8fc + 3l» € S(!» , 5 , 12&+7) for k > 3 ,

l»8k + U6 € B(l», 5 , 12fe+7) for k > U ,

l+8fe + 58 € B(l», 5 , l2k+7) for fe > 5 .
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By Theorem k.6, B(k, 5, 12fc+7) cS(l*, 5, 11, 19, 31) for a l l fc > 1 ,

k t 3 . Consequently, these resu l t s guarantee u € B(k, 5, 9, 11, 19, 31)

for a l l v in the statement of the theorem, with the exception of

V = 58, 9l+, 15^, 166, 202 , and 250 . However, by Lemma 3 .1 ,

58 € 5(1+, 19) ,

9h € B(h, 31) ,

166 € B(h, 55) c s(l», 5, 11) ,

and

202 € S(l*, 67) c S(U, 5, 19) •

By Lemma 3.8,

250 = 1+8.1* + 12.3 + 22 i B(h, 5, 58) c S(l», 5, 19) .

For the case V = 15*+ , we f i r s t observe that 22 € B(h, 7*) , and

39 = (1>.8+6) + 1 6 S(U, 5, 9, 7*) by Lemma 3.5. Next, we apply the

technique used in the proof of Lemma 3.9 to add 6 new points to a

GD(ih, 5}, 1, (33, 16}; 1*.33+16) and form a B({h, 5, 9, 11*}, 1; 15*0 .

This completes the proof.

I t i s known [7 7] tha t there are no Stein systems of order 2, 3, 6, 7,

8, 10, 12, 1I4 . Summarizing the resul ts of t h i s sect ion, we have proved

THEOREM 4 . 1 1 . y € s(U, 5, 9, 11, 19, 31) / o r all v > 191 .

THEOREM 4.12. ;?(y) fcoZis /or all v with the exception of

v = 2, 3, 6, 7, 8, 10, 12, ll* , and possibly excepting 15, 18, 22, 23, 26,

27, 30, 3U, 35, 38, 39, h2, i+3, 1*6, 50, 51*, 62, 66, 70, 71*, 78, 82, 90, 98,

102, 106, 110, l i l t , 126, 130, lU2, 158, 162, 171*, 178, 190 .

5. Subsystems

In this section we mention some results which extend the spectrum of

certain classes of Stein systems (see [70], [77]).

If a Stein system 5 contains a proper subsystem T , then

|s| - 3|r| + 1 (see [?']). Some cases where equality holds have been

stated in LI02. In particular, if we write Q(n) whenever there is a

Stein system of order n which is a subsystem of one of order 3n + 1 ,

then it was shown that Q(n) holds for n = l»m(3 -l)/2 and m, k > 0 .
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More generally, we have the following result.

THEOREM 5.1. If « = l (mod 3) and

n jt 7, 10, 22, 3l», l»3, **6, 70, 82, 106, 130, lit2, 178, 190 ,

then Q(n) holds.

Proof. The proof follows directly from Lemma 3.1 and Theorem It.12.

A medial Stein system is a Stein system which satisfies the medial law

{xy){zt) = (xz)(yt) . It is known [7 7] that the spectrum of medial Stein

systems consists of all integers whose square-free part does not contain

any prime p = 2, 3 (mod 5) • An extended medial system is a Stein system

with the property that every 2-element generated subsystem is medial. It

was established in. LI01, ["] that extended medial systems exist for all

orders n > 1198 . Combining Theorem U.ll with the fact that there are

medial Stein systems of orders h, 5, 9, 11, 19 , and 31 , we immediately

obtain

THEOREM 5.2. Extended medial systems exist for all orders n 2 191 .

Stein systems which have the property that every 2-element generated

subsystem is of order It or 5 or 11 have been constructed in LI01.

Such systems exist for all orders v =.0 or 1 (mod k) , v # 8, 9, 12

(see the proof of Theorem it.3 or Theorem 6 of [70]). For the orders

V S 3 (mod k) and V = 2 (mod It) , lower bounds of 2U7 and 1198 ,

respectively, have been given in [JO]. In the following two theorems,

these lower bounds are improved to 119 and 298 , respectively.

THEOREM 5.3. If v = 3 (mod it) and

v * 3, 7, 15, 19, 23, 27, 31, 35, 39, 1*3, 67, 83, 115 ,

then v € S(l», 5, 11) .

Proof. In Theorem lt.lt, we proved that 12&+15 € B(k, 5, ll) for

k 2 3 . In the proof of Theorem It.6, it is shown that 12k+7 € B(lt, 5, 11)

if k - h and k t 5, 9 • In addition, we have, by applying Lemma 3.5,

U8fc + 11 = (l*(l2fc)+10) + 1 € B(U, 5, 11) for k > 1 ,

and

U8k + 23 = (Ml2k+3)+10) + 1 € S(lt, 5, 11) for k > 1 .

By applying Lemma 3.6 (ii) , we obtain
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h8k + 1*7 = (M 13c+9)+7) + ** € B(k, 5, 11) f o r k 2 0 .

