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In this study, we obtain the continuum equations of Arctic sea ice motion starting from
the dynamics of a single floe and show that the rheology that emerges from floe–
floe interactions is viscous – as conjectured by Reed and Campbell (J. Geophys. Res.,
vol. 67 (1), 1962, pp. 281–297). The motion of the floe is principally driven by the wind
and ocean currents and by inelastic collisions with the neighbouring floes. A mean-field
representation of these collisions is developed, neglecting any changes in the floe thickness
due to thermal growth and mechanical deformation. This mean-field representation
depends on the state of the ice cover, and is expressed in terms of ice concentration and
mean thickness. The resulting Langevin equation for the floe velocity, or the corresponding
kinetic equation (Kramers–Chandrasekhar equation (KCE)) for its probability density,
provides a complete description of the floe’s motion. We then use the floe-scale dynamics
to obtain a continuum description of sea ice motion through a Chapman–Enskog analysis
of the KCE. The local equilibrium solution to the kinetic equation is found to be the
Laplace distribution, in qualitative agreement with observations. Our approach also allows
us to establish the dependence of pressure and shear viscosity of the ice cover on ice
concentration and mean thickness. Lastly, we show that our results resolve a conflict
associated with the choice of the value of shear viscosity in previous idealised numerical
studies of Arctic sea ice motion.

Key words: sea ice

1. Introduction
The importance of the Arctic sea ice cover in the climate system stems primarily from its
influence on the Earth’s radiation budget, which it exerts through its relatively large albedo
(Kwok & Untersteiner 2011). Despite its importance, predicting changes in the ice cover
accurately, subject to prescribed forcings, still remains challenging. One of the principal
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challenges associated with making this prediction is related to the dynamics of the ice
cover (Rothrock 1975a; Kwok & Untersteiner 2011; Rampal et al. 2011; Fox-Kemper et al.
2021).

The ice cover is not continuous, but is made up of a very large number of floes of
different shapes, sizes and thicknesses (Thorndike et al. 1975; Rothrock & Thorndike
1984). It can be inferred from field and satellite observations that sea ice behaves
differently at different length scales: at the scale of an individual floe it moves like a
deformable solid body (Parmerter 1975; Vella & Wettlaufer 2008), but at much larger
scales it moves like a highly viscous fluid (Reed & Campbell 1962). This suggests that the
following two approaches can be used to study its motion (see Solomon (1970) for a more
general discussion).

(i) In the first approach, the motion of individual ice floes is studied by solving
Newton’s equations for each floe taking into account any floe–floe interactions. From
these solutions, one then extracts statistical information (Thorndike & Colony 1982;
Colony & Thorndike 1984, 1985; Thorndike 1986; Rampal et al. 2009; Agarwal &
Wettlaufer 2017) that is used to describe the motion of the ice cover at much larger
length scales.

(ii) In the second, one takes the ice cover to be a continuum and develops rheological
models to relate the internal stress field to the other macroscopic variables, including
the thickness distribution of ice (Thorndike et al. 1975; Toppaladoddi & Wettlaufer
2015, 2017; Toppaladoddi, Moon & Wettlaufer 2023). This is then used in the Cauchy
equation, with appropriate boundary conditions, to solve for the velocity field.

A principal aim of both these approaches is to predict the statistical properties of the ice
velocity field. Both approaches have their advantages and limitations, but the focus since
the Arctic Ice Dynamics Joint Experiment (AIDJEX) expedition in the 1970s has been
on developing observationally consistent rheological models (Rothrock 1975a; Feltham
2008).

