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Abstract

In this paper we present computer-assisted proofs of a number of results in theoretical fluid
dynamics and in quantum mechanics. An algorithm based on interval arithmetic yields provably
correct eigenvalue enclosures and exclosures for non-self-adjoint boundary eigenvalue problems,
the eigenvalues of which are highly sensitive to perturbations. We apply the algorithm to: the
Orr–Sommerfeld equation with Poiseuille profile to prove the existence of an eigenvalue in the
classically unstable region for Reynolds number R= 5772.221818; the Orr–Sommerfeld equation
with Couette profile to prove upper bounds for the imaginary parts of all eigenvalues for fixed R
and wave number α; the problem of natural oscillations of an incompressible inviscid fluid in the
neighbourhood of an elliptical flow to obtain information about the unstable part of the spectrum
off the imaginary axis; Squire’s problem from hydrodynamics; and resonances of one-dimensional
Schrödinger operators.

1. Introduction

The behaviour and stability of many physical systems are connected with the spectral properties
of non-self-adjoint operators. However, numerical approximations of eigenvalues of non-self-
adjoint operators (even matrices) may fail dramatically. For example, the non-normal 7× 7
matrix 

289 2054 326 128 70 32 6
1152 30 1312 512 288 128 32
−29 −1990 766 384 1018 224 58
512 128 640 0 640 512 128

1053 2246 −514 −384 −766 800 198
−287 −6 1722 −128 1978 −30 −2042
−2176 −285 −1563 −512 −539 −1152 −287


,

going back to Godunov (see [7]), has the eigenvalues

0, 1, 1, ±2, ±4,

which are all real. However, no matter what software is used, numerical computations yield a
set of complex eigenvalues, such as

8.57± 3.73 i, 2.29± 8.33 i, −5.43± 6.56 i, −8.85

with imaginary parts as large as 8.33, which are nowhere near the true eigenvalues (see [10,
p. 547] and a similar example in [26, p. 489]). The reason for this is that owing to the non-
normality of the matrix, its eigenvalues are highly sensitive to perturbations, and therefore
unavoidable rounding errors render the numerical eigenvalue computations unreliable.

This example shows that there is a need for computer-assisted proofs if we want to be sure
that a numerically computed eigenvalue of a non-self-adjoint operator is indeed close to a
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true eigenvalue. It is the aim of this paper to develop such proofs by means of a combination
of interval arithmetic calculations and analytic methods such as the argument principle for
counting eigenvalues in boxes.

In [1], computer-assisted proofs of this kind were established for singular second-order Sturm–
Liouville problems with complex potentials. In the present paper we develop an approach that
allows us to treat a greater variety of non-self-adjoint eigenvalue problems. They include fourth-
order problems such as the Orr–Sommerfeld equation (with Poiseuille or Couette profile), a
parameterised family of systems of first-order ordinary differential equations arising in the study
of elliptical vortices in hydrodynamics after separation of variables, and further second-order
problems such as Squire’s equation and resonances of one-dimensional Schrödinger operators.

Briefly, our method for obtaining provably correct eigenvalue enclosures and exclosures
consists of several steps. First, eigenvalues are localised numerically by a floating point
approximation. For eigenvalue enclosures, an algorithm based on interval arithmetic and the
argument principle is then used to prove that a small box around the approximate eigenvalue
contains exactly one true eigenvalue of the given problem. For eigenvalue exclosures, additional
analytical information about the location of the spectrum is required that allows us to reduce
the eigenvalue exclosure to a compact subset of the complex plane.

We apply the method developed to three problems from hydrodynamics and to resonance
problems in quantum mechanics. For the Orr–Sommerfeld equation with Poiseuille profile,
which has been conjectured to be unstable for sufficiently large Reynolds numbers since the
PhD thesis of Heisenberg from 1922 (see [9]), we enclose an eigenvalue in the classically unstable
half-plane for Reynolds number R= 5772.221818 (Subsection 3.1). In addition, we prove that
for selected R and wave numbers α, all eigenvalues lie in the classically stable half-plane
=(λ)< 0. For the Orr–Sommerfeld equation with Couette profile, which has been known to be
classically stable since the work of Romanov in 1971 (see [21]), we establish an explicit negative
upper bound for the imaginary parts of the eigenvalues for selected R and wave numbers α
(Subsection 3.2). Here and throughout this paper, classical stability means that there are no
eigenvalues giving rise to exponential growth of perturbations. Of course, it is important to
observe that in situations such as the Orr–Sommerfeld problem where the underlying operators
are highly non-normal, other mechanisms such as large transient growth mean that, in the
laboratory, instability is already observed at Reynolds numbers which are much lower than
the classical stability limit; see [27]. In particular, the classically stable Couette flow is observed
to be unstable at sufficiently high Reynolds numbers.

In Section 4, we consider the problem of natural oscillations of an incompressible inviscid
fluid in the neighbourhood of an elliptical flow, which arises in the stability theory of elliptical
vortices. Although the spectrum is continuous here, separation of variables permits us to
describe it as the union of the point spectra of a parameterised family of eigenvalue problems
to which our algorithm applies. Analytically, it is known that if the flow is circular, then the
spectrum lies on the imaginary axis; in the non-circular case, however, the spectrum consists
of the imaginary axis plus infinitely many segments parallel to the real axis that intersect the
imaginary axis at all integers and maybe also at half-integers (see [3, 15]), and thus the flow is
certainly unstable. The width of these segments, which depends on the ellipticity parameter,
is not known analytically. By means of our interval arithmetic-based method, we establish
explicit upper bounds for this width and hence upper and lower bounds for the real part of
the spectrum.