For k > 2 , we may add 6 new p o i n t s t o a

GZJ'({U, 5 } , 1 , {I2fc+1, 2 5 ) ;

and apply the technique used in the proof of Lemma 3.9 to obtain, by using

the existence of a B({1+, 7*}, 1; 12fe+7) and a S({U, 7*}, 1; 31) , a

5({U, 5, 11*}, 1; Wfe+35) • That is, U8fe + 35 € 5(1*, 5, 11) for k > 2 .

By combining these results, it is an easy matter to check that

V € 5(1+, 5, 11) for the values of v stated in the theorem.

THEOREM 5.4. If v = 2 (mod h) and v > 298 , then

V € s(**, 5, 11) .

Proof. I f v = 2 or 6 (mod 12) , Theorems U.8 and h.9 guarantee

V € B(h, 5, 11) for a l l v > 186 . If W = 10 (mod 12) , then Lemma 3.7

gives us

US* + 22 { B(h, 5, 12&+7) for k > 2 ,

U8fe + 31* € 5C* , 5, 12fe+7) for k > 3 ,

U8fe + 1*6 € 5 ( U , 5, 12&+7) for fe > 1* ,

hQk + 58 €5 (1* . 5, 12fe+7) for fe > 5 .

By Remark 1*.7, 12fe+7 (. B(h, 5, 11) for a l l fe > 1* , k t 5, 9 . Thus the

re su l t s stated above imply tha t i f v = 10 (mod 12) and u > 2ll* and

V t 250, 262, 27!*, 286, 298, 1*51*, h66, 1*78, 1*90 , then v € 5(1*, 5, 11) .

In what follows, we show that

{166, 271*, 298, 1*51*. 1*66, 1*78, 1*90} c 5(1*, 5, 11) •

By Lemma 3.1, 166 (. 5(U, 55) £ 5(1*. 5, 11) and

271* € 5(1*, 91) c 5(1*, 5, 11) . For the case V = 298 , we have

79 = (1+.15+11*) + 5 € 5(1*, 5, 19*) by Lemma 3.6 (ii) ,

and

58 € 5(1*, 19*) by Lemma 3 . 1 .

Thus, by Lemma 3.6 (i), we have

298 = (1*. 60+39) + 19 €5(1*, 5, 79) C 5 ( l * , 5, 11) .

By apply ing Lemma 3.1* and t h e f ac t t h a t 86 € B(l*, 5, l l ) by Theorem 1*.8,
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ksk = It.92 + 86 e B(k, 5, 86, 92) c s(l», 5, 11) ,

It66 = U.95 + 86 € B(li, 5, 86, 95) £B(h, 5, 11) ,

and

1*90 = U.101 + 86 € B(!+, 5, 86, 101) c B(U, 5, 11) .

By applying Lemma 3.5, we obtain

U78 = (4.98+85) + 1 € B(h, 5, 86, 99) c B(U, 5, 11) .

It is clear that if v = 10 (mod 12) and U 2 298 , then v € B(U, 5, 11)

and the proof of the theorem is complete.

In conclusion, we wish to consider another class of Stein systems,

specifically, Stein systems which contain a subsystem of order 1» and a

subsystem of order 5 • Such systems have interesting properties and

applications will be given in a subsequent paper by the authors. If we

write R*{v) whenever there exists a Stein system of order u which

contains a subsystem of order h and a subsystem of order 5 , then we

have the following theorem.

THEOREM 5.5. R*(v) holds for all v with the exception of

v 15 and possibly excepting 16, 18, 19, 22, 23, 25, 26, 27, 28, 30, 31,

3U, 35, 38, 39, 1*2, 1*3, 1*6, 50, 51*, 55, 58, 62, 66, 70, 7^, 78, 82, 90, 9**,

98, 102, 106, 110, llU, 126, 130, lU2, 158, 162, 17I*, 178, 190 .

Proof. The exceptions v - 15 result from our opening remarks on

subsystems. If we combine the proofs of Theorems 1*.3, !*.!*, 1*.5, h.6, U.8,

1».9, and l».10, then, apart from the above exceptions, the only cases where

R*(v) is not guaranteed are v = 21, 12fe+l, 12fc+U , where i > 1 , in

Theorem U.3, v = 19, 31, 55 in Theorem It.6, and v = 58, 9** in Theorem

l*.10. In order to complete the proof of the theorem, we shall show that

R*(v) holds for v = 21 and for all u = 1 or 1» (mod 12) , v > 37 .

By Lemma 3.12,

21 = 25 - 1* € 5(1*, 5) , 37 = 1*1 - 1* € B(l+, 5) ,

1+0 = 1*5 - 5 € B(l», 5) ,

6U = 65 - 1 € B(h, 5) , 76 = 81 - 5 € B(!*, 5) .

By Lemma 3.1*,

73 = 1+.17 + 5 € B(U, 5) , 88 = If .21 + h i B(U, 5) .
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By Lemma 3.5,

52 = (It.12+3) + 1 € 5(1*, 5) , 6l = 5-12 + 1 6 B(h, 5) .

By Lemma 3-6 (i),

kg = 5.9 + ** € B(it, 5, 13) c 5(U, 5) .

Finally, by Lemma 3.2,

12k + 25 € B(U, 5, 21*) cB(l», 5) for fc > 5 ,

and

12k + 28 6 B(4, 5, 2U*) cB(U, 5) for fc > 6 .

This completes the proof of the theorem.
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