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ON THE CONTINUITY OF STATIONARY

GAUSSIAN PROCESSES

MAKIKO NISIO

1. Introduction

Let us consider a stochastically continuous, separable and measurable

stationary Gaussian process1) X = [X{t), — oo < t < oo} with mean zero and

with the covariance function p{t) = EX{t + s)X{s). The conditions for

continuity of paths have been studied by many authors from various view-

points. For example, Dudley [3] studied from the viewpoint of s-entropy

and Kahane [5] showed the necessary and sufficient condition in some

special case, using the rather neat method of Fourier series.

In this note we shall discuss the continuity of paths of X, making use

of the idea presented by Kahane. Our results are following: We express

the covariance function p in the form

p(t) = J" eitλ dF(λ)

with a finite measure dF, symmetric with respect to origin.

Put sn = F{2n,2n+1l n = 0, 1, 2,

THEOREM 1. If E sup \X(t)\ < oo, then Σ / 7 n < o o .
*e[0,l] n=0

THEOREM 2. Suppose that we can choose a decreasing sequence {Mn} so that

Mn~^.sn and Σii/Mn<oo. Then E sup \X{t)\ < oo.
w=0 *e[0,l]

THEOREM 3. Suppose that p is convex on a small interval [0,5]. Then
oo

Σ / s n < oo, if X has continuous paths.
«=0

By virtue of Theorem 2, we can easily see

COROLLARY. Suppose that p is convex on a small interval [0, δ] and sn is
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χ) We mean a real valued process.
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decreasing. Then X has continuous paths if and only if, E sup \X(t)\ < oo,
*e[0,l]

CO

which is equivalent to 2 f/sn < oo.
n=0

The author with to express her sincerely thanks to Professor T. Sirao

for his valuable suggestions.

2. L e m m a s

Let {Tj,j = 1,2, •••} be a sequence of increasing positive numbers

such that 2 - ^ r - < ° ° . According to [5, p. 69], we shall define following

functions,

X(x) = max (1 — I α; 1,0), - oo < a- < oo,

CO / j? \

0rU) = Π Ά-ψ-)9 ~ oo < λ < oo,

/ r ( 0 = - , 1 :
Y2π J
-,1
Y2π

As to these functions, we can easily see that θr is symmetric, non-negative

and continuous, and lr and /* continuous. Since

(1) Kr{t) = γ^ψ- & - c o s Trt) ^ 0,

/r is non-negative as the convolution of Kn, n>r.

The following Lemma 1 is clear.

LEMMA 1.

(/*+1*Xr)(ί) = -AL= Γ

V2JΓ J-

We express X in the form

X(t) = j eitλdΦ(λ)
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STATIONARY GAUSSIAN PROCESSES 9 1

with a random measure dΦ. Let X satisfy the condition of Theorem 1.

We define stationary Gaussian processes F r and F? by

(2) YΛt9ω) = -^Lj^Xt f ~ s,ω)lr{s)ds

and

(3) Y*(t, ω) = ηL- Γ X(f - 5, <»)Z (5)rfs
v2ίr J-«

respectively. By virtue of the condition of Theorem 1, we can see that,

for a. a. ω, the Lebesgue integral of the right side of (2), as well as (3), is

a continuous function of t. Moreover, Yr and F * are expressible in the

form

(4) YΛt) =

and

(5) Yf{t) = ^ ^ eitλΘΛλ)dΦ(λ).

As to the supremum value of these processes, we have Lemma 2,

LEMMA 2.

E sup \Yr(t)\^a

E sup |Γ*(£)I ^ 2 α
*e[o,i]

where a = E sup |X(£)I

Proof. By Lemma 1, we have

E sup \Yr{\
*<=[0,l]

Put Z r(ί) = Yr(t) — Yf(t). Then Zr has continuous paths and is ex-

pressible in the form

{t) = \ eitλθr(λ)dΦ(λ).

