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It is well known that any map of n regions on a sphere may be
coloured in five or fewer colours.1 The purpose of the present note is
to prove the following

THEOREM. / / Pn (A) denotes the number of ways of colouring any
ma: of n regions on the sphere in A (or fewer) colours, then

(1) P ( l ( A ) > A ( A - l ) ( A - 2 ) ( A - 3 ) « - 3 ( w > 3 , A*4) .

This inequality obviously holds for A = 1, 2, 3 so that we may
confine attention to the case A > 4. Furthermore it holds for n = 3, 4
since the first region may be coloured in A ways, the second in at
least A — 1 ways, the third in at least A — 2 ways, and the fourth, if
there be one, in at least A — 3 ways.

In the case A = 4, not dealt with in the theorem, the inequality
(1) obtains if any only if every map on the sphere can be coloured
in not more than four colours, that is according as the so-called " four
colour theorem " is or is not true: in fact if (1) holds for n ~^> 3, A = 4,
every map can be coloured in four colours in at least one way of course;
and if every map (with n ^> 3 regions) can be coloured in four colours,
then from one colouring can be obtained 4 . 3 . 2 or 24 colourings by
permutation of the colours, so that Pn (4) ^> 24 as required; of course
we may always assume that at least three distinct colours are used
since we can always put an unused colour on any region.

In our proof of (1), we assume that (1) holds for any map
containing 3,4, . . . . n — 1 regions, n — 1 ̂ > 4, and then show that it

1 First proved by P. J. Heawood in a paper, Map-Colour Theorem, Quarterly
Journal of Mathematics, 24 (1889-90), 332-339. For the bibliography of the related
"four colour theorem " with references to the important earlier papers of Cayley, Tait,
F. Guthrie in this journal and elsewhere, the reader may be referred to A. Errera,
Du coloriage des cartes et de quelques questions d'analysis situs, Thesis, University of
Brussels, 1921 (Paris and Brussels, 1921), and C. N. Reynolds, On the Problem of
Colouring Maps in Four Colours, II, Annals of Mathematics, vol. 28, second series,
477-492.
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84 GEORGE D. BIRKHOFF

holds for any map of n regions. All maps M which we consider will
therefore contain n regions. The theorem follows by induction if we
take n = 5, 6, . . . .

The structure of any map is completely given, in so far as
colouring it is concerned, by naming each pair of regions a, /3 which
have a boundary line in common. Such regions a, /? must be of
different colours in any proper colouring of the map.

Call those maps of type I in which there is no region which
either is multiply connected or touches itself at some vertex. Con-
sider any map M not of type I. If there is a region a of M which
is multiply connected, form a new map M1 by drawing together two
boundary lines, one on each side of this region till they touch at a

M
Pig. 1

point, forming a new vertex (see fig. 1). Continue this process until
a map N still of n regions but with none of its regions multiply
connected, is obtained. Since the pairs of regions having a common
boundary are the same for N as for M, any colouring of N furnishes a
colouring for M. Hence we need only prove that (1) holds for maps N
in which there are no multiply connected regions.

Now this map N without multiply connected regions may have
one or more regions jS which touch themselves at a vertex v (fig. 2).

\

Fig. 2
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Take one end of such a region and draw it away, putting in a new
boundary line. We thus have a new map Nx in which a new pair of
regions, namely those on each side of this end of /3 have a boundary
line in common. Since /? touched itself at v before, these two regions
are distinct. Continue this process till there are no more regions
touching themselves at a vertex. The map A7' thus formed is there-
fore of Type I. But every pair of regions which had a common
boundary in M have still a common boundary in IV. Hence every
possible colouring of A7' is a possible colouring of M. Also M and A"
contain the same number of regions. Therefore if (1) holds for A7', it
holds for M. We have thus still to consider only maps M of regions
of type I.

Call those maps of type II which are of type I, while all vertices
are triple. Consider any map M of type I but not of type II. Then
at least four distinct regions abut at some vertex v. Draw one of
them, a, away from v, putting in a new boundary line between the
regions on each side of a at v, thus forming a new triple vertex (fig. 3)

M
Fig. 3

and reducing the number of regions abutting at v by one. Continue
until all the vertices are triple, forming the map Ar. As every pair
of regions with a common boundary in M have still a common
boundary in AT, every colouring of K is a colouring of M. Thus we see
that if (1) holds for every map of n regions of type II, it holds for
every map of n regions of type I, and therefore for every map of n
regions.