Finally, in Section 5, we apply our method to two second-order problems: Squire’s problem
from hydrodynamics and the resonance problem for one-dimensional Schrödinger operators.
These examples illustrate that the algorithm developed in the present paper is not only more
widely applicable but also performs better than the one established in [1].

Before proceeding, there are two issues on which we wish to comment.
Firstly, the case for validated numerical computations and computer-assisted proofs is still

a matter of some controversy in the scientific computing community. We do not claim in this
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article that validated computations are needed in every situation: however, we draw the reader’s
attention to the figures in [4, p. 417], which show that a very carefully designed numerical
method may give misleading results simply because of the limitations of computer arithmetic,
even in double precision.

Secondly, we emphasise that the approach which we have taken here, based on shooting for
ODEs, is not the only one possible. Plum et al. [12, 13, 28] have developed very effective
approaches based on variational methods and fixed-point theorems. The advantage of our
approach is that it is possible to establish eigenvalue exclosures: regions of the complex
plane guaranteed to contain no eigenvalues. It is also possible to count eigenvalues in a large
region without actually finding them, and multiple eigenvalues need not pose a problem. The
advantage of the approach of Plum et al. is that it generalises to PDEs.

2. Outline of the algorithm

In this section we describe an algorithm for obtaining guaranteed eigenvalue enclosures and
exclosures as well as eigenvalue counts in rectangles of the complex plane. This algorithm
combines an interval arithmetic-based code for solving ordinary differential equations with the
argument principle for counting zeros of analytic functions.

We study boundary eigenvalue problems for ordinary differential equations with separated
boundary conditions on a compact interval [t0, t1]⊂ R. First, we find solutions of the
corresponding first-order system with several linearly independent initial values at t0 that
all satisfy the given boundary conditions in t0. A point λ ∈ C is an eigenvalue if there exists a
non-trivial linear combination of these solutions satisfying the boundary conditions in t1. For
the numerical implementation, all these different initial value problems are put together in one
equivalent bigger system,

y′ = f(y, λ), y(t0, λ) = y0 (2.1)

of size n, say. The solution y(·, λ) is a Cn-valued function on [t0, t1] that depends analytically
on the eigenvalue parameter λ. The problem of matching the original boundary conditions
in t1, and hence the eigenvalue problem, can now be formulated as a scalar (determinant-like)
equation of the form

g(λ) := h(y(t1, λ)) = 0 (2.2)

with a function h: Cn→ C. Results for the original boundary eigenvalue problem with
guaranteed error bounds are obtained by:

(i) solving the initial value problem (2.1) with an interval arithmetic-based code;
(ii) localising the zeros of the scalar analytic function g in (2.2) with an interval-valued

version of the argument principle.
For (i) we employ the interval arithmetic-based software library VNODE developed by

Nedialkov, Jackson and Pryce (see [18]). In interval arithmetic, all operations are performed
with complex intervals [z] = [x] + [y]i where [x], [y]⊂ R are closed intervals or singletons.
The code VNODE applies to systems (2.1) where the eigenvalue parameter λ is replaced
by a complex interval [λ] and the initial value y0 by a complex interval-valued vector
[y0] = [y0,1]× . . .× [y0,n], and where f is a composition of elementary functions implemented
in interval arithmetic. For every t ∈ [t0, t1], the code calculates an interval vector [y(t, [λ])]
such that for every solution y of (2.1) with y0 ∈ [y0] and λ ∈ [λ], the guaranteed enclosure
y(t, λ) ∈ [y(t, [λ])] holds.

For (ii) we use the enclosure for t= t1 from (i) to obtain guaranteed enclosures for g([λ])
for given complex intervals [λ]. The following version of the argument principle allows us to
determine the number of zeros of the analytic function g in a given rectangle; see [1, Lemma 3.5].
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Lemma 2.1. Let R⊂ C be a closed rectangle with sides parallel to the axes, let (µj)Nj=0 be
a sequence of points on the boundary ∂R including the corners of R, ordered counter-clockwise
with µN = µ0, and let g be an analytic function defined on a neighbourhood of R such that
g(µj) 6= 0 for j = 0, 1, . . . , N − 1. If

<
(
g([`j,j+1])
g(µj)

)
> 0 for j = 0, 1, . . . , N − 1, (2.3)

where [`j,j+1] denotes the line segment from µj to µj+1, then the number of zeros of g in the
interior of R equals

1
2π

N−1∑
j=0

Arg
(
g(µj+1)
g(µj)

)
, (2.4)

and g has no zeros on the boundary ∂R; here Arg z denotes the principal argument of z, that
is, the argument of z such that −π <Arg z 6 π for z 6= 0.

Sketch of the algorithm. The algorithm consists of the following four steps.
Step 1. Choose a rectangle R and a sequence of points (µj)Nj=0 on ∂R as in Lemma 2.1.
Step 2. For j = 0, 1, . . . , N − 1, calculate an enclosure for the quotient g([`j,j+1])/g(µj) in

(2.3) using the code VNODE, as outlined in (i).
Step 3. If this enclosure is contained in the open right half-plane, proceed to Step 4; otherwise,

go back to Step 1 and make a new choice of R and/or (µj)Nj=0.
Step 4. Calculate enclosures for (2.4) again using (i); if an enclosure contains exactly one

integer, say k, then the original eigenvalue problem has exactly k eigenvalues in the
interior of R and none on the boundary ∂R.

The algorithm yields an eigenvalue count for the rectangle R; in particular, if k = 0, we obtain
an eigenvalue exclosure. In order to enclose a single eigenvalue to a certain accuracy, we
subdivide the rectangle R into smaller rectangles and rerun the algorithm.

