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AN INDUCTION THEOREM FOR REARRANGEMENTS 

KONG-MING CHONG 

Introduction. In this paper, an induction theorem for rearrangements in­
volving w-tuples in Rn is proved, showing that a certain proposition regarding 
a pair of w-tuples related by the weak spectral order < is true for any integer 
n ^ 2 if and only if it is true for n = 2. This theorem contains as particular 
cases a well-known theorem of Hardy-Littlewood-Pôlya [4, Lemma 2, p. 47], 
a theorem of Pôlya [8], a theorem of Rado [9, pp. 1-2], two theorems of Mirsky 
[6, Theorem 2, p. 232; 7, Theorem 4, p. 90], a result given in [1, Corollary 2.4, 
p. 1333] and also [2, Proposition 2.1, p. 439]. With this theorem, we give 
conditions for equality to hold in Mirsky's [6, Theorem 2, p. 232], as well as 
Polya's [8] inequality. Moreover, we also obtain some Hardy-Littlewood— 
Pôlya-type, Muirhead-type, Marshall-Proschan-type and Rado-type re­
arrangement theorems. 

1. Prel iminar ies . For any w-tuple x = (xi, x2, . . . , xn) (E Rn, we denote by 
x* = (xi*, x2*, . . . , xn*) the w-tuple whose components are those of x arranged 
in non-increasing order of magnitude. If a = (alf a2, . . . , an) G Rn and 
b = (&i, &2, • . • , bn) £ Rn, then we say that the weak spectral inequality 
a < b holds whenever 

(1.1) £ at* g £ b? 

for 1 ^ k ^ n, and the strong spectral inequality a -< b holds if a <£ b and if 
there is equality in (1.1) for k = n. Moreover, we write a ~ b whenever the 
components of a form a permutation of those of b in which case a is called a 
rearrangement of b. 

As in [1] and [2], the spectral inequality a •< b (respectively a <£ b) is said 
to be strictly strong (respectively strictly weak) if a oo b (respectively if the 
inequality (1.1) is strict for k = n). 

If x = (xi, x2, • . • , xn) G i£w is any w-tuple, and if x £ i? is any number, 
we often let (x, x) = (x, ) denote the n + 1-tuple obtained by 
adjoining x to x. If a, b £ i^w, then it is not hard to see that a < b if and only if 

(1.2) (c,a) « fob) 

for any number c £ R. More generally, if x* G Rn, i = 1,2, . . . , m, are w-tuples, 
let (xi, x2, . . . , xm) be the raw-tuple whose components are those of Xi, X2, . . . , 
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xm. Then, if a* < b*, i = 1 , 2 , . . . , m, it is easy to see that 

(1.3) (ai, a2, . . . , aro) « (bi, b 2 , . . . , bw) . 

Inequalities between vectors are defined componentwise and such an 
inequality is said to be strict if at least one of the inequalities between the 
corresponding components is strict. 

In the sequel, an w-tuple is sometimes taken to mean a column vector. 
We refer to [1, Sections 1 and 3] for an extension of the above notions to 

measurable functions. 

2. An induction theorem. The following theorem gives the main result of 
this paper. 

THEOREM 2.1. For any integer n ^ 2, let P[a, b, n] be a proposition concerning 
a pair of n-tuples a, b G Rn satisfying a < b such that 

(i) P[a, b, n] is compatible with the (vector) lattice structure of Rn with respect 
to the ordinary partial order ^ , i.e., P[a, b, n] is true whenever a ^ b ; 

(ii) P[a, b, n] is compatible with vector extensions, i.e., P[{c, a) , (c, b) , n + 1] 
is true for any c £ R whenever P[a, b, n] is true; 

(iii) P[a, b, n] is rearrangement invariant, i.e., P[a', b ' , n] is true for all 
rearrangements a' of a and b ' of h whenever P[a, b, n] is true; 

(iv) P[a, b, n] is transitive, i.e., P[a, b, n) is true whenever bothP[?i, c, n] and 
P[c, b , n] are true, where c is any n-tuple satisfying a « c < b or, simply 
a « c « b. 

Then P[a, b, n] is true for any n ^ 2 if and only if P[a, b, 2] is true. 

