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Rotors in Khovanov Homology

Joseph MacColl

Abstract. Anstee, Przytycki, and Rolfsen introduced the idea of rotants, pairs of links related by a
generalised form of link mutation. We exhibit inûnitely many pairs of rotants that can be distin-
guished by Khovanov homology, but not by the Jones polynomial.

1 Introduction

_e following is a long-standing open problem in low-dimensional topology.

Question 1.1 Does there exist a nontrivial knot with trivial Jones polynomial?

_is question has led to operations on links that can alter them while leaving their
Jones polynomial ûxed. It is known that mutation as originally deûned by Conway is
such an operation, but that this mutation cannot take an unknot to a nontrivial knot
[9]. We consider a generalised mutation operation introduced by Anstee, Przytycki,
and Rolfsen [2].

Deûnition 1.2 Let n ≥ 3, and let L be a ûxed planar projection of a link containing
a 2n-ended tangle R. If R possesses n-fold rotational symmetry about its centre, then
R is called a rotor, or n-rotor, and S ∶= L ∖ R is called the stator. We rotate the rotor
R by π, through the third dimension, and reinsert it into L to obtain a new link LR . If
we can ûx orientations on L and LR so that their writhes agree, then we say that the
links are (order n) rotants, or n-rotants, of each other.

See Figure 1 for an example of order 4 rotants.
In the case of rotants, we know that the generalised mutation can preserve the

Jones polynomial; indeed, the following theorem was proved in [2], where the idea of
rotants was introduced.

_eorem 1.3 Suppose n ≤ 5. If the link LR is an n-rotant of L, then L and LR have
the same Jones polynomial.

Remark _e Kauòman bracket deûnition of the Jones polynomial of a link has a
factor determined by the link’s writhe, and for a pair of links with the same bracket
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to have matching Jones polynomials, this factor must agree for each link. _is is why
the condition on orientation is included in Deûnition 1.2.

Rolfsen and Jin showed that the bound n = 5 cannot be improved upon; they
exhibited a pair of order 6 rotants with diòerent Jones polynomials [5].

_e following question was posed in [2] and is still open.

Question 1.4 Does there exist an unknot with an n-rotant that is nontrivially knotted?

Clearly, an aõrmative answer to this question for n ≤ 5 would imply one for Ques-
tion 1.1.

Khovanov homology, an invariant of oriented links, is a bigraded homology theory
whose Euler characteristic is the (unnormalised) Jones polynomial [6]. Examples of
links with the same Jones polynomial but distinct Khovanov homologies, such as the
knots 51 and 10132 in Rolfsen’s table [3], indicate that Khovanov homology is a strictly
stronger invariant than the Jones polynomial. _eorem 1.5 (which we will prove in
Section 2) makes use of rotants as a further demonstration of Khovanov homology’s
heightened sensitivity compared to the Jones polynomial.

_eorem 1.5 _ere exist inûnitely many rotant pairs distinguishable by Khovanov
homology but not by the Jones polynomial.

We can show that no use of Conway mutation can transform an unknot into a
nontrivial knot by combining the facts that Khovanov homology detects the unknot
[7] and that it is insensitive to mutation (when calculated over Z/2Z) [4, 11]. _is
means that Conway mutation cannot be used to provide an aõrmative answer to
Question 1.1, as is well known. On the other hand,_eorem 1.5 tells us that Khovanov
homology can distinguish certain rotants, and so Question 1.4 remains a reasonable
approach to Question 1.1

2 Construction

We will now extend the example in Figure 1 to an inûnite family of pairs of order 4
rotants with diòerent Khovanov homologies by inserting additional twists between
parallel strands in the diagrams. We specify pairs of rotants (L(n), LR(n)), n ∈ Z, by
inserting n right-handed half-twists at a location in the stator, as shown in Figure 2.
With this notation, the pair of rotants presented in Figure 1 is (L(2), LR(2)).

We also introduce the following shorthand, used to describe the rotants in our
inûnite family:

Ln ∶= L(−20 − n), LR
n ∶= LR

(−20 − n).

Our construction makes use of two key properties of Khovanov homology.