Therefore Zr and FJ are mutually independent. So, for any topological

Borel set A of C[0,1],
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P(Yr e A) = ( P(Γ* e A - ί) P(ir r e dξ)

where / stands for the restriction on [0,1] of /. Hence, for e > 0,

P( sup \Yr(t)\<c)^ sup P( sup |F?(f)+ £(*)!< c)
* [ l ] f Q l ] ί [ 0 i ]

sup lYm + tcW\<c) + e
ίe[O.Π

with ζc e C[0,1]. On the other hand, by virtue of the symmetricty of F*,

P( sup |F*(ί) + 3̂ (01 < c) = P( sup

£e[o,l] ίe[θ,l]

Therefore, we have

1 - ( sup I Y*(t) I ̂  c) = P(2 sup | F*(f) | < 2c)

^ p ( sup \γm + ξc(t)\<c, sup i y « ί ) - e β ( θ i <c)

sup I Yr{t) I < c) — 2ε ~ 1.

Tending ε to 0, we get

P( sup lF*(ί)I ^:c) ^ 2 P ( sup \Yr{t)\^>c).

Hence

N n ^f n
(6) Σ - ^ - P f - ^ ^ sup I Y*(t) | < - ^

n=0 ZJ \ Δ ίe[0,ll ^

= - ^ - Σ P( sup ir*(f)| ^ - ^ - ) —^r-P( sup \Yt(t)\ ̂  Z

^ 2 ΣΓΣ ̂ 1 P ( ^ < sup |rr(ί)|<-^-) + ftlp( sup 1 (̂012=-^-).

Appealing to the former half of Lemma 2, we have iVP( sup |F r (£) | ;>—-^—)
^ίe[0,l] ^ y

tends to 0, as iV t °°. So, (6) implies the latter half of Lemma 2.

Define stationary Gaussian processes F r and V% by
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STATIONARY GAUSSIAN PROCESSES 9 3

Vr(t) = 7 = S χ Yr + l(t ~ s)Kr(s)ds

and

*(t)=j=\ i Y*+ί(t - s)Kr(s)ds.

Then we can easily see, by Lemma 2,

LEMMA 3.

£sup |7r(f)I:£-Φ==
ίe[o,Π vπ 1 r

£ sup i τ * ( ί ) l ^
f [ l ]

3. Proof of Theorem 1.

To prove Theorem 1, we shall firstly show the following proposition,

PROPOSITION. Let {Tr} be a sequence of increasing positive numbers such that

Σ 7^= < °°. Then
r=lVlr

oo / p oo / I I \2 \ l

Σ (I Π (1 - -ψ-) dF{λ)\τ
y=i \Jr i <|A |^Γ i / + i k=j+i V •* * / /

Proof.

We define successively random variables Sj9 Sj and Hj9 j = 1,2, , as

follows,

min{t;\t\<τl9 Yt(t,ω) = minFf(s,ω), if ^(ω) < minF*(s,ω)

min {t; \t\^τ19 Y*{t9ω) = maxY%(5,ω), if //i(α>) > max7f(5,ω)
|β|<π l s l< τ i

min {ί \t\^Lτu Y*(t9ω) — Hλ{ω)9 otherwise

where τx = 1 + ~ψ=. We can easily see that Si is measurable with respect

to the Borel field, &19 spanned by [dΦ(λ), \2\^T1}.
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-1// \ 'Γ Y (Q'.ί )

min{£; \t\^LτJ9 Yj+ί(t9ω) = maxYj+1(s9ω)9 if HΛω
\s\<*j

m i n {t \t\^LτJ9 Yj+ί{t9ω) — HJ{OJ)9 otherwise.

u(ω) ΞF i + 1 (S i + 1 W,ίo).

m i n { ί ; | ^ | ^ r J + 1 , Y*+2(t,ω) - min F^+2(5,α>)},

min {t 111 ^

if HJ+1(ω) < min FJ+zίs,^)

*+2(t9O>) — m a X ^*+2(ί»6))}j
ls|<r J + 1

if Hj+1{ω) > m a x F*+2(s,<y)
\s\<rj+1

%2{t9 ω) = Hj+ί{ω)}9 otherwise,

where τ3 — 1 + γψr= + + ηψ^ . Successively, we can prove that Sj
v 1 1 v 1 j

and Sj are measurable w. r. to the Borel field, j ^ J , spanned by {dΦ{λ)9

We shall show the boundedness of Hj.

