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1. Introduction. The following problem is as yet unsolved: Given a 
convex polytope with N vertices in w-space, what is the maximum number 
of (n — 1)-faces which it can have? Aside from its geometric interest this 
question arises in connection with solving systems of linear inequalities and 
linear equations in non-negative variables. The problem is equivalent to 
asking for the best bound on the number of basic solutions for such problems 
and hence a bound (though a weak one) for the number of iterations needed 
in the simplex method for solving linear programmes. 

If we denote by ix(n, N) the maximum number of faces for a convex polytope 
with N vertices in espace, it has been conjectured that these numbers are 
given by the formula 

(1) »(n,N) = N - n ) ' \ N 
N - ln\ , (N - \n - 1 for n ( 

21 N^_J }) for n odd. 

The number of faces given by (1) are actually achieved by the so-called 
cyclic polytopes (1) defined as the convex hull of Ar points on the curve 
x(t) = (t, t2, . . . , tn) in w-space. Also one easily verifies that (1) is correct 
for the cases n = 1, 2, 3 and also the case N = n + 1. Our purpose here is 
to show that it is also true for N = n + 2 and N = n + 3. An earlier proof 
(unpublished) of this result was geometric and proceeded via duality methods 
for linear inequalities. The much simpler proof presented here depends on 
reducing the problem to one which is purely combinatorial. For the case 
N = n + 3 this is a problem in graph theory. The solution of this problem, 
Theorem 4, is due to Allan H. Clark, and it is his result which makes the 
combinatorial method succeed in this case. 

2. Preliminaries. A convex polytope is the convex hull of a finite set 5 
in Tz-space. For our purposes it will be sufficient to study the set 5 itself. 

A subset F = {ai, . . , ak} of 5 is called &face of 5 if F generates a hyperplane 
II (i.e., the affine space through F has dimension n — 1) and all points of 
5 — F lie on the same side of H (two points lie on the same side of II if the 
segment connecting them does not meet iT). 
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We are interested in choosing the points a t so as to maximize the number 
of faces of S. For this purpose it is fairly clear t ha t we may assume the points 
to be in general position, t ha t is, no n + 1 points of S lie in a hyperplane, 
for if such degeneracy did occur, one could per turb the position of the points 
of S slightly without reducing the number of its faces. General position will 
henceforth be assumed. 

Notations. If a = («i, . . . , an) is a point of n-space, we denote by a the 
point in (n + l)-space given by à = («i, . . . , an, 1). If ah . . . , an are points 
in w-space, we denote their determinant by D(ai, . . . , an). For any number a 
we define sg(a) to be the usual signum function equal to 1, — 1 , or 0 according 
as a is positive, negative, or zero. 

Our s tar t ing point is the following probably well-known fact. 

L E M M A 1. If aï} . . . , an, b, c are in general position in n-space, then b and c 
are separated by the hyperplane through ah . . . , an if and only if 

D(b, ai, . . . , an) and D(c, â\, . . . , ân) 

have opposite signs. 

Proof. The hyperplane H through the at is given by 

H = {x\x = X>2az-, 2 > * = 1} 

and the segment [b, c] is given by 

[J, c] = {x\x = $b + yc; 0, y > 0, 0 + y = 1}. 

T h u s H separates b and c if and only if the equation 

XI otfli = fib + yc 

has a solution with 0, y > 0 (neither can be zero because of their general 
position), or equiveilently (letting a{ = a^jy, (3f = /3/y), 

E a / a , = P'b + c 

has a solution with /3' > 0. Bu t if we solve the last equation for 0 ' by Cramer ' s 
rule, we have 

Q' _ _ •£*(£> S i , • • • , g w ) 
D(b,ah . . . ,an) 

so t h a t 0 ; > 0 if and only if the condition of the lemma is satisfied. 
As a consequence of the lemma we obtain a criterion for a subset of S to 

be a face. 