Proof. The necessity of the condition is clear. 
To prove its sufficiency, we first note that a* ^ b* if ai* ^ bn*, in which case 

P[a*, b*, n] or P[a, b, n] is true, by virtue of hypotheses (i) and (iii). Thus, 
we assume that ai* > bn*. Next, suppose that P[a, b, 2] is true, that n > 2 
and that P[a, b, m] is true for any m ^ n — 1. Let a = (<2i, a2, . . . , an) and 
b = (6i, 62, . . . , &J-

If ai* = &i*,thena « b implies that (a2*,a3*, . . . , an*) « (62*, 63*, . • . , &»*), 
by (1.2). But P[(a2*, a3*, . . . , a / ) , (62*, bz*, ... , bn*), n - 1] is true, by the 
induction hypotheses, and so P[(ai*, a2*, . . . , an*), (&i*, 62*, • • . , bn*), n] 
is true, by hypothesis (ii), that is, P[a, b, n] is true, by hypothesis (iii). 

If bn* < a 1* < bi*f then it is easily seen that there exists a smallest integer i, 
1 < i ^ n, and an w-tuple c = («i*, bi*, b2*, • . . , ft 1-2*, &*-i* + &** — «1*, 
&,+i*, . . . , 6W*) such that &<* ^ ai* < 6,_i* and a « c < b. But, by (1.2), 
a < c and c < b are respectively equivalent to (a2, a3, . . . , an) <£ (61, b2, . . . , 
6<_2, bi-x + b{ - au bt+u . . . , 6n) and (au 6<_i + 6< — ai) < (fr*_i, 60, pro­
vided that a\ ^ a2 ^ . . . ^ a„ and 61 è 62 ^ . . . è 6n, it is, therefore, clear 
that P[a, c, n] is true in view of hypotheses (ii) and (iii). Moreover, by virtue 
of the induction hypotheses and hypotheses (ii) and (iii), P[c, b, n] is also 
true. Thus P[a, b, n] is true, by hypothesis (iv). 
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The following lemma will be used repeatedly in what is to follow. 

LEMMA 2.2. / / a = (&i, a2) < (61, b2) = b, then there exists a number r such 
that 0 ^ r ^ 1 and 

<"> ( : ; ) s [{; ï]+« - 4î i]]te) • 
Moreover, the spectral inequality a <£ b is strictly weak if and only if the in­
equality (2.1) is strict. 

Proof. The result is easily seen to hold by considering the cases that ai* ^ b2* 
and that ai* > b2* separately. 

As a corollary to Theorem 2.1, the following is an extension of a theorem of 
Hardy-LittlewT>od-Pôlya [4, Lemma 2, p. 47]. 

THEOREM 2.3. If 3, and b are (column) vectors in Rn, then a <£ b if and only if 
there exist a finite number of transformations, say 7\, T2, . . . , Tm, of the form 
rl + (1 — r)P, where 0 ^ r ^ 1, / is the n X n identity matrix and P is an 
n X n "transposition" matrix (i.e., a permutation matrix obtained by permuting 
two rows of I) such that 

(2.2) a g TlT2 . . . TJy. 

Moreover, the spectral inequality a « b w strictly weak if and only if the inequality 
(2.2) is strict. 

Proof. For the first part of the theorem, let P[a, b , n] be the proposition as 
asserted. Then (i) and (iv) of Theorem 2.1 are obvious, whereas (iii) follows 
from the fact that a permutation matrix is a product of transposition matrices. 
To prove (ii), suppose that P[a, b, n] is true, then 

a g f[\[rtl+ ( l - r « ) P , ] b , 

where m ^ 1 is some integer, 0 ^ rt ^ 1, i = 1, 2, . . . , m, and Pi , P2, 
are transposition matrices. As it is easy to see that 

(:) * a 
1 0 
0 

0 

0 

+ (1 - rt) 

1 0 
0 

0 

0 

Pi 

for any c (E R, we infer that P[(c, a ) , (c, b) , « + 1] is true. Since P[a, b, 2] is 
precisely Lemma 2.2, we conclude that P[a, b , w] is true. 

The last assertion is easy. 
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Remark. Theorem 2.3 extends [4, Lemma 2, p. 47] since it is easily seen that 
TiT2 . . . Tmb < b and that a < b and a ^ x < b imply x = a. 

The following Muirhead-type theorem was noted earlier in [2, p. 443]. It 
can now be obtained as a consequence of Theorem 2.1. 