The first attempt to include floe–floe interactions into the dynamics of sea ice was by
Sverdrup (1928). He represented the internal ice resistance using a frictional force that
was proportional to the floe velocity, but always in the direction opposite to it. However,
this formulation is not completely correct as friction can both decelerate and accelerate an
object depending on the relative velocity (Reed & Campbell 1962; Solomon 1970). A more
generalised description of the floe–floe interactions was developed by Solomon (1970) and
Timokhov (1970), who considered deterministic and stochastic drift of ice, respectively,
in one dimension. In a more general approach, the ice cover has been treated as a two-
dimensional granular gas to understand the emergence of internal stress from floe–floe
collisions (Shen, Hibler & Leppäranta 1987) and the motion of ice floes in the marginal
ice zone (Feltham 2005).

In order to study the emergence of internal stress from floe–floe collisions and the
fracturing of floes, detailed numerical investigations have been performed using the
molecular dynamics (Herman 2011, 2013) and discrete element modelling (Hopkins
1996; Hopkins & Thorndike 2006; Herman 2016) approaches. Furthermore, new discrete
element methods have been developed to: (i) simulate ice dynamics in a Lagrangian
frame (Damsgaard, Adcroft & Sergienko 2018); (ii) resolve changes in the floe geometry
resulting from collisions and mechanical deformation (Manucharyan & Montemuro 2022);
(iii) capture dynamic sea ice patterns (West et al. 2022); (iv) study pressure ridging
(Damsgaard, Sergienko & Adcroft 2021); and (v) understand the interactions between
sea ice and ocean waves (Herman 2017). These new methods use different models to
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represent floe–floe interactions, including Coulomb friction models (Damsgaard et al.
2018; Manucharyan & Montemuro 2022).

More recently, the μ(I ) rheology – which was originally developed to model the
viscoplastic flows of dense granular materials (da Cruz et al. 2005) – has been used
to describe the flow of sea ice in the marginal ice zone. Herman (2022) and de Diego
et al. (2024), assuming sea ice rheology to be the μ(I ) rheology, have used data from
their discrete element simulations to infer the friction coefficient, μ, and dilatancy, Φ, as
functions of the inertial number, I , which is defined as the ratio of inertial to pressure
forces (da Cruz et al. 2005). The dimensionless parameter I determines the state of the
system which can be quasistatic (I � 10−3) or collision dominated (I � 10−1), with an
intermediate transition regime (10−3 < I < 10−1) (da Cruz et al. 2005).

Simulating the dynamics of individual floes using discrete element methods provides
the most detailed description of the ice cover; however, this approach becomes
computationally prohibitive when extended to large spatial domains (Manucharyan &
Montemuro 2022). One way to circumvent this computational difficulty is through the
use of a continuum description of the ice cover. The collective motion of ice floes on
length scales much larger than the floe scale can be approximated as that of a continuum
(Thorndike et al. 1975). In this case, the equations that describe the evolution of the
ice cover are the mass balance and Cauchy equations (Untersteiner 1986). The principal
challenge associated with this approach has been in determining the constitutive equation
for the internal stress (Rothrock 1975a). This task is made more difficult by the fact that
the stress field in the ice cover depends not just on strain and strain rate but also on
ice thickness and its distribution (Untersteiner 1986). Hence, understanding the coupling
between the dynamics and the state of the ice cover, which is quantified by the thickness
distribution of sea ice (Thorndike et al. 1975; Toppaladoddi & Wettlaufer 2015), is
necessary.

The internal stress field in the ice cover is a consequence of the mechanical interactions
between the constituent ice floes (Evans 1970; Rothrock 1975a). However, unlike in
the kinetic theory of gases, where molecules are assumed to interact only via elastic
collisions (Harris 1971; Chapman & Cowling 1990), there are different modes of
interaction – rafting, ridging, shearing and jostling – between ice floes (Parmerter & Coon
1972; Rothrock 1975a; Parmerter 1975; Vella & Wettlaufer 2008). This makes it more
challenging to develop a Boltzmann-like theory for the velocity distribution, although
the development of such a theory has been attempted in the context of Saturn’s rings
(Goldreich & Tremaine 1978), where the shearing and jostling modes of interaction
between ice particles are possible. In addition to the above four modes, the individual
ice floes can also fracture due to thermal stresses (Evans & Untersteiner 1971) and due to
interactions with ocean waves (Asplin et al. 2012).