T H E O R E M 1. The subset F = {ai, . . . , an] is a face of S if and only if the 
determinants D(a, ah . . . , an) have the same sign for all a in S — F. 
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3. The case N = n + 2. We shall denote the points of S by au a2, . . . , 
an+2 and we shall denote by D(at) the determinant D(à\} . . . , ôVi> a î+i, . . . , 
aw+2) in which a* has been omitted from the sequence. We denote by D{a1} a%) 
the determinant D(âj, ai, . . . , âVi, â\-+i, . . . , an+2) in which the jth term is 
moved to the beginning of the sequence and the ith term is omitted. 

Now define a function <j> on S which assigns to each a* either 1 or —1 as 
follows : 

<j>{a%) = ( - l ) ' s g £(<*,). 

Note that ( - l ) ' ^ , ) = sgD(at). 

THEOREM 2. 7w i 9e j the set F = S — {ait aj] is a face if and only if 
<j>{al) = -<t>(aj). 

Proof. Say i <j. By Theorem 1, F is a face if and only if sg D(a*, %) = 
sg D(aj} ai). By the elementary properties of interchanging rows of a deter­
minant we have 

sgD&uâj) = (-l)*-*sg £>(<*,) = (-1)*-!(•»l)^(ay) = ( - l ) ^ - ^ ( ^ ) 

and 

sgZ)(a,,«,) = ( - l ) ^ s g D ( ^ ) = ( - 1 ) ^ 2 ( - I ) ^ ( a 0 = ( - l ) ^ - ^ ( a , ) , 

hence, 0(a*) = ~~<K#i)> a s asserted. 

From Theorem 2 it follows at once that the maximum number of faces 
cannot exceed the number v of pairs {au a^ such that 0(^0 a n d <t>{dj) have 
opposite signs. But v is clearly maximized by having ct>{ax) = 1 for "half" of 
the at or more precisely for %n + 1] of the a{. This gives the numbers 

_ J \\hl + 2)]2 forn even, 
" ~ l [ i ( »+ l ) ] [* (» + 3)] fornodd, 

which agrees with formula (1) when N = n + 2. 

4. The case iV = w + 3. We write 5 = {au . . . , an+z) and denote by 
D(âiy âj) the determinant obtained by omitting a* and â  from the sequence 
au . . . , ân+3, and we denote by D(àkf o\-, âj) the determinant obtained from 
the same sequence but in which ak has been moved to the beginning of the 
sequence. 

Now define 0 on pairs {af, aj] by the rule 

<t>{au aj] = ( — l)i+JsgD(âit âj) 

and note that ( — l)i+y<£{az-, a3) = sgD{âhâj). 

THEOREM 3. If i < j < k, then F = S — {a{, ajt ak] is a face of S if and 
only if 

(2) <t>{auaj} =<t>{aj,ak} = — 4>{au ak). 
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Proof. By Theorem 1, F is a face if and only if 

sg D{àu âj, âk) = sgD(àj, âif âk) = sgD(àk, âu âj). 

Now 

sgD(Sitâj,âk) = (-l)^sg D(âJtûk) = (-l)*+>+*-ty{a,,a*}, 
sgD(Sj9âuâk) = (-iy-*sgD(âi9âk) = ( - l )™*- 2 *{a , , a , t} , 
sgD(ak,âitâj) = (-l)k-zsgD(âifâj) = (-l)'+'+*-"tf{a,,a,} f 

so (2) is verified. 

Of course, Theorems 2 and 3 are special cases of a general theorem for 
arbitrary N, but since we shall only need the results in special cases, we have 
chosen to avoid the calculations and definitions needed in the general case. 

Because of Theorem 3 our problem can be reduced to a problem in graph 
theory. We consider a graph whose vertices are the points at and whose edges 
are all pairs {aiy aj}. Such a graph is called a complete graph with N vertices. 
We now orient the edges of the graph as follows: for i <j we orient {au dj] 
in the direction from at to dj (from a3 to af) if 4>{au aj} = 1 (if </>{az-, ay} = — 1). 
Condition (2) is then equivalent to the requirement that {au ajy ak] be the 
vertices of a cyclic triangle. If we can find an upper bound for the number of 
such triangles, this will, in view of Theorem 3, give an upper bound to the 
number of faces of our polytope. 

