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ON A RESULT OF BRUNS 

BY 

MARTIN KUMMER, RICHARD C. CHURCHILL AND DAVID L. ROD 

ABSTRACT. Bruns' Theorem states that the classical integrals of the 
gravitational three-body problem generate all algebraic integrals. We show 
that the first step in his proof, together with Ziglin's non-integrability 
criterion for complex systems, can be used to prove the non-existence of 
energy independent algebraic integrals in certain real analytic systems. We 
also show that this aspect of Bruns' argument is purely algebraic: We offer 
a proof based on elementary differential algebraic methods. 

Introduction. A recent result of Ziglin gives a computable criterion for establishing 
the non-meromorphic integrability of complex analytic Hamiltonian systems [10]. 
Unfortunately, when successfully applied to the complexification of a real analytic 
system the general conclusion for the real domain is merely that the original system 
has no meromorphic integral expressible as the quotient of entire functions (e.g., 
polynomial and rational integrals). In this note we point out, using a classical result 
of Bruns, that the applicability of Ziglin's method can be extended to cover the non­
existence of real algebraic integrals when the given real system has a special form. 

The Bruns Theorem considered here is only the first step in his proof that the 
classical integrals of the three-body problem generate all algebraic integrals. Specif­
ically (as discussed in [8, Chapter XIV]), Bruns initially proves that the existence 
of an algebraic integral for a (weighted) homogeneous vectorfield implies that of a 
(weighted) homogeneous integral of rational degree (see [9]). In fact this aspect of 
Bruns' result is purely algebraic, and to emphasize this point we offer a differential 
algebraic proof, somewhat in the spirit of Rosenlicht's proof of Liouville's Theorem 
on integration in finite terms [7] (also see [6, p.v.]). By using a standard result from 
elimination theory our treatment avoids a technicality for which Whittaker [8, p. 358] 
references Forsyth [3, pp. 332-335], but which Forsyth presents only in a special case. 
We use nothing from differential algebra beyond what can be found in standard basic 
algebra references (e.g. [5]). 

We use Q, R and C to denote the fields of rational, real and complex numbers, 
and Z to denote the ring of integers. 
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1. Bruns Theorem. Let M be an analytic manifold with a distinguished vectorfield 
F, where "analytic" means real or complex analytic according as the field F denotes 
R or C. All vectorfields, functions and forms on M are assumed analytic, and such an 
object 6 is Y -homogeneous of degree r G F when the Lie derivative satisfies LY(9) — 
rO. We let {f• : M —> F}y=1, 1 è n ^ dimp(M), be a collection of algebraically 
independent, non-constant, Y -homogeneous functions of degrees r7, where 0 < r}• — 
Q/j/pj) G Q and (i/j,Pj) = \. A = F[/i, . . . , /„] is the polynomial algebra in these 
functions. 

Set p — lcm{pi,.. . , pn}, let G = (p~l) be the additive subgroup of Q generated 
by p~\ and for each 0 ^ j G Z let Aj denote the subspace of A consisting of Y -
homogeneous functions of degree jp~l. Then AQ = F, and the derivation LY gives A 
the structure of a graded algebra, i.e. A = IX^o 4/ (direct s u m ) a nd Aj • A^ C Aj+k. 
The only reason for the rationality assumption on the r} is to achieve this grading. 
We assume there is a second vectorfield X on M satisfying LY(X) = rX for some 
r G G. It follows that X(Ay) C Aj+i for each y, where £ = rp, as LY(X(f)) = 
[ r , X ] ( / ) + * ( r ( / ) ) = ((rp+j)p~l)X(f). 

EXAMPLE: Let M = R2AZ = {(x,y)} = {(JCI, . . . ,xn;y\,... ,yn)} with symplectic 
a; = YH=\ d*i /\dyi. Assume an analytic Hamiltonian H : M —> R is given by H(x,y) 
= (l/2)|y |2+V(x), where the potential V is a homogeneous polynomial in the variables 
{*!,... ,x«} of integer degree m > 2. Set £ = 2/(m — 2) and Y — S J]/Li */(d/3*i) + 
(<5 + 1) S"=i yi(d/dyt), where we note that (5 + 1) = (l/2)6m. Then Ly(jcy) = ^ and 
Lytyj) = (8 + \)yj show that the global coordinate functions {x\,... ,JCW;^I, . . . ,_yw} 
satisfy the above conditions. Moreover, a straightforward computation shows that the 
Hamiltonian vectorfield XH satisfies LY(XH) = XH. Here G = (p_1), where p — (m—2) 
for m odd and p = (l/2)(m — 2) for m even. Then X satisfies the required conditions 
with £ = p, and the polynomial algebra A = F[JCI, . . . ,JCW;^I, . . . ,yn] is graded w.r.t. 
Y as above. 