A feature that is common to all these modes of interaction is that they happen over
time and length scales much shorter than those that characterise the geophysical-scale
evolution of the ice cover (Toppaladoddi & Wettlaufer 2015). This naturally leads to
the following questions which any theory of sea ice rheology must address in one form
or another. (i) What contributions do these different modes of interaction make to the
rheology of the ice cover? (ii) What modes of interaction are important on different time
scales? (iii) How are these interactions incorporated into a continuum description of the
ice cover? Indeed, we will use these questions to guide us in the development of our
own theory. In the development of viscous and plastic rheological models for sea ice,
considerable emphasis was placed on the connection between the floe–floe interactions
and the continuum behaviour (Rothrock 1975a). For this reason, we present a detailed
discussion of these models here.
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Some of the earliest rheological models proposed to study ice dynamics were the
viscous models (Reed & Campbell 1962; Campbell 1965; Rothrock 1975a). Based on
their qualitative observations of sea ice motion, Reed & Campbell (1962) argued that the
floe–floe interactions (shearing and jostling) should transport momentum from the faster
moving to slower moving regions of the ice cover. This led them to propose a Newtonian
rheology for sea ice. Subsequently, Nye (1973) and Hibler (1977) provided more detailed
arguments for the viscous behaviour to be viewed as the averaged response of the ice cover
over long time and large length scales. There are a few variants of the viscous model that
have been suggested, but not all are physically consistent (Rothrock 1975a).

The viscous model of Rothrock (1975a,b), in combination with a divergence-free
velocity field, produces realistic drift of the Arctic ice cover. However, the viscous models
of sea ice, in general, suffer from the following two limitations. The first limitation is
that there is no theoretical framework to estimate the values of shear and bulk viscosity
coefficients; hence they can only be determined empirically (Rothrock 1975a). The second
is that there is no agreement on what the correct values of the viscosity coefficients are: in
previous studies, the value of shear viscosity had to be varied by three orders of magnitude
to reproduce numerically the different features of the ice cover (Rothrock 1975a,b). These
results suggest that the viscosity coefficients depend strongly on the state of the ice
cover. However, to our knowledge, there have been no attempts at developing a more
systematic theory to connect these rheological properties to the thickness distribution.
A more detailed discussion of the viscous models can be found in the review by Rothrock
(1975a).

The limitations of the viscous models, along with the difficulty of making stronger
connections between them and the modes of floe–floe interactions, might be the key
reasons why these models were abandoned and, at the same time, motivated the
development of complex rheological models. During the AIDJEX project, a detailed study
of the ridging/rafting processes was undertaken (Parmerter & Coon 1972; Parmerter 1975),
and this led Coon et al. (1974) to develop the elastic–plastic rheological model. In this
model, sea ice behaves like an elastic solid when the stress state lies in the interior of the
yield curve, which is given by F(σI , σI I ) = 0, where F is the yield function and σI and
σI I are the two invariants of the two-dimensional stress tensor σ . When the stress state
lies on the yield curve, the deformation rate is given by the plastic flow rule,

ε̇ p = λ ∂ F

∂σ

∣∣∣∣
F=0

. (1.1)

Here, ε̇ p is the plastic rate-of-strain tensor and λ is a scalar that has to be determined as
a part of the solution (Coon et al. 1974). We note that the plastic flow rule (1.1) can be
arrived at using a variational argument (Howell, Kozyreff & Ockendon 2009).