In practice, difficulties may arise if the eigenvalue is close to the boundary of the box R, as
it may then become extremely difficult to compute sets containing g([`j,j+1])/g(µj) that are in
the right half-plane; see [1, Remark 3.6] for suggestions on how to overcome these problems.

Notation. Throughout this paper, we use an abbreviation for real intervals: for example,
0.237841

13 denotes the interval [0.237813, 0.237841].

3. Eigenvalue enclosures and exclosures for the Orr–Sommerfeld equation

In this section we present a method for reliably enclosing the eigenvalues of the Orr–Sommerfeld
operator pencil, which arises in a linear stability analysis of flow of an incompressible viscous
fluid between two infinite parallel planes. The problem consists of the equation

((−D2+ α2)2 + iαR (V (−D2+ α2) + V ′′)) y = iαRc (−D2+ α2) y (3.1)

on the interval [−1, 1], with boundary conditions

y(±1) = y′(±1) = 0. (3.2)

Here D := d/dx stands for the derivative, α ∈ R is a wave number, R > 0 is the Reynolds
number, V is a real-valued function representing the undisturbed stream velocity, and the
wave speed c is the spectral parameter (see [5, Section 3.2; 16, Section 25]).

The Orr–Sommerfeld equation (3.1) arises from linearisation of the Navier–Stokes equations
if two-dimensional perturbations (v, 0, w) of the velocity profile (0, 0, V ) are considered.
Because of the divergence-free condition, the functions v and w can be written as v = ∂ψ/∂z
and w =−∂ψ/∂x where ψ is the so-called stream function, which is then factorised as

ψ(x, z, t) = y(x) eiα(z−ct).
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The case where =(c)< 0 corresponds to classical linear stability, while =(c)> 0 corresponds
to classical linear instability of the perturbation (see [16, 22]). In the classical linear theory,
information is sought about the so-called neutral stability curve in the (R, α)-plane, which
separates domains where the basic motion is linearly stable (that is, =(c)< 0 for all eigenvalues
c) from those where it is linearly unstable (that is, =(c)> 0 for at least one eigenvalue c); see
[16, Section 3.2].

In the following, we consider the two standard flow profiles: plane Poiseuille flow where
V (x) = 1− x2 (see Subsection 3.1) and plane Couette flow where V (x) = x (see Subsection 3.2).

First of all, we transform the fourth-order boundary eigenvalue problem (3.1)–(3.2) to a
first-order system. To this end, we substitute

u1 := y, u2 := y′, u3 := (D2 − α2)y, u4 := (D2 − α2)
y′√
R
.

Then (3.1) is equivalent to the first-order system


u1

u2

u3

u4


′

=


0 1 0 0
α2 0 1 0
0 0 0

√
R

−iα
√
RV ′′ 0

α2 + iαR(V − c)√
R

0



u1

u2

u3

u4

. (3.3)

Let

u±(·, c) :=


u±11 u±12

u±21 u±22

u±31 u±32

u±41 u±42

 (·, c)

be solution matrices of (3.3) such that

u−(−1, c) =


0 0
0 0
1 0
0 1

, u+(1, c) =


0 0
0 0
1 0
0 1

.
The following lemma is easy to prove.

Lemma 3.1. Let ξ ∈ [−1, 1] be fixed. The complex number c is an eigenvalue of the
Orr–Sommerfeld equation if and only if

fξ(c) := det
(
u−(ξ, c) u+(ξ, c)

)
= 0.

Unsurprisingly, it turns out that solving (3.3) directly is a bad idea: it is neither fast to solve
nor does it permit large Reynolds numbers R.

Instead, we shall use the compound matrix method (see, for example, [8, Section 2.1] and
the references given there). Let the functions z±j (·, c), j = 1, . . . , 6, be defined by

z±1 (·, c) := det

(
u±11 u±12

u±21 u±22

)
(·, c), z±2 (·, c) := det

(
u±11 u±12

u±31 u±32

)
(·, c),
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z±3 (·, c) := det

(
u±11 u±12

u±41 u±42

)
(·, c), z±4 (·, c) := det

(
u±21 u±22

u±31 u±32

)
(·, c),

z±5 (·, c) := det

(
u±21 u±22

u±41 u±42

)
(·, c), z±6 (·, c) := det

(
u±31 u±32

u±41 u±42

)
(·, c).

These functions satisfy the differential equations

z′1(·, c) = z2(·, c),

z′2(·, c) =
√
R z3(·, c) + z4(·, c),

z′3(·, c) =
α2 + iαR(V − c)√

R
z2(·, c) + z5(·, c),

z′4(·, c) = α2z2(·, c) +
√
R z5(·, c),

z′5(·, c) = iα
√
R V ′′z1(·, c) + α2z3(·, c) +

α2 + iαR(V − c)√
R

z4(·, c) + z6(·, c),

z′6(·, c) = iα
√
R V ′′z2(·, c)

and the initial conditions

z±1 (±1, c) = z±2 (±1, c) = z±3 (±1, c) = z±4 (±1, c) = z±5 (±1, c) = 0, z±6 (±1, c) = 1.

Using Laplace expansion, we obtain

fξ(c) = (z−1 z
+
6 − z

−
2 z

+
5 + z−3 z

+
4 + z−4 z

+
3 − z

−
5 z

+
2 + z−6 z

+
1 )(ξ, c).

According to Lemma 3.1, we have to find the zeros of fξ. To this end, for fixed ξ, we apply the
argument principle described in Lemma 2.1 to the function fξ.

