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ON THE UNIQUENESS OF SOLITARY ROSSBY WAVES
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Abstract

The explicit solitary Rossby wave solutions found by Larichev, Reznik and Berestov are
shown to be unique for the model equations considered, in the sense that there are no
other antisymmetric wave solutions which are not of these forms. This is done by
adapting arguments used by Amick and Fraenkel to show the uniqueness of the Hill's
vortex solution. It is based on the maximum principle and the domain folding method of
Gidas, Ni and Nirenberg, and involves showing that the function >|//y is radially
symmetric, where ^ is the streamfunction of a solitary wave and y the horizontal
cartesian coordinate perpendicular to the x-axis, along which the waves move at steady
positive speed. This argument is also used to show the uniqueness of the well-known
explicit solutions for cylindrical vortices. The result does not apply directly to rider
solutions of Flierl et al., which are not antisymmetric, but it does restrict the possible
rider solutions that can form because of their association with particular antisymmetric
solutions.

1. Introduction

Explicit formulae for two- and three-dimensional solitary Rossby waves have
been determined by Larichev and Reznik [7] for a barotropic ocean and by
Berestov [2] for a baroclinic ocean. These are exact solutions of the nonlinear
quasi-geostrophic vorticity equations in the /?-plane approximation ([3], [8]). The
waves are damped exponentially at large distances from their centres, which move
at constant speed along the equator, and are antisymmetric about the equator. In
deriving these solutions the authors assumed that the switch over from one form
of the equations to another occurs on circles about the centre of the wave. Then
they used the standard applied mathematical technique of separating variables,
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specifically of writing the streamfunction \p as the product of an unknown
function of the radial variable with the sines of the polar or spherical coordinate
angles. In this way they reduced the problem to one of solving Bessel-like
equations for the radial function.

The purpose of this note is to verify that this assumption and intuitive
procedure do in fact generate all such antisymmetric solitary Rossby wave
solutions for the given model equations, that is to establish the uniqueness of the
above explicit solutions within the class of antisymmetric solutions. This is done
by using the maximum principle and adapting the argument used by Amick and
Fraenkel [1] to prove the uniqueness of Hill's vortex ring solution. It in turn is
based on the domain folding method of Gidas, Ni and Nirenberg [4] and involves
showing the radial symmetry of the function yp/y, where x and y are horizontal
Cartesian coordinates with the x-axis translated at constant positive speed U, so
that the wave centre is always at the origin.

The basic equations and Berestov's solutions are stated in Section 2. The
separability of the three-dimensional solutions is then justified in Section 3 by
applying a theorem of Amick and Fraenkel to show that the function Z = — \p/y
for y > 0, considered as a function on R5 with Cartesian coordinates xl = x,
x2 = z and spherical coordinates y = fx\ + x\ + xj, 0 and <j> (Z being inde-
pendent of 6 and </>), is radially symmetric. To do this we first show that Z is
contained in the Sobolev space Wl'2(R5) and is strictly positive. The uniqueness
of Berestov's solitary wave solutions is then concluded in Section 4. It must be
emphasized that this uniqueness is in fact for a family of similar solutions, rather
than one specific solution. Moreover it is for the specific model equations
considered and for antisymmetric solutions only. (The rider solutions of Flierl et
al [3] consequently do not come within the scope of this result, though since rider
solutions are always associated with antisymmetric solutions the result indirectly
restricts the types of rider solution that can form.) An analogous argument yields
the uniqueness of the two-dimensional solitary Rossby wave solutions of Larichev
and Reznik and also, as is briefly explained in Section 5, the uniqueness of the
well-known explicit solutions for cylindrical vortices.

2. Basic equations and Berestov's solutions

In the /J-plane approximation, the quasi-geostrophic potential vorticity equa-
tion is

dy
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where \j/ is the quasi-geostrophic streamfunction, No the Brunt-Vaisala frequency
and / = /0 + fiy the Coriolis parameter. Here No, f0 and /? are assumed positive
and constant.