The justifications provided for the elastic–plastic model are that (Coon et al. 1974):
(i) during ridging/rafting of ice floes the work done against gravity, assuming no energy
loss to friction, appears as the potential energy of the ridged/rafted floes, with the end
result being independent of the rate at which ridging/rafting proceeds; and (ii) sea ice
shares visual similarity with other materials that have been successfully modelled using
plastic rheologies. Furthermore, Coon et al. (1974) linked the yield function of the plastic
response to the thickness distribution, thus coupling the rheology to the state of the ice
cover. These ideas also led to the subsequent development of viscous–plastic (Hibler
1979) and elastic–viscous–plastic (Hunke & Dukowicz 1997) models, which are some
of the more widely used rheological models in current climate models (Keen et al. 2021).
This is because they are easier to implement numerically than the elastic–plastic model
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(Hibler 1979; Hunke & Dukowicz 1997; Feltham 2008). More recently, anisotropic
(Wilchinsky & Feltham 2004; Tsamados, Feltham & Wilchinsky 2013) and brittle (Girard
et al. 2011; Bouillon & Rampal 2015; Dansereau et al. 2016; Ólason et al. 2022)
rheological models have been developed to capture some of the observed features in
pack ice.

Results from these different rheological models have been compared with observations
for fluctuations in sea ice extent (Agarwal & Wettlaufer 2018), trends in sea ice drift and
acceleration (Rampal et al. 2011) and linear kinematic features in pack ice (Bouchat et al.
2022; Hutter et al. 2022). These studies show that the rheological models reproduce the
observed features with mixed degrees of success.

From this discussion of the literature, it is clear that the focus of the past studies was
either on floe-scale dynamics or on the development of rheological models. Although the
development of viscous and plastic rheologies were motivated by the need to understand
the consequences of floe–floe interactions on the dynamics at the continuum scale,
any connection between the dynamics at these extreme scales remains tenuous. To our
knowledge, there have been no attempts to systematically bridge the gap between these
two scales. Hence, our goal here is to obtain the rheological properties of sea ice starting
from the floe-scale dynamics. We achieve this using tools from statistical physics (Harris
1971; Chapman & Cowling 1990).

We begin by first constructing a mean-field description of the stochastic motion of
a single floe. Our picture of the mean-field approximation of floe–floe interactions is
analogous to that of a Brownian particle subjected to dry frictional force (Elmer 1997;
de Gennes 2005; Hayakawa 2005) in an external force field. The introduction of the
dry (or Coulomb) friction, whose direction depends on the sign of the relative velocity
of the floe with respect to the mean velocity, addresses the principal shortcoming of
Sverdrup’s model (Sverdrup 1928). This approach allows us to obtain a generalised
Fokker–Planck equation, also called the Kramers–Chandrasekhar equation (Kramers
1940; Chandrasekhar 1943), for the probability density function (PDF) of velocity
fluctuations. We then obtain the continuum equations of motion through a Chapman–
Enskog analysis (Lebowitz, Frisch & Helfand 1960; Chapman & Cowling 1990) of this
equation. In our case, the Newtonian rheology that emerges at large scales is a direct
consequence of the dynamics at the floe scale.

The remainder of the paper is organised as follows. We begin in § 2 with the
development of the stochastic model for the motion of an ice floe and obtain the kinetic
equation for the PDF of its velocity. In § 3, we perform a Chapman–Enskog analysis of the
kinetic equation and obtain the continuum equations of motion, including the rheological
model that emerges from the floe-scale dynamics. Then, in § 4, we compare some of our
results with observations and idealised large-scale simulations of ice drift, and then end
with a summary of our study in § 5.

2. Stochastic drift of an ice floe
Here we consider the motion of a single floe and develop a mean field theory for its
interactions with its neighbouring floes. For simplicity, we consider the ice floe to be a
rigid circular disc with thickness h and radius R (see figure 1). In the region containing
the floe, the ice concentration, which is defined as the fraction of the area of this region
covered by ice, is C and the mean thickness of the ice cover is H. Apart from these bulk
quantities, we ignore all other details – such as the geometry, thickness and floe size – of
the neighbouring floes.
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Ice f loe Ocean

x

y

Figure 1. Schematic of the domain considered. The ice floe considered (in black) is assumed to be a circular
disc with radius R and thickness h. The ice concentration and the mean thickness in the region containing this
floe are taken to be C and H, respectively.