Property 2.1 If L and L′ are link diagrams that coincide, up to planar isotopy, as
unoriented links, then L and L′ will have identical Khovanov chain complexes up
to an overall grading shi�. _is grading shi� depends on the orientations of L and
L′; in particular it depends on the number of positive and negative crossings in each
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Figure 1: A pair of order 4 rotants, adapted from [5, Example 1]. Note that for clarity we have
kept the rotor (inside the box) the same between the two diagrams and �ipped the stator, a
procedure equivalent to the one outlined in Deûnition 1.2. _ese rotants are distinguishable by
Khovanov homology (see Section 3).

Figure 2: _e parametrised rotants (L(n), LR(n)) we build our inûnite family from. Note that
the orientation above the parametrised twists depends on the parity of n. _e green arrows
show the orientation when n is even, the red arrows when n is odd.
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diagram. As a result, if these two quantities agree for both L and L′, then Kh(L) ≅

Kh(L′) [6] (see also [10]).

Property 2.2 _ere is a long exact sequence in Khovanov homology, described
by Rasmussen [8] (see also [10]). If we choose a crossing in D, the planar diagram
of a link, then the sequence relates the Khovanov homologies of D and the diagrams
D0 , D1 we get by giving this crossing a 0-resolution or a 1-resolution, respectively (see
Figure 3). If the crossing resolved is oriented negatively, the long exact sequence, as
presented by Turner, is

⋯ → Kht
q+1(D1) → Kht

q(D) → Kht−c
q−3c−1(D0) → Kht+1

q+1(D1) → ⋯ ,

where c = N−(D0)−N−(D). _e notation Kht
q(L) refers to the vector space at quan-

tum grading q and homological grading t in the Khovanov homology of the link L,
and N−(L) is the number of negative crossings in (a diagram of) L.

Figure 3: _e crossing conûgurations in the links we ût into the long exact sequence. Following
the convention in [10], from le� to right we have: a crossing with negative orientation, its
0-resolution and its 1-resolution. Note that the 1-resolution inherits an orientation from the
original crossing, while we can orient the aòected strands of the 0-resolution as we please.

For any n ∈ N, the crossings added by parametrisation to Ln and LR
n are oriented

negatively, and we can resolve the lowest of them in one of the two ways shown in
Figure 3. _e 0-resolution simply gives us Ln−1 or LR

n−1, while the 1-resolution results
in the 3-component rotants shown in Figure 4, where we can always undo the remain-
ing parametrised twists using type 1 Reidemeister moves. _e orientation inherited
on the newly formed component is dependent on the parity of n, as pictured. We call
the rotants obtained from the oriented 1-resolution (L0

∞ , (L0
∞)R)when n is even, and

(L1
∞ , (L1

∞)R) when n is odd.
We observe three facts, essential to our construction:

Fact 2.3 Kht
q(L

0
∞) is trivial when q < −53, and Kht

q(L
1
∞) is trivial when q < −29.

Proof By direct calculation; see Section 3.

Fact 2.4 _e pair of rotants (L0
∞ , (L0

∞)R) have identical Khovanov homology, as do
(L1

∞ , (L1
∞)R).

Remark _is means that the result of Fact 2.3 also holds if we replace L0
∞ with

(L0
∞)R , and L1

∞ with (L1
∞)R .
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Figure 4: _e rotants we obtain from applying the 1-resolution to the lowest of the parametrised
crossings in (Ln , LR

n). Taking the orientations given by the green arrows gives the pair
(L0
∞ , (L0

∞)R), while the red arrows give (L1
∞ , (L1

∞)R), these corresponding to the cases when
n is even or odd, respectively.

Proof As can be seen from Figure 5, the rotants (L0
∞ , (L0

∞)R) are identical as unori-
ented links. As oriented links, they diòer by the reversal of orientation on all compo-
nents, meaning that the rotants both have the same numbers of positive and negative
crossings. So, by Property 2.1, these rotants must have identical Khovanov homolo-
gies. By a similar argument, the rotants (L1

∞ , (L1
∞)R) have identical Khovanov ho-

mologies.

Fact 2.5 In the long exact sequence of Property 2.2, if D is Ln+1 for some nonnegative
integer n, then c is given by

c =
⎧⎪⎪
⎨
⎪⎪⎩

7 if n is even,
−9 if n is odd.