THEOREM 2.4. / / a = (ai, a2, . . . , an), b = (ai, a2, . . . , bn) and x = (xi, x2, 

. . . , xn) are such that a < b a ^ x* > 1, i = 1, 2, . . . , n, then 

(2.3) £!xi0lx2
a2 . . . xn

a* ^ £!xi&1x2
&2 . . . xn

b» 

where ^ ! denotes summation over all the {distinct) permutations of (xi, x2,. . . , xn). 
Moreover, equality holds in (2.3) if and only if either a ~ b or both a < b and 
X J *v 2 . . . *^,7î# 

Proof. Clearly the hypotheses of Theorem 2.1 are satisfied. 

THEOREM 2.5 (Mirsky [7, Theorem 4, p. 90]). / / a, b £ i?w are {column) 
vectors, /Aen a « b i/ and 0w/;y if //zere exists a doubly stochastic matrix A such 
that a ^ Ah. 

Proof. The sufficiency of the condition follows from the fact that ^4b < b , 
which can be proved as in [4, p. 49]. Conversely, its necessity is a direct con­
sequence of Theorem 2.1 and Lemma 2.2. 

Remark. In [7, Theorem 4, p. 90], the above theorem of Mirsky is obtained 
as a direct consequence of a theorem of Hardy-Littlewood-Pôlya [4, Theorem 
46, p. 49]. On the other hand, the Hardy-Littlewood-Pôlya theorem can also 
be derived from Mirsky's theorem as a particular case, since it is easily seen 
that a < b and a ^ ^4b < b imply a = ^4b. 

The following theorem of Pôlya also fits nicely into the language of Theorem 
2.1. 

THEOREM 2.6 (Pôlya [8]). If a = {au a2, . . . , an) G Rn andb = {bu b2, . . . , 
bn) G Rn, then a <̂  b if and only if 

(2.4) é *(a<) ̂ £ *(&<) 
i=i *=i 

/or a// increasing convex functions $ : R—> R. 
If a < b awa7 i/ $ is strictly increasing and convex, then a < b whenever 

equality holds in (2.4). 
If a < b ana7 if $ is strictly convex and increasing, then equality holds in (2.4) 

if and only if a ~ b. 

Proof. The proof is obvious by virtue of Theorem 2.1 and Lemma 2.2. 

Remark. The conditions concerning equalities in Theorem 2.6 were not 
given in [8]. 
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The following theorem is equivalent to Theorem 2.6 (in the sense that one 
can be obtained from the other and that each can be established independently 
of the other). 

THEOREM 2.7 [1, Corollary 2.4, p. 1333]. 7/ a = {au a2, . . . , a») and b = 
(bi, b2, . . . , bn) are in Rn, then a « b if and only if 

(2.5) (*(<*!), . . . , *(an)) « ( S f r ) , • • • , *(&»)) 

/or a// increasing convex functions <ï> : R—+R. 
If the spectral inequality a <&b is strictly weak and if $ is strictly increasing 

and convex, then the spectral inequality (2.5) is also strictly weak. 
If a <£ b and if $ is strictly convex and increasing, then the spectral inequality 

(2.5) is strong if and only if a ~ b, iw which case (3>(ai), $(a2), • • • » $ (^0 ) ^ 

(*(M, $(60, • • •, *(&„))• 
Proof. The case that n = 2 follows directly from Lemma 2.2 while the general 

result is an immediate consequence of this and Theorem 2.1. 

Theorem 2.1 also contains another theorem of Mirsky as a direct consequence 
and gives conditions for equality to hold in his inequality. 

THEOREM 2.8 (Mirsky [6, Theorem 2, p. 232]). If a, b G R\ then a « b 
if and only if <£(a) S $(b) for all increasing, convex and symmetric functions 
$ : Rn -> R. 

If a < b and i/ $ is strictly increasing, convex and symmetric, then a < b 
whenever <£>(a) = $(b) . 

7/ a « b and i/ $ is strictly convex, increasing and symmetric, then $(a) = 
$(b) if and only if a ^ b. 

Proof. The sufficiency of the condition for the first part of the theorem fol­
lows as in [7, p. 22]. 

To prove its necessity, we need only verify hypothesis (ii) of Theorem 2.1. 
But this is a consequence of the fact a convex increasing function (of n + 1 
variables) remains convex increasing if one variable is kept fixed. 

The rest is easy. 

The following theorem which generalizes a theorem of Rado [9, pp. 1—2] 
yields another consequence of Theorem 2.1. 

