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SP TRANSFORM AND UNIFORM CONVERGENCE OF 
LAURENT AND POWER SERIES 

BY 

S.A. SETTU 

ABSTRACT. If the Laurent series 

f(z) = S aaz-n (\z\ > 1) 
/i = 0 

is transformed to 

* a,,/?" (\ \" (\ 1 1 1 \ 
f(z)=2 - - Z Z - - < - " l , 0 < / 7 < 1 , 

„ = o(l ~ P)"KP > V| P\ P J 

it is shown that convergence of the former at z = 1 implies the uniform 
convergence of the latter on a symmetric arc of |z - \/p\ = \/p - 1 not 
containing z = 1 and that the uniform convergence of the former over a 
symmetric arc of |z| = 1 containing z = 1 implies uniform convergence of 
the latter on the entire circle \z — \/p\ = \/p — 1. 

1. Introduction. Let/(z) be defined by the series 
00 

(1.1) f(z) = S a„z-

which is assumed to converge outside the closed disc \z\ ^ 1. We can write 

1 
z 

P P 

where 

«„ = (1 - PY 1 (" + \ ~ l)pkak, 0 < p(fixed) < 1, (~J) = 1 

(« = 0,1, . . . ) . 

We note that if Sp is the Meyer-Kônig-Vermes matrix defined by 

(sP)« = (i-py(n + k
n~l)pk 
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then 

a = spa, 

where a = {a 0 , a i , . . .} and a = {aQ,a\,.. .}. 
In this paper we show that an assumption of convergence of (1.1) at the single point 

z = 1 implies the uniform convergence of (1.2) on a symmetric arc of \z - l/p\ = \/p 
— 1 not containing 1 and that the uniform convergence of (1.1) over a symmetric arc 
of |z| = 1 containing 1 implies uniform convergence of (1.2) on the entire circle 
\z - \/p\ = \/p - 1. 

The present work is motivated by the treatment of the Taylor transform as applied 
to a power series given by Jakimovski and Meyer-Konig [2]. 

2. Results. More explicitly we prove the following two results. 

THEOREM 1. Assume that EQ an is convergent and let i|/0 be a given real number 
(0 < i|i0 < IT). Then the power series expansion (1.2) ofthe function f(z) in (1.1) is 
uniformly convergent for z — \/p — (\/p — \)el^(\\j0 < \\i < 2TT — i|/0). 

THEOREM 2. Assume that there exists a real number <p0(0 < 9o < Tr) swc/i /̂iâ  /̂ie 
Laurent series (1.1) is uniformly convergent for z — elip(—<p0 — 9 — 9o)- TTî n f/ie 
power series (1.2) is uniformly convergent on the circle \z — \/p\ = \/p — 1. 

Of these two results, Theorem 1 can be deduced from a generalization of Fatou's 
theorem (see [5], p. 93) after transforming (1.2) by 

1 — pz 

i -p 

observing that |a>| < 1 when \z — \/p\ < \/p — 1. We however prove Theorem 1 
directly using the same tools to prove Theorem 2 too. 

3. Auxiliary results. To describe the procedure we construct a matrix A which 
transforms the partial sums of (1.1) into the partial sums of (1.2). In this context we 
assume only that a = Spa exists noting that a necessary and sufficient condition 
therefor (see [3], p. 272) is 

(3.1) ak = o f — J for fixed n = 0 , 1 , . . . as k -> ». 

Let u and v denote points of the circles \z\ — 1 and \z — l/p\ = \/p — 1, respectively. 
We shall use the notation 

(3.2) u = e*(0 < cp < 2ir), 

(3.3) p - *''*(() < i|i < 2TT), 

1 / 1 1 - pv 
(3.4) v = - - (L- l)p; i.e. P = — ^ - » 

P V 1 - P 
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a i a„ 
tn = «0 + — + . . . + — 

u u" 
(3.5) 

yn = a0 + a,p + . . . + a„(3" 

and, for n = 0 , 1 , . . . (H fixed), 

(3.6) T ) ^ 71,(11) = Qwi)* É (m + k~ l)(\ -prp" (jfc = 0 , l , . . . ) . 

In the first instance, because of (3.1), 

|**TU| ̂  ( k l + • • • + k l ) k l ^ 7777 2 ( m + * " l ) (1 - p)m (k = 1,2, . . . ) 
K m = 0 m 

for a suitable constant M. Consequently 

(3.7) tki\k-* 0 as it -> °°. 