Stationary wave solutions of (2.1) propagating along the x-axis with constant
positive speed U have the form >p = ^(x - Ut, y, z) and satisfy the equation

J{++Uy', A3* + /B/) = 0, (2.2)

where / ( / , g) = df/dx'dg/dy' - df/dy'dg/dx' in terms of the new coordinates
x' = x — Ut, y' = y, z' = N0z/f0 (the primes will henceforth be omitted) and
A 3 is the three-dimensional Laplacian. The general solution of (2.2) satisfies

*3++ 0y = F(++ Uy), (2.3)

where F is an arbitrary function of appropriate smoothness.
Berestov [2] sought solutions \p of (2.3) which were twice continuously differen-

tiable and which, with their first-order derivatives, decreased exponentially to
zero as r2 = x2 + y2 + z2 -* oo. With solitary waves symmetric about the x-axis,
or equivalently with \p an odd function in y, he essentially restricted attention to
the half-space y > 0 and considered the piecewise linear mapping F defined by

2f for f > 0,

where k and p are positive parameters to be determined. Berestov introduced
spherical coordinates r, 8 and <f> (so that x = rsin#cos<£, y = /•sin#sin</> and
z = rcosfl), separated variables

(2.5)

and got

LO + j8rsin0 = F(O + UrsinO), (2.6)

where

under the assumption that $ + UrsiaO < 0 for r < a and > 0 for r > a for
some positive parameter a to be determined. He then separated variables again

(2.7)
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solved Bessel-like ordinary differential equations in R to get

,(kr) T—f-r for r < a
(2.8)

[Br-l/2K3/2(pr) for r > a,

and evaluated p2 = fi/U from the assumption that \p vanished for r -* oo.
Finally, by matching solutions and their radial derivatives at r = a, where he
assumed <E» + UrsiaO changed sign, Berestov found explicit negative values for A
and B, and showed that ka took a unique positive value. See [2] for additional
details.

The piecewise linear mapping (2.4) is somewhat artificial and appears to have
been chosen to enable the variables to be separated. On the other hand, the
requirement that \p and its derivatives vanish as r -> oo means that the functions
F in (2.3) must be at least asymptotically linear with /? = F(U).

The two-dimensional solutions of Larichev and Reznik [7] were derived in a
similar way, essentially with the z and 6 variables omitted above and with the
Bessel and modified Bessel functions of order 1 instead of 3/2. Berestov called
such solutions 2-layer solitary waves. He also considered 3-layer waves in both
two and three dimensions, for which the first part of F in (2.4) holds for
a < r < b and the second part for both r < a and r > b. Here b is an additional
parameter determined in the same way as a. Berestov commented that it was not
generally possible to construct solutions with more than three layers by this
procedure as it led to an overdetermined system involving more equations than
unknown parameters.

The mapping F in (2.3) was not expressed quite in the same way as (2.4) by
Berestov. Rather he assumed that it had one linear form for r < a and the other
linear form for r > a, so his mapping F depended on r as well as on ^ + Uy,
which is not strictly speaking mathematically correct. With the restriction to
antisymmetric solutions, like those found by Berestov, our functional form (2.4) is
mathematically correct and equivalent to Berestov's formulation. This restriction
to antisymmetric solutions does however exclude from consideration the rider
solutions of Flierl et al. [3].

3. Separability of solutions

In deriving his formulae for two- and three-layer solitary Rossby waves
Berestov assumed that he could separate the solutions of (2.3) in the form (2.5) to
(2.8). It will be shown here that every antisymmetric solution with at least a
modest amount of regularity can be separated in this way.
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Let II = {(x, y, z) e R3; y > 0}. A function xp on II will be called a weak
solution of the partial differential equation (2.3), with F as defined by (2.4), if it
belongs to the Sobolev space Wl'2(Il) with

4>2/y -• 0 as y -> 0 + (3.1)

for almost all (x, z) e R2 and satisfies (2.3) in the distributional sense. For such a
solution

which implies that p in (2.4) must be chosen so that p2U = /?. Then the function
Z defined on II by

Z(x,y,z)= --t(x,y,z)

satisfies

3 2 T 22T 1 a-7 i2-7

= 0 (3.3)
dy2 y °y dz2

on II in the distributional sense, where

/ (Z) - ( -^ Z , teZ<eU (3.4)
V ' \k2{Z- U) - p for Z > U.