2.1. Langevin equation
The equations governing the horizontal motion of the floe are

dx
dt

= v, (2.1)

and

d
dt

(m v) = Fa +B ξ(t) − Fo + FG + FH − 2 m Ω0 k × v −F S(v − u∞). (2.2)

Here, x = (x, y) is the position vector, v = (u, v) is its two-dimensional velocity and
m is the mass of the ice floe. The wind forcing is separated into mean, Fa(x, t),
and fluctuations, B ξ(t), with B being the amplitude of the fluctuations and ξ(t) being
Gaussian white noise. The ocean drag force is represented by Fo(x, t), which subsumes
the contributions from skin friction and form drag (Steele, Morison & Untersteiner 1989).
Forces due to gradients in the atmospheric pressure and sea surface height are represented
by FG(x, t) and FH (x, t), respectively. The fourth term on the right-hand side of (2.2)
represents the Coriolis force with Ω0 being the Coriolis frequency and k the unit vector
along the vertical. The last term represents the force on the floe that results from its
interactions with the neighbouring floes. We model this force using Coulomb’s dry friction
model (Elmer 1997); F ≡F[g(x, h, t)] represents the magnitude of the frictional force,
g(x, h, t) is the sea ice thickness distribution, and S is a unit vector given by

S(v − u∞) = v − u∞

|v − u∞| , (2.3)

where u∞ is the mean velocity. The function S is a generalisation of the sign function for
a two-dimensional vector. Introducing the fluctuating velocity as v′ = v − u∞, we write
(2.3) as

S(v′) = v′

|v′| . (2.4)

Here, we ignore any rotational motion of the floe caused by floe–floe interactions. The
magnitude F represents the minimum force required to set the floe into motion starting
from rest, and hence represents the threshold value of the frictional force. To establish the
dependence of F on g(x, h, t), we follow Hibler (1979) and use the first two moments of
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Figure 2. The qualitative behaviour of the threshold force F with varying values of (a) mean thickness (H)
and (b) concentration (C). In (a) the value of C is fixed to 0.8, and in (b) the value of H is fixed to 2 m.
The values of the other parameters are F0 = 1 N, H0 = 1.5 m and C0 = 0.3.

g(x, h, t), which are C and H. In terms of g(x, h, t), these are given by (Toppaladoddi
et al. 2023)

C(x, t) =
∫ ∞

0+
g(x, h, t) dh, (2.5)

and

H(x, t) =
∫ ∞

0+
h g(x, h, t) dh. (2.6)

The dependence of F on C and H is determined by considering the following:

(i) in the limits C → 0 and/or H→ 0 the interaction term should vanish as the ice cover
vanishes;

(ii) as C → 1, the threshold force F becomes independent of C as the number of ice floes
that could interact with the chosen floe saturates;

(iii) F should increase with increasing H as the resistance offered by the neighbouring
floes increases.

A functional form of F that satisfies these constraints is

F(C,H) =F0

[
exp

( H
H0

)
− 1

]
tanh

( C
C0

)
. (2.7)

Here, F0 depends on ice strength and the amplitude of wind forcing, but for simplicity
we assume it to be a constant; H0 is the equilibrium thickness which from observations
is 1.5 m (Toppaladoddi & Wettlaufer 2015) and the value C0 = 0.3 is chosen such that
tanh(C/C0) = 1 for C � 0.8. Figure 2 shows the qualitative behaviour of F with varying
values of H and C. We should emphasise here that this functional form is not unique.