Proof First we observe that, in the notation of Property 2.2, we have D = Ln+1
and D0 = Ln . So, by deûnition, c = N−(Ln) − N−(Ln+1). See the diagram of the
parametrised link L in Figure 2 for information on the crossing orientations of Ln .
Since n ≥ 0, the crossings added by parametrisation to Ln = L(−20 − n) are all ori-
ented negatively, regardless of the parity of n. Further, we see that if n is even, then
the 24 crossings that are not due to the added twists are all negative as well, giving
20 + n + 24 = 44 + n negative crossings in total. To get N−(Ln) when n is odd, we
simply observe that changing the orientation induced by n being even to the one for
n odd results in 8 of the crossings inside the rotor changing from negative to positive.
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Figure 5: _e rotants (L0
∞ , (L0

∞)R), coloured to show the interactions between components.
An anticlockwise rotation of (L0

∞)R by π/2 gives us L0
∞ with the orientations reversed on each

component.

_erefore we have

N−(Ln) =

⎧⎪⎪
⎨
⎪⎪⎩

44 + n if n is even,
36 + n if n is odd.

If n is even, then c = (44 + n) − (36 + n + 1) = 7; similarly, if n is odd, c = −9.

We can now use the family we have constructed to prove_eorem 1.5, as a conse-
quence of the following proposition.

Proposition 2.6 For any nonnegative integer n, and t ∈ Z, we have

Kht+c
Q(n+1)(Ln+1) ≅ Kht

Q(n)(Ln) and Kht+c
Q(n+1)(L

R
n+1) ≅ Kht

Q(n)(L
R
n),

where
Q(n) = −76 + 22⌈n/2⌉ − 26⌊n/2⌋

and c is as described in Fact 2.5.

Proof _e long exact sequence of Property 2.2 gives us:

⋯ → Kht+c
q+3c+2(L

n+1
∞ ) → Kht+c

q+3c+1(Ln+1) → Kht
q(Ln) → Kht+c+1

q+3c+2(L
n+1
∞ ) → ⋯ ,

where n + 1 denotes the reduction of n + 1 modulo 2.

Fact 2.5 gives us the identity Q(n) + 3c + 1 = Q(n + 1) for any n. Indeed, when n
is even,

Q(n + 1) = −76 + 22⌈(n + 1)/2⌉ − 26⌊(n + 1)/2⌋
= −76 + 22(⌈n/2⌉ + 1) − 26(⌊n/2⌉) = Q(n) + 22 = Q(n) + 3c + 1
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We can similarly check the case when n is odd. So with q = Q(n)we get the following
long exact sequence:

⋯→ Kht+c
Q(n+1)+1(L

n+1
∞ ) → Kht+c

Q(n+1)(Ln+1) → Kht
Q(n)(Ln) → Kht+c+1

Q(n+1)+1(L
n+1
∞ ) →⋯

Now, consider the expression Q(n+ 1)+ 1. When n is even it evaluates to −2n−53,
and when n is odd it evaluates to −2n − 77. So Q(n + 1) + 1 ≤ −53 < −29 if n ≥ 0 is
even, and Q(n + 1) + 1 ≤ −80 < −53 if n ≥ 1 is odd. _erefore, by Fact 2.3, the vector
spaces in the homology of Ln+1

∞ speciûed by this long exact sequence will be trivial for
any n ≥ 0. As a result, the long exact sequence forces the desired isomorphism:

Kht+c
Q(n+1)(Ln+1) ≅ Kht

Q(n)(Ln).

We can argue in the same way to get the result for LR
n+1, making use of Fact 2.4.

Proof of_eorem 1.5 Observe that Q(0) = −76 and, by direct calculation (see Sec-
tion 3),

Kh−32
−76(L0) ≅ Q75 while Kh−32

−76(L
R
0 ) ≅ Q74 .

So Proposition 2.6 tells us that, for any nonnegative integer n, there is a vector space
isomorphic toQ75 in the Khovanov homology of Ln , while, in the same homological
and quantumgradings, the homology of LR

n has a vector space isomorphic toQ74. _is
means that the inûnite family of rotant pairs (Ln , LR

n), n ≥ 0, are all distinguishable
by Khovanov homology. However, they are order 4 rotants, and so by _eorem 1.3,
they must all have matching Jones polynomials.

Remark We have shown a diòerence between the rotants in their Khovanov ho-
mology calculated over Q, although a similar argument works for the homologies
calculated with other coeõcients (see Section 3).