LEMMA 4.

sup \Hj(ω)\ < oo, a. a. ω.

Proof. By virtue of Lemma 3, we have

(7) Σ E sup | F r ( f ) | <oo,

where τ — lim ry. O n the other hand,

(8) sup
\t\<τ

~^[ X(t~s)Us)ds

sup \X(u)\lr(s)ds
M

sup |X(w)| < oo,
| < 2

a. a. ω.

Therefore, we see
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sup sup |YV(OI < °° a a 6)
r=l,2,... |*|<r

Recalling the definition of Hj9 we have Lemma 4.

(9) # , +1(ω) - Hj(ω)

= {(Hj+1(ω) - Hj(ω)) V 0} - {(F, ( S » , ω ) - sup Ki+I(s,ω)) V 0}2>.

On the other hand, for t e [—TJ-UTJ-J,

^ " • t ί i Yj+M-sWWs + ̂ l 1 Yj+i(t - s)Kj(s)ds

:< sup Yj+i(t) + sup Vj{t).

So,

Yj(t) - sup 7ί+1(s) < sup 7,(0,

Therefore,

( r , ( S , ) - sup F i t l ( s ) ) V 0 < sup

Appealing to Lemma 3, we have

(10) Σ E{(YJ(SJ) - sup Yj+1(s)) V 0 ) < » .

As to the first term of the right side of (9),

Έ(HJ+1-Hj)V0

= Hn+1 - # , + Σ (YJ(SJ) - sup YJ+ι(s)) V 0.

Therefore, using Lemma 4 and (10), we get

(11) Σ Cfy+i - Hj) V 0 < oo, a. a. ω.

On the other hand, recalling the definition of H}, we see

(12) (HJ+1 - Hj) V 0 = (YJ+1(S'J) - Hj) V 0

2)

https://doi.org/10.1017/S0027763000024466 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024466


96 MAKIKO NISIO

7> {(Fy+1(5<) - Ϊ7+1(SJ)) V 0} - {(Hj - sup YU(t)) V 0}.

So, using the similar method as (10), we get

oo

(13) Σ E{(Hj - sup Yί+ί{t)) V 0} < oo.

Therefore, combining (11) and (13) to (12), we have
oo

(14) Σ (Yj+ι(S'}) - YUiS'j)) V 0 < » , a. a. ω.

Put ry = Yj+AS'A - YJΛS'j) andΠ ( l -

Then, we see, appealing to the independence of dΦ,

since Sj is ^-measurable.

Hence

(15) E(7j

and

(16)

Appealing to the following Lemma

LEMMA. [5, p. 64], If X is a non-negative random variable with mean finite,

then

P(X>

we can derive

v 0) > - S i r ) * p t e ( r ' v 0) > ^ ) ^
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So,

By virtue of (14), we conclude

oo

Σ vVj < OO.

This completes the proof of Proposition.

Making use of Proposition, we can easily prove Theorem 1. Put Tk=2k

and a = Π (1 - 3 2-fc-2)2. Then we have

, 3 2'-1] = «( dF{λ)<\ Π fl—

Π (l—

So, by Proposition,

(17)

00 / 1 \2

Put Tk = 3 2*-1 and α = Π (1 - -=- 2"*+1 ) . Then we have

2aF(3 2J-\ 2J+1]^[ Π (l - ^Aλ\

So,

(18) I

By virtue of (17) and (18), we have Theorem 1.

