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1.

In what follows the term C*-algebra will mean a complex C*-algebra
with identity. We denote the identity element by 1. We shall also use the
notation and terminology of Dixmier (3) without comment.

Let A be a C*-algebra. It is well known that the group G(A4) of invertible
elements of A is “large”, in the sense that its subgroup U(A4) of unitary
elements actually spans the algebra. Our first result shows that G(4) is in fact
always dense in 4 in the weak (Banach space) topology. The situation is
more complicated when we look at the norm topology on A. For example,
if M is a von Neumann algebra then Choda (2) has shown that M has dense
invertible group if and only if M is finite. Now suppose C is an abelian C*-
algebra, with maximal ideal space X. It is easily seen from (8, Theorem VII 4)
that C has dense invertible group if and only if the topological covering dimen-
sion of X is less than 2, We use this to give a necessary condition for a homo-
geneous C*-algebra to have dense invertible group.

We conclude in Section 4 with some miscellaneous results and remarks.

2,

Our result for the weak topology is based on a Proposition of Dixmier
and Maréchal (4), which states that in a von Neumann algebra the invertible
group is always dense in the strong operator topology.

Proposition 1. Let A be a C*-algebra. Then G(A) is weakly dense in A.

Proof. Let A act on the Hilbert space H in its universal representation.
Then the strong operator closure 4~ of A4 is the enveloping von Neumann
algebra of A.

Let a be an element of the closed unit ball 4, of 4, and let V be a strong
neighbourhood of a in A~. By (4), G(47) is strongly dense in A~. Hence
there exists an element x in ¥nG(4™). Now x has polar decomposition
x = vh, where v is a unitary in 47, and 4 is a positive element in A7. By the
Kaplansky density theorem, the positive part of 4, is strongly dense in the positive
part of A7. By the Glimm-Kadison density theorem (6, Theorem 2), U(A4)
is strongly dense in U(47). Also multiplication is a strongly continuous
map on U(47)x(47),. Hence there exists ue U(4) and ' € A, such that
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uh’ € V. By the functional calculus (3, 1.5), #’' may be approximated in norm
by a positive invertible element k € 4, so that uk € V. Now uk € G(4). Hence
G(A) is strong operator dense in 4. Hence G(A) is ultraweakly dense in A.
However, since 4 is acting in its universal representation, the ultraweak
topology, when restricted to A4, coincides with the weak (Banach space)
topology of 4. This proves the result.

It is very easy to give an example of a general Banach algebra for which the
above conclusion does not hold. For let B be the disc algebra. Then B consists
of those continuous complex valued functions on the space X of complex
numbers of modulus < 1, which are analytic in the interior of X. Let fe B
have a zero at some point in the interior of Z, and suppose that fis not identically
zero. We claim that f does not lie in the weak closure of G(B).

For suppose (f,) is a net in G(B) which converges weakly to f. By the
principle of uniform boundedness the set (|| f; [) is bounded. Also f,—f
pointwise on Z. By (1, p. 171, Theorem 9) the family (f)) is normal. Hence,
by (1, p. 171, Corollary), since each f, is never zero, a limit function of the
set (f,) is either never zero or is identically zero. But this contradicts our
choice of f, and hence our claim is proved.

‘We note that in the above example the norm and the weak closures of G(B)
in fact coincide. For if a function fin B is either identically zero or has all its
zeros contained in the boundary of T then it clearly lies in the norm closure
of G(B).

We turn now to the more difficult question of the norm density of the
invertible group in C*-algebras. We noted earlier that the answer is known
completely in the case of abelian C*-algebras. Now the simplest class of
non-commutative C*-algebras is that of homogeneous C*-algebras. Recall
that a C*-algebra A is called homogeneous of degree n (n a positive integer)
if all its irreducible representations are of degree n. We are able to provide
an answer 1o our question in the case of some such algebras.

Let 4 be an n-homogeneous C*-algebra (for some positive integer n). We
recall some notation from (3, 3.5). Let Irr,(4) denote the set of irreducible
representations of 4 on an n-dimensional Hilbert space H,. Equip Irr, (4)
with the topology of simple strong convergence on 4. i.e. n,—n in Irr, (4)
means n(a)f—n(a)p for all ae 4, fe H,. A denotes the set of unitary equi-
valence classes of irreducible representations of 4, with the Jacobson topology.
We have a canonical map Irr, (4)— 4, which is a quotient map for the respective
topologies (3, 3.5.8). Let det denote the determinant on the matrix algebra
L(H,) of all operators on H,. Given x € A, the map n—n(x) is continuous on
Irr, (4). Hence so also is the map n—det n(x). This map is also constant
on unitary equivalence classes of elements of Irr, (4), and so, by passing to
the quotient, defines a continuous complex-valued function d, on A.

For completeness we give the definition of covering dimension for topo-
logical spaces.
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Definition (8, p. 9). Let X be a normal topological space. We say that
X has dimension < n (n a positive integer) if every finite open covering of X
has a finite open refinement of order < n+1 (i.e. each point of X is contained
in at most n+1 sets of this refinement). We write this as dim X < n.