Remark 3.2. Note that for a symmetric potential such that V (x) = V (−x) for x ∈ [−1, 1],
it is sufficient to calculate, for instance, z−j (0, c) for j = 1, . . . , 6. In this case, f0 simplifies to

f0(c) = (z−1 z
−
6 + z−2 z

−
5 + z−3 z

−
4 + z−4 z

−
3 + z−5 z

−
2 + z−6 z

−
1 )(0, c).

3.1. Plane Poiseuille flow

In this subsection we consider the case in which the two planes are stationary. For this so-called
Poiseuille flow, the unperturbed flow moves more slowly near the bounding planes and faster in
the centre of the channel between the planes; here the unperturbed velocity profile V is of the
form V (x) = 1− x2, x ∈ [−1, 1]. In this case, the neutral stability curve in the (R, α)-plane is
also known as Heisenberg’s tongue (see [6, p. 35, Figure 1.1.2]); the critical Reynolds number is
the R-coordinate of the leftmost point of this curve. So far, only numerical calculations for this
critical value have been available, which indicate that plane Poiseuille flow becomes unstable
at Reynolds numbers R close to 5772.22; see, for example, [20, p. 697; 24].

Asymptotic and numerical calculations of the critical Reynolds number for Poiseuille flow
have a long history: see [17] for a discussion of the early numerical experiments, [25] for
one of the earliest calculations by shooting, and [20] for a calculation which was the first to
claim accuracy to two decimal places, reporting that the critical Reynolds number is near
R= 5772.22 and that the first unstable eigenvalue appears for 1.02055 6 α 6 1.02057. More
recent calculations include those of Ng and Reid [19], using shooting with compound matrices,
and of Dongarra, Straughan and Walker [4], who used a high precision Chebychev tau-algorithm
coupled with quadruple precision arithmetic. For a review see the books [23] by Schmid and
Henningson or [26] by Trefethen and Embree, and references therein.

To show the classical instability of plane Poiseuille flow for a certain Reynolds number R,
we have to find at least one α and a corresponding eigenvalue enclosure lying completely in
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the open upper half-plane. To show that the basic motion with Poiseuille profile is classically
stable for certain values of R and α, we have to guarantee that all eigenvalues of (3.1)–(3.2)
lie in the open lower half-plane; to this end, we use the following global analytic enclosure for
the Poiseuille eigenvalues; see [14, Corollary 5.4].

Proposition 3.3. Let V (x) = 1− x2 for x ∈ [−1, 1]. Then every eigenvalue c ∈ C of
(3.1)–(3.2) satisfies the estimates

=(c)<
1
α

(
1− α2

R

)
6

1
α
, − 1

α2
6 <(c) 6 1.

As a consequence, if for a pair (R, α) there is no eigenvalue c in the rectangle[
− 1
α2
, 1
]

+
[
0,

1
α

]
i,

then there is no eigenvalue in the closed upper half-plane and hence the basic motion with
Poiseuille profile is classically stable for this pair (R, α).

3.1.1. Enclosure of the critical Reynolds number for fixed α. As already mentioned, Orszag
[20] reported a critical Reynolds number near R= 5772.22, with the first unstable eigenvalue
appearing for 1.02055 6 α 6 1.02057.

Starting from pairs (R, α) with α in the range [1.02055, 1.02057], our algorithm gave the
guaranteed results shown in Table 1.

It follows that the neutral stability curve in the (R, α)-plane passes between the two points

(5772.221817, 1.020551) and (5772.221818, 1.020551),

that for R= 5772.221818 an eigenvalue c in the unstable half-plane exists which has

0< =(c)< 2 · 10−12,

and hence that the critical Reynolds number Rc satisfies the guaranteed upper estimate

Rc 6 5772.221818.

Thus we have proved the first guaranteed enclosure for an unstable eigenvalue for a Reynolds
number close to the suggested critical value 5772.22.

Remark 3.4. Simultaneously, but using a different method, Watanabe, Plum and Nakao
obtained a guaranteed enclosure for an unstable eigenvalue for the larger Reynolds number
R= 5775 and α= 1.02; see [28]. The imaginary part of this eigenvalue satisfies 1.06103 · 10−6 6
=(c) 6 8.0112 · 10−6 and is thus larger than the unstable eigenvalue that we obtained by a factor
of at least 106.

3.1.2. Provably classically stable pairs (R, α). Using Proposition 3.3, we were able to prove
that in addition to the pair (5772.221817, 1.020551) from §3.1.1, for the (R, α) pairs in Table 2
there are also no eigenvalues in the closed upper half-plane.

Table 1. Enclosures for Poiseuille eigenvalues c with =(c)> 0.

R α [c]

5772.221817 1.020551 No eigenvalue with =(c)> 0

5772.221818 1.020551 0.264000674835
3 + 0.000000000002

0 i
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Figure 1. Poiseuille eigenvalues for R= 10 000 and α= 1.

3.1.3. Eigenvalue enclosures for fixed (R, α). For the values R= 10 000 and α= 1, we
calculated guaranteed enclosures for several eigenvalues that had been found numerically by
Orszag; see [20, Table 5]. These eigenvalues were confirmed numerically, and one additional
eigenvalue was found, by Dongarra, Straughan and Walker in [4, Section 3]. Here we select some
of these numerical values and give the first proof that they do approximate true eigenvalues.
The corresponding eigenvalue enclosures are listed in Table 3, in descending order of imaginary
part, according to the enumeration of [20, Table 5]; the additional eigenvalue found in [4, (3.2)]
is denoted by 17′ (see also Figure 1).