Using this fact we can write 
7„ = a0 + a,P + . . . + a„P" 

= i p-(i - pr i (m + * " 'k 

- ZJ Ok - tk-\)l)k 

k = 0 

- ZJ (y\k ~ T]k+\)tk 

2J Clnkhf 
k = 0 

where 

a* = (puY±(l-prF\(m + k-l)-pu(m + k)\ 

Rewriting 

(3.8) ank = (1 - pu)(pu)k(n * *) U - pvY + (pu)kp(v - u) 

x E f )(1 -pv)'" («,Jt = 0 , 1 , . . . ) . 
= 0 

This proves that 

(3.9) Y = A * 

where A = A(p,u,v) is the matrix with the elements ank. If u — v = 1, then (3.9) 
reduces to the well-known relation 
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a = Fs, 

111 

,1,1) = F= (- ~(Sp)nk+i) A(p 

is a regular sequence to sequence matrix (see [4], p. 558). 
In the following theorem we establish the convergence preserving nature of the 

matrix A. 

THEOREM 3. The matrix A = A(p,u,v) defines a sequence to sequence convergence 
preserving transformation for each triple (/?,w,v) with 

0 < p < 1, |«| = 1, v = l- - ( i - l ) p ( 0 | = 1, p * 1). 

To prove this we need the following lemma. 

LEMMA 4. Let the real number p (0 < p < 1) and the complex number 

v = - - ( - - 1 ) p with p = e'* (0 < i|i < 2TT) 

be given. Then 

1
 +

 4 

v - 1 v - 1 
( n = 1,2, . . . ) . 

PROOF. We first show that the series which defines co,, is convergent. Since | (1 — /?)P | 
= 1 — p we have 

». s i (i - p)-P i (m + *)„* = «/? 

Let |x = 
\ - P 

so that 0 < |x < ». We write 

„ = i / + f l ( m + >-,>rP" 
* = o 

i -p 

= r, + r2 ( n = i , 2 , . . . ) 

with 

Applying Abel's inequality to the innersum of Tt we get 

2(1 -p)"-' 
T{ U-Pl 

2^(n + k ~ 1 ) 
k>\m 
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\n- 1 °° 

[March 

H - P I ïS k )> 
2p 2 

(1 -p)\\ - p | | v - 1| 

For T? we have 

T2=2p»»\i (m + *)<i - P ) - P - - i (m + *)d -p)-^-12 - ^J P 

where 

m < n + n, 

n= S /+ l 
« = o V m y ^2 

* = o v v - 1 

and 

n= S H 2 (m + Â :)( i-prp" 

Again applying Abel's inequality to the inner sum of T[ we get 

Hence 

|1 " P| kZn V * r |1 - P| 
2/7 _ 2 

(7 - p ) | l - P | ~ | v - i f 

1 4 
oo„ < 7, + 7z + T'{ ^ — + v - 1 v - 1 

and the lemma is proved. 

PROOF OF THEOREM 3. It is enough to show that the matrix A satisfies the well known 
necessary and sufficient conditions for a matrix to be conservative (see e.g. [1]). 

Xxmank= (l - - ) ( " ) * (£ = 0 , 1 , . . . ) . 

I f a = {1 ,0 ,0 , . . .}, then a = {1,0,0, . . .} and t = y = {1, 1,. ..} so that (3.9) gives 

2 ank = 1 (n = 0, 1 ,2, . . .). 
* = o 

Now, 

2 \ank\ < S, + 52, 

where 

s , < | i - H 0 - p ) " I ("t k)pk |i - p«| 
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5 2 = £ | v - « | 2pt+l\2(m + kyi-pW 

By Lemma 4 we get 

and hence we have 

v — u\ v — u\ 
$2 S {-: ! + 4 

v - 1 v - 1 

•A , , Il — pu\ |v - «I |v — u\ 

2 \a„k\ < ' . ' + j - ; + 4 ' ' l - / > v| - 1 v - 1 
(« = 0,1..). 

* = 0 

Hence Theorem 3. 
Since A(p, u, v) is convergence preserving 7 = At is convergent. Also 

V v / , _ 0 \ v / \„ = 0 /L V v / * = 0 W J 

= 2 A.V-". 
m = 0 

4. PROOF OF THEOREMS 1 AND 2. Let us assume that SQ an = 5. By Theorem 3 the 
matrix A(/?, 1, v) is convergence preserving for 0 < p < 1, 

- Q - l)p (|p|= l , p * 1). 

Therefore EQ a^P" converges pointwise on the whole circle |(3| = 1. But this con­
vergence is not uniform on the whole circle | p | = 1. To prove this we put 

- \ e yi-n/n + 1 

Now 

1 
k = 0 \Zn 

\zn~ 1| 

\zn\ ~ 1 -> °° as n —» °°. 

So there exists a sequence s = {s0,S\,... ,s„,...} with the properties sn —> 0 and 
(1 - l/z„) 2* = 0 ^z~* not bounded. Define 

/ (z) = (l - i ) I J*Z-* for |z| > 1. 

Then 
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f(z) = 2 akz~k, ak = sk - sk-] (fc = 0 , 1 , . . .), J-i = 0. 
* = o 

Now/(l) = 2^ = 0 ak = 0. If a = Spa, then we have 

„.„ Kl).ijmLii-,y forL_iui_,. 
If this series converges uniformly for \z - \/p\ = \/p - 1, then it would be uniformly 
convergent for \z — \/p\ < 1//? - 1 and/(z) would be continuous on the disc \z — \/p\ 
< 1//7 — 1 which contradicts the fact that {f(zn)} is not bounded. 