In introducing the floe–floe interaction term in (2.2), we have made the following
assumptions: (i) (inelastic) collisions that involve only jostling and/or shearing between
ice floes are important, and (ii) the role of collisions here is to drive the velocity to its
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mean value, u∞. On shorter time scales the motion of the ice floes is determined by wind
forcing (Thorndike & Colony 1982), which results in the different modes of interaction
between ice floes discussed in § 1. Assumptions (i) and (ii) imply that only the shearing
and jostling modes drive the system towards local equilibrium and the other two modes
(rafting and ridging) do not. Hence, the rheology of the ice cover for large time and length
scales will be determined by the shearing and jostling modes.

Our model can be justified using the following arguments. If N (� 1) is the total number
of floes, then any description of a single floe requires us to take into account its interactions
with its n(� N ) nearest neighbours. However, the construction of a system of coupled
deterministic/stochastic differential equations for these localised interactions would also
require us to take into account the interactions of the neighbouring floes with their own
nearest neighbours. Hence, any description of the dynamics of a subset of the N floes leads
to a closure problem, which is similar to the closure problem encountered in the kinetic
theory of gases (Grad 1958; Harris 1971). Consequently, some assumptions would have
to be made to truncate the problem. The mathematical form of the interactions in (2.2)
represents a mean-field approximation of these interactions. This term embodies the fact
that the collisions between the floe and its neighbours are due to the different velocities
with which they move. However, if they all were to move with the mean velocity u∞ then
they would not collide with each other, in which case S = 0. It is important to highlight
that the mathematical representation of the floe–floe interactions in (2.2) permits both
acceleration and deceleration of the ice floe depending on the sign of the fluctuation.

Assuming m to be a constant, which implies the absence of thermal growth and ridging
and rafting of ice floes, (2.2) becomes

dv

dt
= 1

m
Fext − f S(v′) + b ξ(t), (2.8)

where Fext = Fa − Fo + FG + FH − 2 m Ω0 k × v, b =B/m and f =F/m. We are
interested in the statistical properties of v; but, unlike for the Langevin equation for the
classical Brownian motion problem (Uhlenbeck & Ornstein 1930; Reif 1965), it is difficult
to solve (2.8) to obtain the moments of v because of the nonlinear function S. For this
reason, and for developing a continuum theory, we consider the PDF of v.

2.2. The Kramers-Chandrasekhar Equation (KCE)

The generalised Fokker–Planck equation or the KCE for the PDF, P̃(x, v, t),
corresponding to (2.8) is

∂ P̃

∂t
+ v · ∇x P̃ + Fext

m
· ∇v P̃ = ∇v · {[ f S(v′)] P̃ + D ∇v P̃}. (2.9)

Here, P̃(x, v, t) dx dv represents the probability that the floe’s velocity lies in the range
(v, v + dv) and in a region (x, x + dx) at time t , ∇x and ∇v are the gradient operators
in physical and velocity spaces, respectively, and D = b2/2 is the diffusion coefficient
for diffusion of P̃ in velocity space. The procedure for obtaining (2.10) using (2.8) is
a standard one and is found elsewhere (Chandrasekhar 1943; Doering 2018). We now
introduce P = m N P̃ , with N being the total constant number of floes, such that P dx dv
gives the mass in the phase-space volume element dx dv. To obtain the evolution equation
for P we multiply (2.9) with m N , which gives

∂P
∂t

+ v · ∇xP + Fext

m
· ∇vP = ∇v · {[ f S(v′)]P + D ∇vP}. (2.10)
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Assuming the correlation time scale associated with the velocity fluctuations of the floe to
be smaller than Ω−1

0 , we can neglect the Coriolis effect on the velocity fluctuations. This
then leads to these fluctuations being isotropic. (We will test the veracity of this assumption
by comparing our results with observations.) In addition, although the Coriolis force
influences the route to equilibrium, the equilibrium solution itself should be independent
of it. This is because the Coriolis force does not contribute to the relaxation of the system
like the floe–floe collisions do. The Coriolis effect here is qualitatively similar to the effect
of a weak magnetic field acting on a charged Brownian particle; the equilibrium PDF in
this case is independent of the magnetic field (Wycoff & Balazs 1987). Hence, following
Maxwell (1860), we conclude that the equilibrium PDF should be an even function of
(v − u∞). However, contrary to Maxwell’s assumption (Maxwell 1860), the fluctuations
in u and v are not independent because of the coupling through S(v′).