In addition, we have been able to show that there are no eigenvalues in the rectangle
[−1, 0] + [−1, 1]i in the left half-plane and that there are exactly three eigenvalues in the
rectangle [0, 1] + [−0.04, 1]i in the right half-plane. Hence, apart from eigenvalue no. 1 in
Table 3, there must be two other eigenvalues in [0, 1] + [−0.04, 1]i.

Table 2. Parameter pairs (R, α) for which plane Poiseuille flow is classically stable.

R α

1000 1.0
2000 1.0
3000 1.0
4000 1.0
5000 1.0
6000 0.5
6000 2.0
7000 0.5
7000 2.0

Table 3. Enclosures for Poiseuille eigenvalues for R= 10 000 and α= 1.

c in [20] (and [4]) Guaranteed enclosure for c

1 0.23752649 + 0.00373967 i 0.23752648884
76 + 0.00373967071

60 i

4 0.27720434− 0.05089873 i 0.27720434383
74 − 0.05089872727

18 i

11 0.34910682− 0.12450198 i 0.349106820141
09 − 0.124501977576

29 i

12 0.41635102− 0.13822652 i 0.41635101561
54 − 0.13822652533

27 i

17 0.1900592− 0.1828219 i 0.19005924942
31 − 0.18282192549

39 i

17′ 0.21272578− 0.19936069 i 0.21272578251
18 − 0.1993606951

46 i

https://doi.org/10.1112/S1461157008000466 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157008000466


EIGENVALUE ENCLOSURES AND EXCLOSURES 73

Remark 3.5. The numerical calculations for eigenvalues no. 2 and no. 3 in [20] suggest
that these two eigenvalues are very close (with the distance between them on the order of
2.2 · 10−5). Although we were able to find two rectangles around these numerical values such
that the enclosure for the expression in (2.4) contains 1 as the only integer, we could not verify
condition (2.3) in reasonable time. In Table 4 the corresponding non-rigorous enclosures are
marked by [!].

3.2. Plane Couette flow

In this subsection we study the case in which the two planes move in opposite directions. For
this so-called Couette flow, the unperturbed flow is completely stationary in the middle of the
channel between the two planes and the unperturbed velocity profile V has the form V (x) = x,
x ∈ [−1, 1]. It is known that Couette flow is classically stable at all Reynolds numbers. However,
Romanov [21] only proved that there exists a constant d > 0 such that for each eigenvalue c
the estimate =(c) 6−d/R holds; no explicit upper bounds for the imaginary parts of the
eigenvalues seem to be known at present.

It is the aim of this section to establish such explicit upper bounds using provably correct
eigenvalue exclosures. Since only bounded regions can be covered by such a technique, we first
employ a result which yields a global explicit bound for the real parts of all eigenvalues of the
Orr–Sommerfeld equation with Couette profile.

Proposition 3.6. Let V (x) = x for x ∈ [−1, 1]. Then every eigenvalue c ∈ C of (3.1)–(3.2)
satisfies the estimates

=(c)< 0, −1 6 <(c) 6 1.

Proof. The estimate for the imaginary part was proved in [21]; more exactly, it is shown
there that there is a constant d > 0 such that =(c) 6−d/R. The estimate for the real part
follows from [14, Corollary 5.4]; see also [11].

3.2.1. Guaranteed upper bounds for the imaginary parts of all eigenvalues for selected pairs
(R, α). By Proposition 3.6, if for some ν > 0 the rectangle

[−1, 1] + [−ν, 0]i

contains no eigenvalue, then =(c) 6−ν for all Couette eigenvalues c. Corresponding guaranteed
upper bounds are listed in Table 5 for various (R, α) pairs; their dependence on the Reynolds
number is displayed in Figure 2 (the lines therein connect upper bounds belonging to the same
value of α).

3.2.2. Eigenvalue enclosures for fixed (R, α). For R= 13 000 and α= 1, we calculated
guaranteed enclosures for three eigenvalue pairs that were found numerically by Dongarra,

Table 4. Non-rigorous enclosures for Poiseuille eigenvalues for R= 10 000 and α= 1.

c in [20] Non-rigorous enclosure for c

2 0.96463092− 0.03516728 i 0.96463091563
31 − 0.03516727782

49 i
[!]

3 0.96464251− 0.03518658 i 0.964642511
09 − 0.0351865840

36 i
[!]
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α =0.1

α =1
α =2

α =0.5

R0  200  400  600  800  1000

 

–1
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–0.4

–0.2

0

Figure 2. Guaranteed upper bounds for the imaginary parts of Couette eigenvalues for
α= 0.1, 0.5, 1 and 2.

Straughan and Walker; see [4, Table 4]. Additionally, we were able to guarantee that apart
from the first pair in Table 6, there is no other eigenvalue with imaginary part greater than
−0.08.

4. Elliptical vortices in hydrodynamics

The linear stability analysis of natural oscillations of an incompressible inviscid fluid in the
neighbourhood of an elliptical flow leads to a spectral problem Aδf = λf for a linear operator
Aδ of the form

Aδ =


∂

∂ψ
0

0
∂

∂ψ

+ 2N(ρ, ψ) (4.1)

Table 5. Guaranteed upper bounds for the imaginary parts of Couette eigenvalues.