THEOREM 4 (Clark). The maximum number of cyclic triangles in an oriented 
complete graph with N vertices is 

2 ( ^ 3 + 2 ) ) fortfeven, 

( * ( V 3 ) ) + (*(iV3+1)) f0riV°dd-
Proof. We observe that every non-cyclic triangle contains exactly one 

vertex at which two edges terminate. Let Tt be the number of edges ter­
minating at the vertex at. Then any pair of such edges will belong to a non-
cyclic triangle. Hence, there are Ti(Tt — l ) /2 non-cyclic triangles associated 
with at and, therefore, there are in all 

(3) \ E Tt(Tt - 1) = | D Tt - \ £ Tt 

non-cyclic triangles in the graph. 
On the other hand, the sum of the Tt is the total number of edges, i.e., 

(4) £ Tt = N(N-l)/2, 
1 = 1 

and combining this with (3) we see that in order to maximize the number of 
cyclic triangles we must minimize 
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N 

1 = 1 

subject to (4). 
The simple "calculus" solution to this constrained minimum problem is 

given by Tt = J(iV — 1), and, therefore, this is also the diophantine solution 
when N is odd. In this case substituting in (3) gives for the number of non-
cyclic triangles 

N(N - 1)(/Y - 3)/8 

and subtracting from the total number of triangles, N(N — l)(Ar — 2)/6, 
gives (N + 1)N(N — l) /24. A simple calculation shows that this agrees with 
the assertion of the theorem. 

In case N is even, the minimum is achieved by setting all Tt equal to 
%N or \N - 1, for if, say, Tl = §N + p, p > 0, then because of (4) some Tt 

is at most \N — 1, say, T2 = \N2 — q, q > 0. But then £ 7 Y could be further 
decreased by letting Tx = ±N + p - 1, T2 = %N - q + 1. 

Again from (4) it is necessary that Tt = ^N for \N values of i and 
Ti = |iV — 1 for the other %N. Hence, a lower bound for the number of 
non-cyclic triangles is 

%N X %N X $(%N - 1) + %N X § ( i # - 1){\N - 2) = ^(A r - 2)2/8 

and subtracting from the total number of triangles gives 

(N + 2)N(N - 2)/24, 

which is the desired number. 
We finally note that the numbers given in Theorem 4 give an upper bound 

to the number of faces of a poly tope with N vertices in (N — 3)-space. On 
the other hand, substituting n = N— 3 in formula (1) gives precisely these 
numbers, and since we know that these numbers are realized by the cyclic 
polytopes, it follows that the numbers are also realized by suitable graphs. 

5. The general case. Although the conjecture on the maximum number 
of faces has not been proved in general, the procedure for constructing the 
related combinatorial problem can be generalized. We conclude by stating 
this problem and the corresponding conjecture, a proof of which would give 
an affirmative answer to the original conjecture on convex polytopes. 

Let S be the set of integers {1, 2, . . . , N} and let 4> be a function which 
assigns to every (m — l)-element subset of 5 either 1 or — 1 . 

An w-element subset {ai, . . . , am] of 5 is said to be oriented by </> if the 
numbers 

( - l ) V ( a i , ...,âk,...,am] 
are all equal. 

Problem. Find <j> which maximizes the number of oriented m-element sets. 
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Conjecture. The maximum is achieved by defining <£ according to the rule 

m— 1 
, ( > i + 1 -r V* • even, 

<£{ai, . . . ,am_i{ = ^ if 2^ a^ is , , 

For this case one can easily show that the number of oriented m element 
sets is 

(\{m + N)\ (\{m + N - 2 ) \ .f , . . . 
I / + \ / if w + iv is even, 
\ m / \ m / 

J\(m + N-\)\ .( JLAT. AA 
21 I if m + N is odd. 

\ w / 
We have here proved the conjecture for m = 2 and m = 3. 
Added in proof. Since this was written, Klee has shown (2) that formula (1) 

holds provided N > (n/2)2 — 1. Some results announced by Motzkin (3) are 
also relevant. 
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