THEOREM 2.9. For any n-tuple b G Rn, letJti?(b) denote the convex hull of the 
set of all rearrangements ofb. Then an n-tuple a G Rn satisfies a < b if and only 
if there exists an n-tuple c G Jti?(b) such that a ^ c. 

Proof. The sufficiency of the condition follows from the fact that c G Jf?(b) 
implies c < b, which is proved in [7, p. 2]. 

To establish its necessity, we need only note that hypothesis (iv) of Theorem 
2.1 follows from the fact that a convex combination of some convex combina­
tions of rearrangements of b is again a convex combination of rearrangements 
ofb. 
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Remark. Theorem 2.9 does generalize Rado's theorem [9, pp. 1-2] since 
a < b and a ^ c < b imply a = c. 

We shall now glean from Theorem 2.1 a Marshall-Proschan-type rearrange­
ment theorem [5, p. 87]. 

THEOREM 2.10. If a = (a1} a2, . . . , an) and b = (&i, &2, • . • , bn) are in Rn 

and if X\, X2, . . . , Xn are interchangeable nonnegative random variables, then 
a « b if and only if 

(2.6) ^{alX1, . . . , anXn) « *(&iXlf . . . , bnXn) 

for all increasing, convex and symmetric functions $ : Rn —> R, provided the 
composite random variables have finite expectations. 

Suppose <ï> : Rn —> Ris strictly increasing, convex and symmetric. If the spectral 
inequality ?L < b is strictly weak and if P{Xt > 0} > 0 for at least one i, 
1 ^ i ^ n, then the spectral inequality (2.6) is strictly weak. 

Moreover, if a < b and if <£ is increasing, strictly convex and symmetric, then 
the spectral inequality (2.6) is strong if and only if either a ~ b or Xt = 0 
almost surely, i = 1, 2, . . . , n. 

Proof. For the first part of the theorem, the sufficiency of the condition 
follows as in [6, Theorem 2, p. 232] by putting Xt = 1, i — 1, 2, . . . , w. 

To prove its necessity, we need only establish the case that n = 2, and the 
general result then follows immediately from Theorem 2.1. Suppose (a\, a2) <£ 
(&i, 62). Then, by Lemma 2.2, there exists a number r such that 0 ^ r ^ 1 
and (ai, a2) ^ r(6i, 62) + (1 - r) (&2, 61). Thus, 3>(aiXi, a2X2) ^ r$(&i*i> 
62^2) + (1 — r)$(b2Xi, biX2) < $(biXi, b2X2) since the symmetry of <ï> and 
the interchangeability of X\ and X2 imply ${b2X\, biX2) ^ $(biXi, b2X2). 

For the second part of the theorem, if (a\, a2) < (61, b2), where a\ + a2 < 
bx + b2, and if either P{XX > 0} > 0 or P({X2 > 0} > 0, then it follows from 
Lemma 2.2 that 

(ai-XTx(i), a%Xr^)) < r(6iXT(i), o&X ô») + (1 - r)(&2X7r(i), b2XT(2)) 

for some 0 ^ r ^ 1 and for some permutation T of the integers 1, 2. Thus, 
if 3> : i?2 —> R is strictly increasing, convex and symmetric, then it is clear that 
E&faXu a2X2)] < £[$(&iX!, 61X2)]. 

The rest is similar. 

The following theorem gives a further application of Theorem 2.1 to a result 
established earlier in [2]. 

THEOREM 2.11 [2, Proposition 2.1, p. 439]. Let A be a matrix whose rows are 
the distinct permutations of a nonnegative n-tuple x = (x\, x2y . . . , xn) £ Rn. 
If a, b G Rn are {column) vectors such that a < b, then A& <£ Ab. 

Proof. Clearly, we need only show that the asserted proposition satisfies 
(ii) of Theorem 2.1. Let c £ R and xn+i ^ 0 be given. Let B be the matrix 
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whose rows are the distinct permutations of (xi, x<i, . . . , xn+i) and let At be 
the matrix whose rows are the distinct permutations of the w-tuple obtained 
by deleting xt from (xi, x2, . . . , xn+i), i — 1, 2, . . . , n + 1. Then ex* + 

i4<a« «c< + ^ b , i = 1,2, . . . , » + 1, and so S T ) « B K | , by (1.3). 

Acknowledgement. The author wishes to thank the referee for his suggestions 
in revising the paper. 
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