R α= 0.1 α= 0.5 α= 1 α= 2

100 −0.9742 −0.2429 −0.2904 −0.2527
200 −0.4781 −0.2731 −0.2192 −0.1901
300 −0.3209 −0.2270 −0.1875 −0.1612
400 −0.2545 −0.2054 −0.1680 −0.1436
500 −0.2288 −0.1892 −0.1543 −0.1313
600 −0.2290 −0.1769 −0.1441 −0.1222
700 −0.2577 −0.1672 −0.1360 −0.1150
800 −0.3164 −0.1593 −0.1294 −0.1091
900 −0.2876 −0.1526 −0.1239 −0.1042
1000 −0.2670 −0.1468 −0.1191 −0.1000

Table 6. Guaranteed enclosures for Couette eigenvalues for R= 13 000 and α= 1.

c in [4] Guaranteed enclosure of c

±0.8267152337− 0.04751548439 i ±0.8276152336594
62 − 0.047515484391

87 i

±0.7318167785− 0.1091860424 i ±0.7318167784636
20 − 0.1091860423846

30 i

±0.8694486153− 0.1279149536 i ±0.869448615321991
720 − 0.127914953560451

190 i
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(see [15]) in the product (L2((0,∞)×(0, 2π), ρ dρ dψ))2 of weighted L2-spaces, with

N(ρ, ψ) =


0 − 1− δ2

ρ2(1− δ cos(2ψ)) + 1− δ2

1
δρ2 sin(2ψ)

ρ2(1− δ cos(2ψ)) + 1− δ2

, ρ ∈ [0,∞), ψ ∈ [0, 2π],

N(∞, ψ) =

 0 0

1
δ sin(2ψ)

1− δ cos(2ψ)

, ψ ∈ [0, 2π]

and boundary conditions

f(ρ, 0) = f(ρ, 2π) for every ρ ∈ [0,∞]. (4.2)

Here ρ ∈ [0,∞] and ψ ∈ [0, 2π) are polar coordinates, and the ellipticity parameter δ ∈ [0, 1)
characterises the geometry of the flow. For the special case of δ = 0, the flow becomes circular;
in the limiting case δ = 1, it would become a linear shear flow. In this simple analysis, the flow
is regarded as stable if there is no spectrum in the open right half-plane.

Based on the fact that the operator Aδ contains only derivatives with respect to one variable,
it was shown in [3] that

σ(Aδ) =
⋃

ρ∈[0,∞]

σ(Aδ(ρ)) =
⋃

ρ∈[0,∞]

σp(Aδ(ρ)),

where the linear operator

Aδ(ρ) =


d

dψ
0

0
d

dψ

+ 2N(ρ, · ), ρ ∈ [0,∞], (4.3)

acts in the space (L2(0, 2π))2 with ρ-independent domain

D :=D(Aδ(ρ)) = {f(ρ) ∈ (H1(0, 2π))2 : f(ρ)(0) = f(ρ)(2π)}.

Using the above description of the spectrum of Aδ, the following analytic theorem about the
structure and location of σ(Aδ) was proved in [3, Theorem 3.1].

Theorem 4.1. The operator Aδ has no eigenvalues and there are constants aδ > 0, bδ > 0
and cδ ∈ [0, 1

2 ] such that

σ(Aδ) =
⋃
k∈Z

(ik + [−aδ, aδ]) ∪ (i(k + 1
2 ) + [−bδ, bδ]) ∪ (i[k − cδ, k + cδ]). (4.4)

If bδ > 0, then cδ = 1
2 .

For a circular flow where δ = 0, it can be shown analytically that σ(Aδ) = iR (that is,
a0 = b0 = 0 and c0 = 1

2 in Theorem 4.1). For δ > 0, numerical results in [3] and [15] have
suggested that in Theorem 4.1, the width bδ of the segments intersecting the imaginary axis
at half-integers is zero and that the width aδ of the segments intersecting the imaginary axis
at integers is strictly increasing with δ; in particular, this would mean that the flow is always
unstable as soon as δ > 0.

In the following, we want to find provably correct enclosures of the constants occurring in
Theorem 4.1; that is, we shall determine real intervals [aδ], [bδ] and [cδ] such that we have the
inclusions

aδ ∈ [aδ], bδ ∈ [bδ], cδ ∈ [cδ].
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In [3] it was shown that the eigenvalues of Aδ(ρ) can be characterised as follows: let
Yδ,ρ: [0, 1]→M2(R) be the fundamental solution matrix of the system

y′1 =
2π(1− δ2)

ρ2(1− δ cos(4πψ)) + 1− δ2
y2,

y′2 =−2π
(

2y1 +
δρ2 sin(4πψ)

ρ2(1− δ cos(4πψ)) + 1− δ2
y2

) (4.5)

on [0, 1] such that Yδ,ρ(0) is the identity matrix, and let βδ(ρ) := trace(Yδ,ρ(1)). (Note that the
original equation from [3] on [0, 2π] has been transformed to one on the interval [0, 1]. This
had to be done because VNODE does not allow interval-valued boundaries.) Then λ ∈ C is an
eigenvalue of the operator Aδ(ρ) if and only if

e−4λπ − βδ(ρ) e−2λπ + 1 = 0.

There are three cases for the value of βδ(ρ) that are of interest in regard to the location of the
eigenvalues of Aδ(ρ).

(1) If 2 6 βδ(ρ), then λ is an eigenvalue of Aδ(ρ) if and only if

<(λ) =±(2π)−1 log
βδ(ρ) +

√
βδ(ρ)2 − 4
2

, =(λ) ∈ Z.

(2) If −2< βδ(ρ)< 2, then λ is an eigenvalue of Aδ(ρ) if and only if

<(λ) = 0, =(λ) ∈



Z± (2π)−1 arctan

√
4− βδ(ρ)2

βδ(ρ)
, βδ(ρ)> 0,

±1
4

+ Z, βδ(ρ) = 0,

1
2

+ Z± (2π)−1 arctan

√
4− βδ(ρ)2

βδ(ρ)
, βδ(ρ)< 0.