Returning to generalities, let Q^ denote the quotient field of A. Bruns' Theorem 
asserts that the existence of a non-empty open set U C M , and a non-constant function 
g : U —» F, algebraic over QA and satisfying Lx(g) = 0, implies the existence of a non-
constant quotient (/?/#) G QA of F-homogeneous functions satisfying Lx(p/q) = 0. 

As stated in the introduction, Bruns' result is purely algebraic. To give such a 
formulation allow F to be an arbitrary field, and replace the polynomial algebra A = 
F[ / i , . . . Jn] introduced above by an arbitrary finitely generated graded F-algebra A — 
11/̂ 0 Aj satisfying AQ = F and which is a UFD when regarded as a ring. Elements of 
Aj are called homogeneous of degree j . Note that the grading subsumes the role of 
Y. Assume in addition that X : A —> A is an F-derivation satisfying X\Aj : Aj —> Aj+£ 
for some fixed £ ^ 0. Extend X to a derivation on the quotient field Q^ in the only 
possible way (i.e. using the quotient rule), and if g is separable algebraic over QA again 
use X to denote the unique extension of this derivation to QA(#) (e.g. see [5, pp. 385-
386]). Finally, let (D* denote the dual of the Q,4(g)-vector space (D of F-derivations 
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of CMS) over F and define d : QA(g) — <D* by df(S) = S(f ) , / G QA(g), S G <D ([5, 

p. 387]). In this framework the role of non-constant functions is assumed by elements 

/ £ QA(g) for which the differential df does not vanish, and linear independence of 

/ i , . . . ,/* is replaced by the condition 0 ̂  d/i A . . . A dfk G A*(!D *), k = 2 , 3 , . . . . 

THEOREM (Bruns). Suppose there is a separable algebraic element g over QA sat­

isfying dg ^ 0 and X(g) = 0. 7Vie« there is a quotient (w/v) G Q,* of homogeneous 

elements u, v G A w/z/c/z A/SO satisfies d(u/v) ^ 0 owd X(U/V) = 0. Moreover, if 

/ i , . . . ,//i G 0,4 are swc/z r/zar dg Adfi A ... A dfn ït 0, then (w/v) CAW a/so /?£ chosen 

so as to satisfy d(u/v) Adf\ A ... Adfn^ 0. 

The proof requires two preliminary lemmas. For the first, observe that each p G A 

has a unique representation p = J2Pj (finite sum) in terms of homogeneous elements 

/7y G Ay. If r is transcendental over Q^, this allows us to define an F-algebra embedding 

a : A —» AM by sending /? = Y,Pj G A to <*(/?) = p{t) = X > / G A[f]. 

LEMMA 1. Assume the nonzero elements p, q £ A have no common prime factor. 

Then t is the only possible common prime factor in A[t] of a(p), a(q). 

PROOF. Assume a(p) = p(t) = r(t)u{t) and a(q) — q(t) = r(t)v(t) factor in A[t]. 

Then p = r(l)w(l) and u = r ( l )v( l ) imply r ( l ) G F since F = Ao contains all units. 

We will show that this implies r(t) = ctm for some 0 ̂  c G F and 0 ^ m G Z. 

Each /X0 G A|>] has a unique representation as a finite sum /?(r) = ]CiŒ/fy/)*7' 

with Zty G A/. Let À = X(b(t)) denote the maximum index / such that by ̂  0 for some 

y, and set bH(t) = £ \ frAy^. Note that if a = 52/= 0 ay- G A with <*„ ^ 0 and b(t) = a(d), 

then /?//(0 = ant
n. 

For /? = Yll=oPj w i m P« / 0 we have /^f" = rH{t)un(t), hence r # ( 0 = r\fm for 

À = A(r(0) and r\ G AA, 0 ^ m G Z. But no coefficient in r(t) can cancel r\ in r ( l ) . 

Since r ( l ) G F, this forces À = 0 and r(t) — rH(f) — r§tm which gives the result. • 

The second lemma is a fundamental result of elimination theory. For a proof, see 

[4, p. 57]. 

LEMMA 2. Let u(t) — YTj=oujtJ an^ VW = E / = o v / ^ ^ Q^ M *wY/i w / 0 ^ v arcd 
W/2, vm ̂ or fro^/z zero. 77Z£AZ u and v have a common none onstant factor in QAU] if and 
only if there are nonzero polynomials ru(t) and rv(t) in QAU] with deg(rM(r)) < n and 
deg(rv(0) < m such that 

u(t)rv(t) = v(t)ru(t). 