3 Calculations

Finally, we provide the data required to justify claims we have made about the Kho-
vanov homologies of various rotants. All calculations were carried out using the
Mathematica package knottheory` [1]. First, we ûnd the vector spaces needed to
prove the base result (for (L0 , LR

0 )) in the proof of _eorem 1.5. We give the vector
spaces at quantum grading −76 in the Khovanov homologies of the rotants (L0 , LR

0 ),
with coeõcients in Q, Z and Z/2Z:
(a)

Kht
−76(L0;Q) ≅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q75 t = −32,
Q127 t = −31,
Q23 t = −30,
{0} otherwise,

Kht
−76(L

R
0 ;Q) ≅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q74 t = −32,
Q124 t = −31,
Q21 t = −30,
{0} otherwise.
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(b)

Kht
−76(L0;Z) ≅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Z75 t = −32,
Z127 ⊕ (Z/2Z)99 t = −31,
Z23 ⊕ (Z/2Z)11 t = −30,
{0} otherwise,

Kht
−76(L

R
0 ;Z) ≅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Z74 t = −32,
Z124 ⊕ (Z/2Z)99 t = −31,
Z21 ⊕ (Z/2Z)11 t = −30,
{0} otherwise.

(c) Let F ≅ Z/2Z be the ûeld with two elements:

Kht
−76(L0;F) ≅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(F)174 t = −32,
(F)237 t = −31,
(F)34 t = −30,
{0} otherwise,

Kht
−76(L

R
0 ;F) ≅

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(F)173 t = −32,
(F)234 t = −31,
(F)32 t = −30,
{0} otherwise.

We note that dim(Kh−32
−76(L0)) ≠ dim(Kh−32

−76(L
R
0 )) for each set of coeõcients,

meaning that we can use any of these to make an argument analogous to the proof
of _eorem 1.5.

_e following Tables 1 to 4 give data on the complete Khovanov homologies of the
rotant pair (L(2), LR(2)) from Figure 1 and the links L0

∞ , L1
∞, calculated overQ. We

note that the quantumgrading supports for nontrivial vector spaces in the homologies
of L0

∞ and L1
∞ are the same when calculated with any coeõcients, so that Fact 2.3 still

applies and can be used to prove _eorem 1.5 for coeõcients in, say, Z or F rather
thanQ. _e number in cell (q, t) gives the dimension of the vector space at quantum
grading q and homological grading t; where there is no number, the vector space is
trivial. Notice that the sum of the dimensions of all the vector spaces in Kh(L(2)) is
greater than that of Kh(LR(2)), and that for any t, q ∈ Z, we have

dim(Kht
q(L(2))) ≥ dim(Kht

q(L
R
(2))) .

_is appears to be the case in general for rotants in this family (i.e., for any value of
n, not just 2). Also, the homologies of L0

∞ and L1
∞ are identical up to a grading shi�,

since the links diòer only in orientation.
For interest, we also record the common reduced Jones polynomial of the rotants

L(2) and LR(2):

VL(2)(q) = VLR(2)(q)

= q−51/2(−1 + 5q − 14q2
+ 30q3

− 50q4
+ 68q5 − 78q6

+ 73q7
− 52q8 + 21q9

+ 13q10
− 41q11

+ 57q12
− 57q13

+ 46q14

− 31q15
+ 16q16

− 8q17
+ 2q18

− q19
)
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Table 1: Kh(L(2);Q)

q/t −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−52 1
−50 4
−48 1 10
−46 4 20
−44 10 31 1
−42 20 42 4
−40 31 51 10
−38 42 56 19
−36 50 57 28
−34 52 59 38
−32 47 55 42
−30 40 55 43
−28 27 50 39
−26 18 47 29
−24 7 40 22
−22 4 30 11
−20 1 22 6
−18 1 11 2
−16 6
−14 2 1
−12 1

Table 2: Kh(LR(2);Q)

q/t −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−52 1
−50 4
−48 1 10
−46 4 20
−44 10 31 1
−42 20 41 3
−40 31 50 9
−38 41 53 17
−36 49 52 24
−34 50 53 34
−32 43 47 38
−30 36 47 39
−28 23 44 37
−26 13 39 26
−24 5 37 21
−22 1 26 10
−20 21 6
−18 10 2
−16 6
−14 2 1
−12 1
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Table 3: Kh(L0
∞;Q)

q/t −20 −19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−53 1
−51 3
−49 1 6
−47 3 11
−45 6 15 1
−43 11 19 2
−41 15 23 5
−39 19 24 9
−37 22 22 10
−35 22 25 15
−33 17 19 15
−31 16 21 15
−29 9 19 15
−27 8 17 9
−25 1 15 9
−23 3 10 4
−21 9 3
−19 1 4 1
−17 3
−15 1 1
−13 1

