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Isotopy in surface complexes

from the computational viewpoint

John C. Stillwell

It is shown that the problem of deciding whether a curve in a

finite surface complex is isotopic to a point is W-complete.

This contrasts with the recursively enumerable (i?i?)-conipleteness

of the corresponding homotopy problem, and exhibits surface

complexes as a common framework for iVP-complete and i?#-complete

algorithmic problems.

For basic definitions and results on W-complete problems the reader

is referred to Cook [2] and Karp [4]. As is customary, algorithms will not

be described in complete detail but anyone familiar with, say, Turing

machines will be able to supply such details and verify the intuitively

obvious claims about the lengths of computations. A general reference for

computability, from the WP-level to recursive enumerability, is Machtey

and Young [5]. For topological matters we refer to Seifert and Threlfall

161.

The isotopy problem for surface complexes is the problem of deciding,

given a surface complex K and a closed curve c in K , whether c is

isotopic to a point in K . The notion of isotopy assumed in the paper is

stricter than the usual one and corresponds intuitively to a contraction of

the curve during which no point is passed over more than once. This is

equivalent to the property used in the proofs, namely that of bounding a

topological disc in the complex.

In order to have a finite combinatorial description of (K, a) , so

that the problem can be considered algorithmic, we shall assume that K is
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a finite 2-dimensional simplicial complex, and that a is an edge path in

K . Thus K is determined by finite sets {v.}, {e.} , and {/".} , of

"vertices", "edges", and "faces", respectively, each e. being a pair of

3
d i s t i nc t v.'s and each fv a t r ip le of d is t inct u . ' s . The curve

i s a f in i t e sequence [e . , ... , e . ) of edges such that e . and e.
31 3n °m °rrfrl

have exactly one vertex in common, as do e . and e . , and each vertex

of K appears a t most once among these e . ' s .
0

The length | (# , c)\ of a pair (K, a) i s the t o t a l number of

symbols in i t s description

{v±, « 2 , . . . , ex, e2, ...; fx, f2, ... ; a = (e^. , . . . , e. )}

when the e .'s and f, 's are written as sets of e.'s .

Any other reasonable combinatorial description of a surface complex -

for example a set of polygons with edge identifications - will be

convertible to a simplicial one in time bounded by a polynomial function of

the length of description chosen; so the notion of "polynomial time"

computation relative to the length of description of (K, a) is invariant

under reasonable notions of "description".

For definiteness we measure the length of computations relative to

LEMMA I. The isotopy problem for surface aomplexes is an NP

problem.

Proof. A closed curve a in K is isotopic to a point if and only

if it bounds a subcomplex of K which is a topological disc. This is well

known and follows, for example, by induction on the number of faces c is

pulled across in contracting it to a point.

It then suffices to show how to decide in polynomial time whether a

subcomplex K = f, u . . . u f of K is a disc bounded by c , since a
° kl kp

non-deterministic algorithm can correctly (but "unknowingly", as it were)

select the disc bounded by a , if there is one, in a single sweep across

the description of K .
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The nature of X- can be established by checking the following

conditions.

(i) The edges of f, y ..•, fv are identified in pairs, except for

edges of c , each of which appears exactly once.

(ii) The /V incident with a given vertex V. in K form a
m

closed cycle, unless v. is on c , in which case they form an open cycle.

(Conditions (i) and (ii) say that K is a bounded 2-manifold, with

boundary curve a . J

(iii) K has Euler characteristic 1 .

(This condition establishes that the 2-manifold is a disc.)

It is easy to see how to check each of these conditions in polynomial

time, in fact the time required is 0{\(K, a)\ ) . E

It will now suffice to show that a known iW-complete problem is

polynomial time reducible to the isotopy problem. A suitable problem for

this purpose is the hamiltonian path problem, which we shall use in a form

found in [5]: given a finite graph G and vertices u , y decide

whether G contains a simple path from y to y including all its

vertices.

LEMMA 2. The hamiltonian path problem is polynomial time reducible

to the isotopy problem for surface complexes.

Proof. Given a graph G with n vertices y , ... , y construct a
-1- n

surface complex K(G) as follows.

For each vertex v. of G take a bouquet B. of circles

c, ..., c. with a single common point V. and diameters

1/n, 2/n, ..., n-l/n, 1 respectively. If {v , v } is an edge of G we

connect each circle c , m > 2 , of B to the circle eW~ of B by
P P q q J

a "truncated cone" r (and each circle c" , m > 2 , of B to the
PI q q
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circle o by a truncated cone T J. It is assumed that the * ,

m, p, q S n , meet only along shared boundary circles, and at points V.
If

common to different boundary circles. Finally we attach a cone JT to the

circle c^ at the target vertex V , tapering from diameter 1/w to 0 ,

and let a be the circle a at V .

This construction, including a suitable triangulation of each

truncated cone, can be completed in polynomial time.

If G contains a hamiltonian path [v , v. , . . . , v. , v ) then e

will be the boundary of the cone (equals topological disc)

(*) r" u i^t u u rr u IT

It, 1'i^2 •z- 2
n n

and therefore isotopic to a point in K(G) .

Conversely, any disc bounded by a is of the form (*) and corresponds

to a path in G . No disc D bounded by a can contain some,

but not all, triangles from a x , otherwise there will be free edges of

PI
D not in a . For the same reason, plus the fact that edges not in a

must be identified in pairs, D has to contain exactly two 2"s incident

with a given circle not equal to a . This determines a connected sequence

of truncated cones, which must terminate with T in order to close D to

n
a disc.

Since the diameter changes by l/rt along each truncated cone, at

least n 2"s are required to form D . If more than n are used then D

will meet the same V. twice and hence will not be a disc. The number is

therefore exactly n , and to avoid meeting any V. twice D must meet

each of them exactly once, yielding a hamiltonian path from v to V in

G .

Thus the construction of K(G) from G represents a polynomial time

reduction of the hamiltonian path problem to the isotopy problem for
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surface complexes, (it should perhaps be stressed that the assignment of

"diameters" to the a. is made merely to assist visualization. It is of
'Is

course irrelevant to the topological structure of K(G) and need not be

mentioned in its description.) 0

The #P-completeness of the isotopy problem for surface complexes

follows immediately from Lemmas 1 and 2.

In contrast, the homotopy problem for surface complexes, obtained by

replacing the word "isotopic" by "homotopic", and consequently "disc" by

"singular disc", is i?£-complete. This follows from the classical results

of Dehn [3] on the realizability of any finitely presented group as IT of

a surface complex K and the equivalence between the homotopy problem and

the word problem for TIAK) , together with the results of Novikov and

Boone which show that the word problem for groups is unsolvable and of the

same degree as the complete recursively enumerable set (see for example
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