(3) If βδ(ρ) 6−2, then λ is an eigenvalue of Aδ(ρ) if and only if

<(λ) =±(2π)−1 log
−βδ(ρ)−

√
βδ(ρ)2 − 4

2
, =(λ) ∈ 1

2
+ Z.

Now let

β−δ := min{βδ(ρ) : ρ ∈ [0,∞]}, β+
δ := max{βδ(ρ) : ρ ∈ [0,∞]}.

We already know from [3] that β+
δ > 2 and β−δ < 2. Moreover, it is clear that

aδ = (2π)−1 log
β+
δ +

√
(β+
δ )2 − 4

2
,

bδ =


0, −2 6 β−δ ,

(2π)−1 log
−β−δ −

√
(β−δ )2 − 4

2
, β−δ <−2,
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cδ =



(2π)−1 arctan

√
4− βδ(ρ)2

βδ(ρ)
, 0< β−δ < 2,

1
4
, β−δ = 0,

1
2
− (2π)−1 arctan

√
4− βδ(ρ)2

βδ(ρ)
, −2< β−δ < 0,

1
2
, β−δ 6−2.

Thus, to determine the shape of σ(Aδ), it remains to calculate β±δ . Given closed bounded
intervals [δ]⊂ [0, 1) and [ρ]⊂ [0,∞), VNODE enables us to determine a closed bounded interval
[β[δ]([ρ])] such that the inclusion

βδ(ρ) ∈ [β[δ]([ρ])] for δ ∈ [δ], ρ ∈ [ρ]

holds. In particular, getting an appropriate estimate of

min{βδ(ρ): ρ ∈ [0, ρ0]} or max{βδ(ρ): ρ ∈ [0, ρ0]} for δ ∈ [δ],

for some ρ0 > 0, reduces to a problem of choosing [δ] small enough and dividing [0, ρ0] into a
sufficiently fine partition of sub-intervals [ρ]⊂ [0, ρ0].

The estimation of βδ on the remaining unbounded interval [ρ0,∞] can be done as follows:
observe that for ρ ∈ [ρ0,∞],

0 6
1− δ2

ρ2(1− δ cos(4πψ)) + 1− δ2
6

1 + δ

ρ2
0 + 1 + δ

;

thus
1− δ2

ρ2(1− δ cos(4πψ)) + 1− δ2
∈
[
0,

1 + δ

ρ2
0 + 1 + δ

]
=: Ẽδ(ρ0)⊂ R, (4.6)

and
δ sin(4πψ)

(1− δ cos(4πψ)) + (1− δ2)ρ−2
∈ δ sin(4πψ)

(1− δ cos(4πψ)) + (1− δ2)[0, ρ−2
0 ]

=: F̃δ(ρ0)⊂ R

for ρ ∈ [ρ0,∞]. Now, by using computed enclosures [E[δ](ρ0)] and [F[δ](ρ0)] such that

Ẽδ(ρ0)⊂ [E[δ](ρ0)] and F̃δ(ρ0)⊂ [F[δ](ρ0)] for δ ∈ [δ]

and solving the interval-valued differential equation

y′1 = 2π [E[δ](ρ0)]y2,
y′2 =−2π(2y1 + [F[δ](ρ0)]y2), (4.7)

we arrive at an enclosure [β∞[δ](ρ0)] such that

βδ(ρ) ∈ [β∞[δ](ρ0)] for δ ∈ [δ], ρ > ρ0.

Example 4.2. For [δ] = [0.2, 0.21] and ρ0 = 10, we obtain the estimate

βδ(ρ) ∈ [β∞[δ](ρ0)] = [−0.24615, 2.34774] for ρ > ρ0, δ ∈ [δ].

Moreover, estimating β±[δ]([ρ]) on the intervals ρ= [0, 0.01], [0.01, 0.02], . . . , [9.99, 10] we get
β−δ ∈ [−2.276,−1.760] and β+

δ ∈ [2.126, 3.001] for δ ∈ [δ]. Thus,

aδ ∈ [0.056, 0.154], bδ ∈ [0, 0.083], cδ ∈ [0.421, 0.5] for δ ∈ [0.2, 0.21].

The graph of the calculated enclosure of βδ on [0, 10] is shown in Figure 3.
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Figure 3. The dependence on ρ ∈ [0, 10] of an enclosure of βδ(ρ) for δ ∈ [δ] = [0.2, 0.21].

Figure 4. In each graph, the solid lines represent the enclosures [a[δ]], [b[δ]] and [c[δ]], and the dots
represent lower and upper endpoints of [aδ], [bδ] and [cδ] for selected values of δ.

Table 7 lists calculated enclosures [aδ], [bδ], [cδ] and [a[δ]], [b[δ]], [c[δ]] for some selected values
of δ ∈ [0, 1) and intervals [δ]⊂ [0, 1), respectively. In Figure 4 the dependence of the enclosures
of aδ, bδ and cδ on the ellipticity parameter δ is displayed.

Table 7. The enclosures [aδ], [bδ], [cδ] and [a[δ]], [b[δ]], [c[δ]] for selected values of δ and intervals [δ].