Table 4: Kh(L1
∞;Q)

q/t −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−29 1
−27 3
−25 1 6
−23 3 11
−21 6 15 1
−19 11 19 2
−17 15 23 5
−15 19 24 9
−13 22 22 10
−11 22 25 15
−9 17 19 15
−7 16 21 15
−5 9 19 15
−3 8 17 9
−1 1 15 9
1 3 10 4
3 9 3
5 1 4 1
7 3
9 1 1
11 1

https://doi.org/10.4153/CMB-2015-034-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-034-6


Rotors in Khovanov Homology 169

Acknowledgements I would like to thank the University of Glasgow and the Carne-
gie Trust for giving me the opportunity to undertake this research and for providing
ûnancial support. I am also grateful for the guidance of my supervisor, Liam Wat-
son, as well as for the knowledge and enthusiasm he shared with me throughout this
project. Finally I would like to thank Duncan McCoy for valuable feedback on an
earlier dra�.

References
[1] _e mathematica package knottheory`. http://katlas.org.
[2] R. P. Anstee, J. H. Przytycki, and D. Rolfsen, Knot polynomials and generalized mutation.

Topology Appl. 32(1989), no. 3, 237–249. http://dx.doi.org/10.1016/0166-8641(89)90031-X
[3] D. Bar-Natan, On Khovanov’s categoriûcation of the Jones polynomial. Algebr. Geom. Topol.

2(2002), 337–370. http://dx.doi.org/10.2140/agt.2002.2.337
[4] J. M. Bloom, Odd Khovanov homology is mutation invariant. Math. Res. Lett. 17(2010), no. 1, 1–10.

http://dx.doi.org/10.4310/MRL.2010.v17.n1.a1
[5] G. T. Jin and D. Rolfsen, Some remarks on rotors in link theory. Canad. Math. Bull. 34(1991), no. 4,

480–484. http://dx.doi.org/10.4153/CMB-1991-077-1
[6] Mikhail Khovanov. A categoriûcation of the Jones polynomial. Duke Math. J., 101(3):359–426,

2000. http://dx.doi.org/10.1215/S0012-7094-00-10131-7
[7] P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector. Publ. Math. Inst.

Hautes Études Sci. 113(2011), 97–208.
[8] J. Rasmussen, Knot polynomials and knot homologies. In: Geometry and topology of manifolds,

Fields Inst. Commun., 47, American Mathematical Society, Providence, RI, 2005, pp. 261–280.
[9] D. Rolfsen, Global mutation of knots. Random knotting and linking (Vancouver, BC, 1993). J. Knot

_eory Ramiûcations 3(1994), no. 3, 407–417. http://dx.doi.org/10.1142/S0218216594000290
[10] P. Turner, Five lectures on Khovanov homology. 2006. arxiv:math/0606464.
[11] S. M. Wehrli,Mutation invariance of Khovanov homology over F2 . Quantum Topol. 1(2010), no. 2,

111–128. http://dx.doi.org/10.4171/QT/3

University of Glagsow, School of Mathematics and Statistics, Glasgow, UK
e-mail: 1101739m@student.gla.ac.uk

https://doi.org/10.4153/CMB-2015-034-6 Published online by Cambridge University Press

http://katlas.org
http://dx.doi.org/10.1016/0166-8641(89)90031-X
http://dx.doi.org/10.2140/agt.2002.2.337
http://dx.doi.org/10.4310/MRL.2010.v17.n1.a1
http://dx.doi.org/10.4153/CMB-1991-077-1
http://dx.doi.org/10.1215/S0012-7094-00-10131-7
http://dx.doi.org/10.1142/S0218216594000290
http://arxiv.org/abs/math/0606464
http://dx.doi.org/10.4171/QT/3
mailto:1101739m@student.gla.ac.uk
https://doi.org/10.4153/CMB-2015-034-6