PROOF OF BRUNS' THEOREM, (a) There is an irreducible monic polynomial P(t) — 

TOLogi? € QAU] such that P(g) = 0. Writing df for df A . . . A dfn, we have the 

identity 
m—\ 

0 = d(P(g)df ) - ] T gldgl Adf + P'(g)dg A df. 
i=0 

Since Pf(g)dg A df ^ 0 as dtg(P(t)) is minimal, this forces dgi A df ^ 0 for at least 
one / (in particular, dgi ^ 0). 
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Since X is a derivation and X(g) — 0, we also have 

m-\ 

0 = X(P(g)) = Y/*(8i)8ii 
7=0 

hence X(gj) — 0 for all /. In summary: the hypotheses imply that we can find g, G QA 
such that X(gt) = 0 and dgt A df ^ 0. 

(b) Write g/ = (p/q) where p — YlPj an (l Q — Yl^k € A have no common prime 
factor. Since 

0 ^ dgf- A4f = d(p/q)Adf = q-2(Eqk^dPj - T,PjT,àqk) Adf, 

and since (#£<% — pjdqk) Adf = 0 if d(pj/qk)Adf — 0, we conclude that d(pj/qk) A 
df ^ 0 for at least one quotient (Pj/qk). In particular, d(pj/qk) ^ 0. 

(c) To finish, we show that X(pj/qk) — 0 for all (Pj/qk) with ^ ^ 0. 
By Lemma 1 we can write a(p)/a(q) as u(t)/v{t), where u{t), v{t) G A[t] have no 

common prime factor and 

(1) tmu{t) = a(p) = £ > / , tmv(t) = a(q) = ^qkt
k 

for some 0 = WÎ G Z. If we set X(r) = 0, then from 

X(Aj) CAj+t,e ^ 0 fixed, 

we see that 

(2) a o X = r£ • (X o a) 

on A[r]. From qX{p) — pX{q) and the fact that a : A —-> A[?] is a homomorphism we 
obtain 

(3) v(t)-X(u(t)) = u(t)-X(v(t)). 

If X(M(0)-X(V(0) = 0, then X(w(f)) = 0 = X(v(f)) by (3), hence X(Pj) = 0 = X(qk) 
by (1), and we are done. Thus we assume X(u(t)) -X(v(t)) ^ 0, hence deg(X(w(f))) = 
deg(w(0) for w = u, v, by (3) and Lemma 2. Then 

(4) X(w(t)) = Xw • w(t) + rw(r), w = w, v, 

where 0 ^ Aw, G QA, and rM,(f) G Q A M with deg(rH,(0) < deg(w(0). Substituting into 
(3) and rearranging gives 

(5) (AM - Xv)u(t)v(t) = ru(t)v(t) - rv(f)u(f), 
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whereupon comparison of highest order terms in t yields \u — A = Av. This reduces 
(5) to ru{t)v{t) = rv(t)u(t), and Lemma 2 then shows that ru(t) = 0 = rv{t). But then 
(4) and (1) imply X(pj) = Xpj and X(qk) = Xqk, and the result follows. • 

2. An Application to Hamiltonian Systems. Let H be a weighted homogeneous 
polynomial Hamiltonian on R2", such as in the example of the previous section, and 
let XH be the associated vector field. Let He and XQ — XH,C be the associated analytic 
extensions to C2n. 

THEOREM 2. I/XQ has no meromorphic integral independent of HQ, then XH has 
no algebraic integral independent of H. 

PROOF. Otherwise Bruns' Theorem guarantees a real rational integral for XH which 
is independent of//, whereupon analytically extending numerator and denominator to 
C2n gives a meromorphic integral for XQ which is independent of //c- • 

For a specific example in two degrees of freedom consider the n-saddle Hamiltonian 

(2.1) H = (l/2)0>2+jf) + (l/«)Real(jq +ix2)
n,n ^ 3. 

Ziglin's methods have been applied to the analytic extension of (2.1) to C4 to show 
that the resulting system has no meromorphic integrals independent of HQ [2]; hence 
by Theorem 2 the real system (2.1) can have no algebraic integrals independent of//. 

In fact for odd n ^ 3 one can embed a Smale horseshoe mapping into the flow of 
(2.1), and as a result conclude that the system must be chaotic as well as nonintegrable 
[1]. Corresponding results for n even are not known. 

Using results of Ziglin [11], Theorem 2 can also be applied to the two-degree of 
freedom system on R4 with Hamiltonian H — (l/2)(y2 + y\) + 0/2)jt2Jtf. This is the 
Yang-Mills system describing a homogeneous two-component field with gauge group 
SU(2). 
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