Equation (3.3) can be written as

A5Z + / ( Z ) = 0 (3.5)

on R5 by considering Z as a function defined on R5 and A5 the 5-dimensional
Laplacian in terms of the Cartesian coordinates xx = x, x2 = z and the spherical
coordinates y = yxf + x\ + x\, 6, <f> with Z independent of 6 and <j>. Then

LEMMA 1. Z e W1>2(R5).

This holds because

f Z2dxl--dx5
•'R5

/
• o o / - o o I r o o / • J T / 2 / " " • , , ^

/ / \ ' I Z2y2 sind d<t>dddy)dxdz
-oo •'-oo \J0 J-n/2 J-v )

= 4TT I I I Z2y2dy dx dz = 4n f \p2dxdydz
• ' - o o • ' - o o • 'o •'n
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a n d

\V5Z\2dXl ••• dx5

j^-YU2 sinO d<t>dOdy\dxdz

| j ) sin6d<l>d0dy\ dxdz

/ • o o / - o o raa t m / 2 t1" 8 / 1 -. \

- / / I f f -r- ~*2) sinOdQdddydxdz

= 4n f

-4nf / Urn - ^ / 2 - Km -
= 4ir f |V3^|2dxdydzJn

• - 0 +

f
Jn

in view of (3.1) and (3.2), where Vn is the n-dimensional Cartesian coordinate
gradient operator.

As Z e WU(R5) it follows by regularity theory that Z e Cl!a(R5) for some
0 < a < 1. Then

LEMMA 2. Either Z = 0orZ>0 everywhere in R5.

To see this, suppose that Z < 0 on some subset Q of R5 with Z = 0 on 3X2.
Then

AsZ = p2Z<0

on J2. If S2 is bounded, the maximum principle [9] implies that Z > 0, whereas if
Q is unbounded the Phragmen-Lindelof principle [9] implies that Z > 0. These
are both contradictions, so Z > 0 must hold everywhere on R5. Now suppose that
Z = 0 at some point x0 and 0 < Z < U at another point xx. Let B be a bounded
region on which 0 < Z < U containing both x0 and xt with x0 in its interior.
Then

A5Z-/>2Z = 0
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on B and Z attains its minimum value of 0 in the interior of B, so by the
minimum principle [9] Z = 0 everywhere on B, which is a contradiction. Hence
either Z = 0 everywhere on R5 or Z > 0 everywhere on R5. In what follows only
the nontrivial solutions will be considered.

Now the function / in (3.4) can be written as the sum f = fx + f2, where

/X(Z) = -P
2Z

and

for Z < U
k2+p2){Z-U) for Z^U.

This function is continuously differentiable in a neighbourhood of Z = 0, with fx

continuously differentiable and with f2 piecewise continuously differentiable and
nondecreasing.

The following theorem of Amick and Fraenkel [1], which we use with n = 5,
can now be applied. It is a generalization to weak solutions and piecewise
differentiable functions / of a theorem of Gidas, Ni and Nirenberg [4], which is
proved by means of maximum principles and domain folding arguments.

THEOREM (Amick and Fraenkel). Let f: [0, oo) -» R be continuously differentia-
ble at and near 0, with f = fx+ f2 where fx e C1[0, oo) and f2 piecewise continu-
ous and nondecreasing on [0, oo) with a finite number of jumps.

Let Z > 0 be a C\R") solution of

in R" in the distributional sense. Further (with the usual summation notation)
suppose that

°JXJ , aJkXJXk

\x\4 ' ~ l | x ' 2

with

8Z -mx.l . o.xA _ a. 2x.

9*/ | jc|m + 2\ ° \x\2 } \x\m+2 |x|m+4 J j \\x\m+3

as \x\ -» oo, for some m > 0 and a0 > 0.
Then Z is radially symmetric about some point c and dZ/dp < 0 for p = \x — c\

> 0.