4. Proof of Theorem 2
oo

We shall first assume that sn is decreasing and Σ i/sn < oo. We put
n=0

j) = 22i and define ξj and η5 by
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ξj(t) = j e»* dΦ{λ)

and

rjj = max ξj (—r^TΓjγ-) , j — 1, 2, *

respectively. Then the process ζj has continuous paths. Appealing to the

following Lemma,

LEMMA. [5. Proposition 2].

\x\dμ , k \{x), h>0

where βξ is the probability law of £, we have

hi

where σj = 2F(c(; - 1), c(»]. Let A = A(;) = /2σy log c(; + 1)

Then we see

(19)

2 ' - l
Since <7, = Σ sΛ, w e

fc2'l

Hence,

Consequently, by (19), we have

(20) Σ ^ y < °o.

Define ξ" and 0 by

£(i, k,p,q,r) = ξ (
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r = 1, . . . , c(p), q = 1, . . , c(p), k = 0, . . . , c(j + 1), p = 1, 2, . . . ,

= 1, 2, . . . , and

0(;,p) = m a x \ζ(j, k, p, q, r)\.
k,q,r

Then we see

U. K V, q,r) = 2 J (l - cos c(j + l)c(p + 1)

Again, using the same Lemma, we have

Eθ(j, φ) -<- 2-J log c(p + 1) c(j + 1) — j, .- ,

Therefore

(2i) Σ ΣiEeu,p)<oom

By virtue of the separability of X and ξjf we have

sup \X(t)\ <ς Σ sup \ξj{t)\ + \dΦ(0)\, a. a. ωy

and

oo

sup lf/01 ̂ Vj + Σ O(j,p)9 a. a. ω.

So, taking (20) and (21) into account, we complete the proof of Theorem 2

in the first case.

Define a symmetric finite measure G by

G(A) = F(A) + Σ (Λfft - 5Λ)'58n+1(i4), il c [0, oo),
n=0

where δa is the delta measure concentrated at a. Let Xx and X2 be the

mutually independent stationary Gaussian processes whose covariance func-
oo

tion has the spectral measure F and Σ {Mn — sn)δ2n{A), respectively. Then
w=0

G is the spectral measure of the covariance function of Xλ + X2 and

G(2W,2W+1]= Mn. So, using the result, we just proved,

E sup
*e[0fl]

https://doi.org/10.1017/S0027763000024466 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024466


100 MAKIKO NISIO

Repeating the same method as Lemma 2, we have

E sup \Xx{t)\ <oo.
*G[0,l]

This completes the proof of Theorem 2.

5. Proof of Theorem 3

To prove Theorem 3, we shall first show the following Lemma,

LEMMA 5. Assume that a symmetric, positive continuous function R is convex and

decreasing on [0,π]. Then any Fourier coefficient an, i. e. an = ̂ ~ \ e~ R(t)dt,

OO

is non-negative. Moreover*, Σ an = R(0).
h=—oo

Proof. By symmetricity of R, for n^l,

(22) a,n = βn = -L Γ R(t) cos nt dt = — Γ*R(—) cos 5 ds.
π Jo nπ Jo \ n /

ί jff(—)cos 5 J s

) ( ^ t ) ( ^ ^ ± ) ( ^ + ^ ) ) cos s ds.

By virtue of the convexity of R, the integrand is non-negative, and we

have

/ s \

On the other hand, by the monotonicity of R,

cos s
v n /

2kπ

cos s ds =
\ n /

2kπ

Therefore, appealing to (22),

Since R is continuous and bounded variation, its Fourier series con-
OO

verges to R uniformly on any closed subset of (~π,π). Hence Σ\an=R(0).
n = —oo

LEMMA 6. Let R be a continuous, symmetric and positive definite function on
i ί π

(— oo, oo). Assume that each Fourier coefficient an, Le. an— r̂— I e~ R(t)dt,
Z7Γ J-7Γ
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is non-negative. Then, the spectral measure dG of R satisfies