Call those maps of type III which are of type I I and in which
no pair of regions form a multiply connected region. Such a map
contains no 2-sided region of course. Consider a map M of type I I
but not of type III , containing then at least one pair of simply
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connected regions a, /S touching each other along k ^> 2 distinct
boundaries (fig. 4).

\

M M
Fig. 4

Select one of these boundaries as I (see figure) which is of course
terminated by two triple vertices. Open up the map along this
boundary and put a new boundary line across the "canal" so formed.
Evidently the new map constructed is still of type II, and all regions
previously in contact are still in contact, although one contact
of two regions previously not in contact has been introduced.
Continue this process until a map N is obtained in which no two
regions have more than one boundary line in common. Evidently V̂T

is of type III , and if (1) holds for N it will hold also for M. Hence
we may restrict attention to maps of type III .

Call those maps of type IV which are of type III and in which
no three regions form a multiply connected region. Such a map
contains no 3-sided region of course. Consider a map of type III
but not of type IV, in which some three regions a1( a2, a3 are then
multiply connected. Of course each of the three regions touches
the two others along one and only one boundary line. Thus, the
three regions form a ring which separates M into two parts K, L
distinct from alt a2, a3 (fig. 5). Now form two new maps Nt and X2,
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of at least four regions each, by shrinking these parts to a point. If
the number of regions in N1 and N2 be denoted by nx and n2 respec-
tively, we have

ttj -f- n3 — n + 3.

Since the number of regions in iVj or in N2 is less than n, we have

P, , . (A)>A(A- 1) (A - 2) (A - 3)»i ~3 (» = 1, 2)

in which Pn.(A) stands for the number of ways of colouring i\7; ( i= l , 2)

in A colours.

In order to colour M, we take any one of the X (A — 1) (A — 2)
choices of colours for au a2, a3, corresponding to each of which we have
P,H (A) / [A (A - 1) (A - 2)] choices for Nt and P,,s (A) / [A (A - 1) (A - 2)]
choices for N2. Thus for M we have

P , , ( A ) = A ( A - l ) ( A - 2 ) ? ' - W ^ W

; [ A ( A l ) ( A 2 ) p
> \ ( X - 1) ( A - 2 ) (A - 3 ) « - 3 .

Hence we may assume that M is of type IV.

Call those maps of type V which are of type IV and which con-
tain no 4-sided region. Consider a map M of type IV but not of type
V, in which the 4-sided region /3 has a common boundary with
a1, a2, a3, a4 taken in cyclical order. Then a» has a common boundary
with aJ+1 (putting a5 = aj), since all the vertices in M are triple.
Furthermore, ax, a2, a3, a4 have only these boundaries in common
with one another; for if as- and a/ are not adjacent cyclically and yet
touch, then the three regions a^ a; and jS would form a multiply
connected region.

Colour the map M', obtained by reducing f3 to a point, in all
possible ways. These we may divide into four sets, depending on
whether the colours of al5 a2, a3, a4 are essentially of the types
(a, b, a, b), (a, b, a, c), (a, b, c, 6), or (a, b, c, d). Call the number of
colourings of the first type, pu of the second, p2, of the third, p3, and
of the fourth, p$. With each of these colourings of M' we have A — i
colours for /3, where i is the number of colours employed in the ring
about /3. Thus we have for M

(2) Pn (A) = (A - 2) Pl + (A - 3) {Pi + Pt) + (A - 4) p4.

Form now the four maps A, B, C, D obtained respectively by
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letting a1; /?, and a3 coalesce, letting a1; f3 coalesce, letting a2, /3, a4

coalesce, and letting a2, /? coalesce (fig. 6).
The possible types of colourings of A are those possible for M' in

which a1 and a3 are of the same colour, and only those. These types
are (a, b, a, b) and (a, b, a, c). Thus if we call pA the number of
ways of colouring A we have

PA = lh -r Pi-

The possible colourings of B are those of M' in which aj and a3 are
of different colour, i.e. (a, b, c, b) and (a, b, c, d), so that we have

PB = P3 + iV
Similarly we find

Pc =Pi+ Pa,

PD = Pi -f 2V

These equations give

PA -f i ^ + ^c -r iJD = 2 (p, + ^2 + Ps + Pi),
PA + Pc ~ PB - PD = % (Pi - Pi)-

Hence from equation (2) we find

Pn (A) = (A - 3) (Pl + p2+ 2h + Pi) + (Pi ~ Pi)
o 3\

= v--——' (pA + iJjj + i>e + pn) + \ (PA + Pc -PB - PD)

= ( ^ - }
 (PA + PC)+

 ( - ^ 2 ^ (PB

Now the maps A, C each contain n — 2 regions, while the maps
B, D each contain n — 1 regions, and, as w > 4, the number of regions
in each of these maps is ^> 3. Therefore we have

PA > A ( A - l ) ( A - 2 ) ( A - 3 ) - 5 ,
PB > A (A - 1) (A - 2) (A - 3)«-4,

with similar inequalities for pc and />fl .