δ [aδ] [bδ] [cδ]

0.00 0.01322
0 0.01574

0 0.549437

0.10 0.05842
434 0.01643

0 0.549090

0.20 0.11538
267 0.01893

0 0.548883

0.30 0.17482
202 0.02096

0 0.548574

0.40 0.23790
523 0.02219

0 0.548331

0.50 0.30661
390 0.02419

0 0.548003

0.60 0.38398
108 0.02648

0 0.548147

0.70 0.47539
217 0.02882

0 0.548468

0.80 0.59239
8859 0.02963

0 0.548485

0.90 0.76955
470 0.03619

0 0.548352

[δ] [a[δ]] [b[δ]] [c[δ]]

0.001
0 0.03892

0 0.02323
0 0.547917

0.101
0 0.06224

5185 0.02408
0 0.547825

0.201
0 0.11834

0975 0.02745
0 0.547464

0.301
0 0.17726

010 0.03084
0 0.547205

0.401
0 0.24022

3350 0.03415
0 0.547039

0.501
0 0.30903

214 0.03631
0 0.546752

0.601
0 0.38665

7916 0.03608
0 0.546748

0.701
0 0.47862

6987 0.03977
0 0.546861

0.801
0 0.59671

8547 0.04689
0 0.546677

0.901
0 0.77719

5901 0.06057
0 0.546138
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Remark 4.3.
(1) In [3] it was conjectured that bδ = 0 and cδ = 1/2, that is, that σ(Aδ) is of the form

σ(Aδ) = iR ∪
⋃
k∈Z

(ik + [−aδ, aδ]).

To prove that this conjecture is false for some δ ∈ [0, 1), it would be sufficient to
show that β−δ 6=−2, that is, that βδ(ρ)<−2 for some ρ ∈ [0,∞] or βδ(ρ)>−2 for all
ρ ∈ [0,∞]. In spite of many attempts, no such pair (δ, ρ) could be determined. This can
be interpreted as another numerical indication of the validity of the conjecture.

(2) Although in [15] no concrete numbers for aδ were stated, at least the graphical results
given there (see [15, Figure 4]) seem to correspond very well to the results obtained
above.

5. Second-order problems

In [1] we calculated guaranteed enclosures of eigenvalues of second-order problems

−y′′ + qy = λy, y(0) = 0 (5.1)

on the semi-axis [0,∞) with complex-valued potentials q ∈ L1(0,∞) such that limx→∞ q(x)
= 0. There we combined a fixed-point theorem with Levinson’s asymptotics to deal with the
unboundedness of the interval [0,∞) (see [1, Theorem 3.1]).

In the following, we show that the mere use of Levinson asymptotics (see [1, Theorem 3.3])
already suffices to enclose eigenvalues of (5.1) and that this even improves the enclosures
established in [1].

The Levinson theorem states that for λ ∈ C \ [0,∞) the L2-solution y2 of (5.1), suitably
normalised, satisfies

y2(x, λ) = exp(−
√
−λ x)(1 + η1(x)),

y′2(x, λ) =−
√
−λ exp(−

√
−λ x)(1 + η2(x)),

(5.2)

where <(
√
−λ)> 0 and

|ηj(x)| 6 αX
1− αX

for j = 1, 2 with αX :=
∫∞
X

|q(s)| ds,

for all x >X where X is such that αX < 1. So, if we solve the differential equation −y′′ + qy =
λy on [0, X] with the (interval-valued) initial condition

y(X, λ) = [E] exp(−
√
−λX), y′(X, λ) =−[E]

√
−λ exp(−

√
−λX) (5.3)

where [E] is an interval such that[
1− αX

1− αX
, 1 +

αX
1− αX

]
⊂ [E]

and then integrate backwards, it follows that y2(0, λ) ∈ [y2(0, λ)]; here [y2(0, λ)] denotes the
interval-valued solution of (5.3). Thus, we can apply Lemma 2.1 to the function y2(0, ·), using
the enclosure [y2(0, ·)], to calculate the number of eigenvalues in a given rectangle [λ].

The following two examples illustrate that this direct method by means of Levinson
asymptotics can improve, in some cases, the accuracy of the enclosures compared to the method
used in [1]. In addition, we were able to increase the length of the cut-off interval [0, X] from
X = 10 to X = 20 in Example 5.1 and from X = 33 to X = 50 in Example 5.2.

Example 5.1 (Squire’s problem). The following two sample potentials illustrate the
improved accuracy of the algorithm established in this paper.
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• q(x) = 10i e−x

fixed-point theorem: 2.812267292
89 + 2.1722381899

78 i ;
direct method: 2.81226728994853

29 + 2.17223818900448
20 i.

• q(x) = 100i sin(x) e−x

fixed-point theorem: 18.6275782
78 + 12.1006473

69 i ;
direct method: 18.627577867917

68 + 12.10064721983
72 i.

Example 5.2 (Resonances of Schrödinger operators). This last example shows that the
method developed above allows us to enclose a resonance of the Sturm–Liouville operator
induced by

(Ly)(x) :=−y′′(x) + x2 exp(−0.2x2)y(x), x ∈ [0,∞), y(0) = 0, (5.4)

which had previously resisted enclosure by the fixed point method in [1, Example 4.2.3]. As
the complex scaling transformation therein contains some typographical errors, we repeat the
details below. The transformed differential equation

eiθ(UθLU−1
θ y)(x) = λy(x), (Uθy)(x) = e−iθ/2y(eiθ/2x),

is of the form (5.1) with

q(x) = e2iθx2 exp(−0.2 eiθx2), x ∈ [0,∞),

and λ is an eigenvalue of (5.1) if and only if e−iθλ is a resonance for (5.4). The direct method
of the present paper with θ = 1.5 yields the guaranteed enclosure

1.647881
78 − 12.829322

18 i

for a resonance indicated by floating point calculations.
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