The Rossby solitary waves considered here are symmetric about the equator,
that is about the origin in the steadily moving coordinate system considered in
Section 2. Let i// be an antisymmetric weak solution of (2.3) and (2.4) satisfying
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(3.1) and (3.2), and corresponding to a Rossby solitary wave. Then from the
above theorem

-</-= - Z < 0
y

for y + 0, where Z depends only on r — yx2 + y2 + z2, that is

for some negative function R* of r > 0. Hence

\p(x,y,z) = yR*(r) = rR*(r) sin0sin<> = R(r) sin0sin<J> (3.6)

where R(r) = rR*(r). Consequently we have proved

THEOREM. Any weak antisymmetric solution ^ of Berestov's equation (2.3) and
(2.4) has the form (3.6), with R(r) as given by Berestov for the 2-layer or 3-layer
solitary wave solutions.

An identical result also holds for the two-dimensional solitary Rossby waves of
both Larichev and Reznik [9] and Berestov [2]. For these the above argument is
carried out in R4 instead of Rs with the z and (/> variables omitted. Then with
y = rcosd and r = /x2 + y2 it follows that

i(x, y) = yR*(r) = rR*(r) sin0 = R(r) sinfl.

In concluding this section it is noted that had attention been restricted to
smoother strong solutions rather than the weak solutions considered here, then it
would have been possible to conclude the radial symmetry of Z directly from
Gidas, Ni and Nirenberg [4], taking into account their comments on the extenda-
bility of their results to functions / which were not everywhere continuously
differentiable.

4. Uniqueness of solutions

It follows from the previous section that all antisymmetric solitary Rossby wave
solutions of (2.3) for a piecewise linear F in the form (2.4), which decrease
asymptotically according to some inverse power of the distance from the centre of
the wave, and which are at least as smooth as weak solutions, can be separated as
in (3.6). Moreover the switch-over curves from one linear form of F to the other
occur on circles about the centre of the wave. From Berestov's analysis in Section
2 the unknown radial function R(r) then satisfies different Bessel-like ordinary
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differential equations in different r intervals. The appropriate equations and the
radial regions in which they apply depend on whether two- or three-layer solitary
wave solutions are being sought. In each case a unique family of solutions is
obtained for appropriate parameter values, for example k, a, p, A and B in the
two-layer case. The solutions within each family are equivalent, essentially up to a
change of scale and depend on the specific choice of positive parameters k and a,
in the two-layer case, for example, which can be chosen arbitrarily, as long as
their product equals a specific positive value. Moreover these are the only possible
antisymmetric solitary wave solutions for the given equations. It is in this sense
that the explicit sohtary Rossby wave solutions of Berestov [2] are unique.

A similar result can also be concluded for the two-dimensional solutions of
Larichev and Reznik [7] for two-layer waves and of Berestov [2] for three-layer
waves.

It is reiterated that the restriction to antisymmetric solutions here excludes the
rider solutions of Flierl et al. [3]. Their existence does not invalidate or contradict
the result presented here. Indeed the rider solutions are associated with antisym-
metric solutions, so restriction on the possible types of antisymmetric solutions
that can occur consequently restricts the possible type of rider solutions that can
occur.

5. Cylindrical vortices

The well-known explicit solutions for cylindrical vortices can be considered a
special case of the two-dimensional solitary Rossby wave solutions of Larichev
and Reznik [7], essentially with the rotational effect omitted. They are stated and
derived in, for example, Lamb [6; page 245]. The same argument as above can be
used to establish their uniqueness. In this case equation (2.3) is replaced by

A2̂ = -\[t-Uy]+ (5.1)

in R2, where X is a positive constant and [/] + = (t + \t\)/2, with

ipyVil'-'Q asr2 = x2 + y2 -> oo.

Using Z = ip/y, equation (5.1) transforms to

dy2 y *y J

which in turn can be written as

AAZ + \[Z- U] + =0 (5.2)
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in R4 with x1 = x and cylindrical coordinates y = ^x\ + x\ + x\, 0 and $. The
maximum principle can then be used to show that nontrivial solutions of (5.2) are
strictly positive and then the theorem of Amick and Fraenkel to show that they
are radially symmetric. The uniqueness of the explicit cylindrical vortex solutions
of (5.1) then follows as for that of the solitary Rossby wave solutions. Moreover
this result is global in contrast to the earlier local existence result, namely, the
absence of secondary bifurcations, of Keady and Norbury [5; Theorem 1.1].
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