Hence We obtain from the above equation for P,t (A),

Pn (A) >(A - 2) [A (A - 1) (A - 2) (A - 3 ) - 5 ]

+ (A - 4) [A (A - 1) (A - 2) ( X - 3)"-*]
> A (A - 1) (A — 2) (A - 3)™"5 (A2 - 6A + 10)
> A ( A - 1)(A - 2) (A - 3 ) " - 3 .

Hence we may assume that M is of type V.
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Now as is well known every map on the sphere containing only
triple vertices and no multiply connected or 2-, 3-, 4-sided regions,
and therefore every map of type V, contains at least twelve 5-sided
regions.1

Take any map M of type V, the only type we have left
to consider, in which some 5-sided region /S touches in cyclic order
ax, a2, a3, a4, a5. Evidently none of these regions a(- touch each other
except in this cyclic order; for if a,- and ay did so, the three
regions a;, a;, and /S would form a multiply connected region. Colour
the partial map M' obtained by letting /3 shrink to a point, in
all possible ways. These we may divide into eleven types, in which
the colours of a1; a2, a3, a4, a5 are essentially of the types;

(a,b,c,b,c). (c,a,b,c,b), (b,c,a,b,c), (c,b,c,a,b),

(b,c,b,c,a); (a,b,a,c,d), (d,ct, b, a,c), (c,d,a,b,a),

(a, c, d,a, b ) , (b, a, c, d, a ) ; (a,b. c, d, e ) .

Let us call the number of colourings of these respective types
plt . . p5, qv . . . . qs and r. We have obviously for M

(3) Pn (A) = (A - 3) S Pi + (A - 4) S q{ + (A - 5) r.
i i

Consider the ten maps Ax, . . . . A5, Blt .. .. Bs formed as follows:
For A-i we let coalesce in M alt /3, a3; for A2, we let coalesce a2, j8, a4,
etc.; for B1 we let coalesce a]; /?; for B2 we let coalesce a2, /3, etc.
(see fig. 6).

B C

Fig. 6
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1 This is an immediate consequence of the Euler formula applied to such a map.
Cf., for instance, my paper, The Reducibility of Maps, American Journal of Mathe-
matics, 35 (1915), 115-128.
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We see, similarly to the case of a 4-sided region,

PAx = Pi + Pt, + ?i

PB =P*-\

Summing, we find

pi + gv + 5r

i ' i i

from which equations follow

22™,. + ^PB == 6 (2 pt-+ 2 g,-+ r),
j l i l i i

3EpA - 2 P i > . = 5(2 p , - - r ) .

« l «• l »

Equation (3) gives then

Pn (A)= (A - 4) (Spi + 2 q,- + r) + S p< - r

2 A - 5 V , A — 5 v

As each map A{ obviously contains n — 2 ̂  10 regions, and each
map Bl contains n — 1 ^> 11 regions, we have

for i = 1, 2, 3, 4, 5. Therefore, we conclude

Pn (A) > A (A - 1) (A - 2) (A - 3)«~5 [(2A - 5) + (A - 3) (A - 5)]

> A ( A - 1 ) ( A - 2 ) ( A - 3)«^5[A2 - 6 A + 1 0 ]

> A ( A - 1 ) (A- 2 ) ( A - 3 ) " - 3 .

Thus (1) holds for every map M whatsoever of n regions, and
hence, by induction, for every map. Note that only in this last
reduction did we need to restrict X not to be 4.
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It is deserving of remark that the inequality (I) of the theorem is the
best equality of its type, i.e. for every pair of numbers X > 4 and n ^> 3
there is a map M in which

Pn(A) = A ( A - l ) ( A - 2 ) ( A - 3 ) » - 3 .

For take a region ax; let a2 touch at along a boundary line; let a3

touch a.j and <x2; let a4 touch in order alt a2, a3; let a5 touch in order
a1; a2, a4, and continue thus, using n regions. We may then colour
in succession ax in A ways, a2 in X — 1 ways, a3 in X — 2 ways, a4 in
X — 3 ways, a5 in X — 3 ways, etc. Hence Pu (X) has the stated value
when M is of this special type.

In conclusion we may observe that the method of the paper can
be applied to maps on multiply connected surfaces of genus p > 0 as
well as to maps on surfaces of genus zero like the sphere.
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