Σ 1/ G(2n, 2n+1] < 00

if Σi/ Σ % < °°.
«=0 ' &=2n+l

Proof By the symmetry of dG,

(23) an = -±- Γ e-int(S* eitλ d G (λ)) dt

1 Γ°° s i n ( 2 ΨI\TΓ Λ Γ°° s i n ί > ί ~4~ ΨL\IΪ
— — \ d\j\λ) ~\~ — \ .—ί

JΓ Jo λ — n JΓ Jo / + n

where - s ί n Q π is read as l i m - ^ 1 1 ^ = π.
0 x~>Q X

Put f{λ) = 2 i f -3iτί(A^J7^L f χ-^o, {k = 4, 5,. . . ).
?ί=2*:—4 X ' ϊ

Then we have, for m = 2fc"x + 1, . . . , 2fc, μ e (0,1],

f(2m - 1 4
_ + s j n ( ; + μ)π ^

J = o J + μ l=i I — μ

1 I r l j . 1 1 , 1

and, by the same method,

Therefore,

/U)dGU)^-^- Σ S i n π / < dG(l + μ).

2*+ J-^ /=2* Jo+ μ(l—μ)

O n the other hand, we have the following inequalities,

(25) f(λ) Ξ> 0, λ e [2*+1, 2 t + 1 + 4] U [2s - 5, 2*].

(26) f (2*+1 + 4 + «) -

1 _ 1 ^s inuT^ 5_ sin^π ^ _ 5 , , -

Λ e [0,1].

(27) /(2*+1 + j + μ) ̂  - -|- (3 -M $£!!*
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(28) /(2* - j + μ) ̂  - -§- (3 - • 8

Hence, by (25) and (28),

2t_i+/u)^u) ̂  - -l-o -

and, by (25) and (27),

2M+/U)^U) ^ --§-(3 -

[0,1], = 6, . . . , 2*"1 + 1.

2* —1

As to the value of integral of / on the remainder set of λ9 we see

(31)

GC0.2*-1]
i_2 {2m-2k~lY — 2* ' -

and, similarly

(32)

On the other hand,

(33)

Γ f{λ)dG{λ)
J2fc+2 2*+1-5

21+2

m=JPi-2 (2mP 2k~

Consequently, taking (23) into account, we have

(34) δk + 12 k 6

2 t + 1+3 a 2*+1-if»i s in^ j r

= Σ ~ — and Δk— Σ \ ~7Γn—7Λ~ dG{l + μ).
n=2k~A ^ l = 2k Jθ+ r̂ \-*- r̂ /

where t Σ ^ , Σ
^ 1 = 2* JO-f

Since Άk^π*G(2h, 2k+1\ Δk tends to 0 as ^ t 0 0 . Therefore (34) implies

By the assumption of Lemma 6, i.e., Σ / ^ < °°> we have

https://doi.org/10.1017/S0027763000024466 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000024466


STATIONARY GAUSSIAN PROCESSES 103

(35) ^ / ^ < °°#

Appealing to the following inequality

we have i f c^G(2 f c, 2fc+1] and, by (35), we complete the proof of Lemma 6.

Using Lemmas 5 and 6, we can easily prove Theorem 3. By the assump-

tion of Theorem 3, we can choose a positive Δ, so that p is positive convex

and decreasing on [0, Δ\. Define a Gaussian process X by X(t) = X\~j~)

Then the covariance function p of X is p{t) = P\Ύ~) > a nd its spectral

measure F is F(A) = Fί A) for any Borel set A. Since /o satisfies the

condition of Lemma 5, we can construct a periodic covariance function R

by

R(t) = Σ «Λe''Mί, - °° < t < oo,
n = —oo

where βrt = -=— \ p{t)e~intdt. Let Y be a stationary Gaussian process with

mean zero and with the covariance function R. Since R = p on [—JΓ, π], F

has the locally same probability law as X. So, Y has continuous paths.

Hence Kahane's Theorem [5, p. 73], [3, p. 300] tells us that

Σ an < oo.

Therefore, by Lemma 6, we have

— 2n, 2 W + 1 < oo.

This implies Theorem 3.
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