In other words (1.2) does not converge uniformly on the entirety of its circle of 
convergence when (1.1) converges for z = 1. However Theorem 1 holds. 

DIRECT PROOF OF THEOREM 1. Let 2^ a„ = s, 

v = - - ( - - l )p with p = e* (0 < i|i < 2TT), 

Sn — a0 + a\ + • • • + an 

and 

y„ = a0 + a,p + . . . + anP" with a = Spa (n = 0, 1, . . ) . 

Then 

y = Bs, 

where B = A(p, 1, v). The matrix B has the column limits 

and row sum 
00 

2 ^ = 1 (n = 0 , l , . . . ) . 

Since 2Q &* = 1, we have 
00 

2 ( f c * - M = 0 (n = 0 , l , . . . ) 

and 
00 00 

7« - 2 V * = E (ft«ft ~ W ( ^ - s) (n = 0 , 1 , . . .). 

Given e > 0, there exist a K > 0 and a natural number m = m(e) such that 

Is* - s| < K for all /:, |s* - s\ < e for k > m. 

This yields the estimate 
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\y„ - S bksk\ < K S |fc„* ~ **| + c X |&n* ~ **|. 
1 A = 0 ' * = 0 it = / n + I 

Now lim^oo bnk = &* implies that there exists a natural number N = N(e) such that 

\bnk ~ bk\ < e for n > N and k = 0 , 1 , . . . , m. 

Thus 

7« - X bksk\ < Kme + e( 2 I M + S |&*|) ^ e(Km + 5 + 2 j ^ -J). 
* = o ' v* = o t = o 7 v |v| - l7 

The factor multiplying e is less than a constant independent of v but depending on i|/0 

under the restriction i|/0 ^ v}/ < 2ir — i|/0. Theorem 1 is proved. 

PROOF OF THEOREM 2. It is enough to prove this theorem for small values of p and 
<p0; so we assume in addition that 

0 < / ? < i 0 < c p 0 < J -

There are uniquely defined numbers v0 and i|i0 (3TT/2 < I|>0 < 2TT) such that 

v0 = I 1J Po with Po = e'*0, v0 = |v0|w0 with u0 = e**. 
P KP 

We put 

(4.1) f{u) = 2 tf„*T" with w = ei9 (0 < |cp| < <p0) 
/i = 0 

(4.2) v = - - ( - - l ) p with p = ^,'*(2ir - i|i0 > v|/ > i|i0), P * 1 
D \D / 

(4.3) '*(«) = 2 0*w *, 7„(v) = S a*p*. 

By hypothesis the series in (4.1) converges uniformly with respect to u in the closed 
interval — <p0 — 9 — <Po- We show that 

00 

S a„pM = lim yn 

exists uniformly for the values of p and v specified in (4.2). For the values u specified 
in (4.1) we have 

(4.4) 7(v) =A(p,u,v)t(u). 

Connecting now u and v by the relation u = v/|v| and putting 

C = A(p,v/|v|,v) 

(4.4) reduces to 
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7(v) = Cti^-X 

[March 

The column limits of the matrix C are 

*-('-n)(n)' 
The row sum of C equals 1 and 2T=o ck = 1. So we have 

(* = 0 , 1 , . . . ) . 

(4.5) 

Now, 

X (c„k - ck) = 0. 

* = 0 

= 2 
* = o 

= 1 

v K v v 

l v l 7 * = 

S cktk[ — ) . 
t = o v | v | / 

< -An 
v y v v 

From this and (4.5) it follows that 

7«(v) - / ( v ) = S (cnk - ck)\ 
k = 0 

Given e > 0, there exist a constant K > 0 and a natural number m = m(e) such that 

< K for all k < -An 
vl M 

Mri)-/(n 
v K v v 

< e for k > ra, 

where these inequalities are true uniformly for all v under consideration. This yields 

IT«(V) ~ f(v)\ - K 2 k„* - c*| + e E k«* - c*|. 

Since c„* —» c* as « —» oo? we have a natural number N = N(e) such that 

k„it — ck\ < e for n > N (k = 0, 1,. . . , m). 

Thus, for n > N, 

l7„(v) - / ( v ) | < e#m + c ( S |c„,| + X | Q | 

= e( ATm + 1 + X \c„k\ 
^ k = o 
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Since 11 - pu\ ^ 1 + p, |v - u\ = |v| - 1 and |v - 11 > |v| - 1 we have, as in proof 
of Theorem 3, 

2 M <5 + - - (n = 0,l,...). 
* = o 1 ~ P 

Hence 

l7n(v) ~ /(v) | < e(6 + ATm + ) for « > # . 
v 1 - p/ 

Combining with Theorem 1 and the convergence of 2Q a„ the proof of Theorem 2 is 
now complete. 
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