We can now prove

Proposition 2. Let A be a C*-algebra which is homogeneous of finite degree
and has uniformly dense invertible group. Then dim A < 1.

Proof. Note firstly that we are able to apply the dimension theory of
(8) to A because A4 is a compact Hausdorff space (3, 3.1.8 and 3.6.4). By
(8, Theorem VII 4), it suffices to show that the invertible elements are dense
in C(A4) (the sup norm algebra of continuous complex-valued functions on A4).

Let fe C(A), and let e>0. By a special case of the Dauns-Hofmann
theorem (3, 10.5.6), there exists @ € 4 such that for all z € 4,

n(a) = f(m)n(1).
Now, by continuity of det and (3, 1.3.7), there exists >0 such that, if xe 4
and || x—a || <0 then
| det n(x)—det n(a)|<e (nelrr, (4))
Since G(A) is dense in A, there exists x € G(4) with || x—a || <. Then, for
each ne A4,
| 8(m)—f(n)| = | det n(x)—det n(a)| <e.
Since x is invertible, n(x) is invertible for each n € 4, and so 3, is non-zero
on A. Also, as we have already remarked, @, € C(4). This completes the
proof.
Examples of homogeneous C*-algebras are those of the form
4 = C(X)®M,,
where X is a compact Hausdorff space and M, is the full nx n matrix algebra.
A routine, but tedious, argument, using induction on #, shows that the converse
of Proposition 2 holds for such algebras. A more general result is proved in
(11), using the structure theory of (5). However, we do not know whether the
full converse of Proposition 2 is true or not.

4.

We now give a useful characterisation of invertible elements in C*-algebras
which have dense invertible groups.

Proposition 5. Let A be a C*-algebra with G(A) dense in A. Let xe A.
The following are equivalent:

(1) xe G(4);

(2) f(x*x)>0 for each fe P(A);

(3) f(x*x)>0 for each fe E(A);

(4) n(x) is invertible for each n € A.
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Proof. Obviously (1) implies (4) and (3) implies (2). Also, for any C*-
algebra 4, (1) implies (3). For if x € G(A), then by (3, 2.1.2), for each f'e E(A),

L= ]f(x""0)l< flx*x)f(x~1x71*).

(2) implies (1): Suppose x is a singular element of 4. Then x lies in the
boundary of G(A4) and hence is a two-sided topological divisor of zero. Hence
x is not left invertible, and so Ax is a proper closed left ideal of 4 containing
x. Hence x is contained in a maximal left ideal L of 4. By (3, 2.9.5), L is
the left kernel of some pure state f of 4, and so f(x*x) = 0.

(4) implies (1): Suppose x is a singular element of 4, and let L be as above.
Then the canonical representation n of 4 on the Hilbert space A/L is irreducible
and n(x) is not invertible, since x € L.

As an example of the way in which the above result may be applied we
have the following

Corollary 6. Let A be a liminal C*-algebra (with identity) and let x € A.
Then conditions (1) to (4) of Proposition 5 are equivalent.

Proof. By Proposition 5, we need only imbed A4 in a C*-algebra B with
dense invertible group, such that every pure state of B restricts to a pure state
of A.

Let # be the reduced atomic representation of A (a direct sum of irreducible
representations of A, taking exactly one representation from each unitary
equivalence class). Then = is a faithful representation of 4 and the strong
closure B of n(A) is a finite von Neumann algebra, and hence has dense
invertible group (2, Theorem 5). It is easy to see that each pure state of B
restricts to a pure state of A4.

Finally we return to the case of abelian C*-algebras. Let 4 be an abelian
C*-algebra with maximal ideal space X. We may write 4 = C(X). As we
noted previously (10), it is shown by Peck (9) that when A is separable (i.e.
X is metric), the following are equivalent.

(1) A, = co U(A).
(2) dim X £ 1 (i.e. 4 has dense invertible group).

In the non-separable case the proof that (2) implies (1) in (9) goes over without
change using the results in (8) corresponding to those in (7). We now give a
simplification of Peck’s argument, which also proves that (1) implies (2) in
the non-separable case.

Suppose 4 = C(X) satisfies (1). In order to show that dim X < 1, we
need only show that for every closed subset F of X and continuous map g
from F into the unit circle S = {e®: 0 < B < 2=} there exists a continuous
extension of g to the whole of X (8, Theorem VII, 5). Take such g and F.
By the Tietze extension theorem g extends to an element g of C(X) with
gl £1. By hypothesis g can be expressed as a convex combination of
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unitaries in C(X), i.e. there exist positive scalars f, and maps «, from X into
S with

g= 2": Biuy, z": Bc=1.
k=1 k=1
Now for xe F, | g(x)] = 1 and
600=3(= % fan.

Hence g(x) = u(x) (1 £ k £ n). Thus any ¥, say u,, will give the required
extension.
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