The macroscopic variables are now obtained as moments of P (Harris 1971; Chapman &
Cowling 1990):

(i) mass density,

ρ(x, t) =
∫
P(x, v, t) dv; (2.11)

(ii) momentum density,

ρ(x, t) u∞(x, t) =
∫

v P(x, v, t) dv; (2.12)

(iii) energy density,

ρ(x, t) E(x, t) = 1
2

∫ (
v − u∞)2 P(x, v, t) dv. (2.13)

Here, ρ denotes the mass density per unit area in the chosen region; it is, however,
not related to the mass density of the ice floe itself, which has the units of mass per
unit volume. In the case of a dilute gas, the kinetic energy associated with the velocity
fluctuations (2.13), in/close to equilibrium, is related to the temperature of the gas (Harris
1971; Chapman & Cowling 1990; Lifshitz & Pitaevskii 2005). In our case, however, the
velocity fluctuations do not have any thermodynamic significance.

3. The continuum theory

3.1. The macroscopic equations
As the macroscopic variables are obtained as moments of P ((2.11)–(2.13)), the equations
that govern their spatiotemporal evolution are obtained as appropriate moments of (2.10).
To simplify the analysis, we make a change of variables from (xo, v, to) to (xn, v′, tn),
where the subscripts ‘o’ and ‘n’ stand for old and new. Using v = u∞ + v′, we obtain the
transformed differential operators as (Chapman & Cowling 1990):

(i) time derivative,

∂

∂to
= ∂

∂tn
− ∂u∞

∂tn
· ∂

∂v′ ; (3.1)
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(ii) spatial gradient operator,

∂

∂xo
= ∂

∂xn
− ∂u∞

∂xn
· ∂

∂v′ ; (3.2)

(iii) velocity gradient operator,

∂

∂v
= ∂

∂v′ . (3.3)

Hence, the transformed KCE is

∂P
∂t

+ (u∞ + v′) · ∇xP + Fext

m
· ∇v′P − v′ · (∇x u∞ · ∇v′P)

= ∇v′ · {[ f S(v′)]P + D ∇v′P}, (3.4)

where the subscript ‘n’ has been dropped. The following macroscopic equations are
obtained by multiplying (3.4) by 1, v′ and v′2/2 and integrating with respect to v′:

(i) mass balance equation,

∂ρ

∂t
+ ∇x · (ρ u∞) = 0; (3.5)

(ii) momentum balance equation,

Du∞

Dt
= 1

m
(Fa − Fo + FG + FH ) − 2 Ω0 k × u∞ + 1

ρ
∇x · σ , (3.6)

where
D
Dt

= ∂

∂t
+ u∞ · ∇x (3.7)

is the total derivative, and the stress tensor, σ , is given by

σ (x, t) = −
∫

v′ v′ P(x, v′, t) dv′, (3.8)

which has the units of force per unit length;
(iii) energy balance equation,

D
Dt

(ρ E) + ρ E ∇x · u∞ = −∇x ·Q− σ : ∇x u∞ + 2
(

D − f
∫

|v′|P dv′
)

,

(3.9)

where |v′| is the magnitude of v′, and

Q(x, t) = 1
2

∫
v′ v′2 P(x, v′, t) dv′ (3.10)

is the ‘heat flux’ vector.

Except for the last term in (3.9), these equations are similar to the ones that have been
obtained for a dilute gas (Harris 1971; Chapman & Cowling 1990) and for non-interacting
classical Brownian particles (Lebowitz et al. 1960; de Groot & Mazur 2013). This term
represents the difference between the energy input from the wind forcing and the frictional
loss due to the inelastic collisions between the floe and its neighbours. Energy balance can
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be achieved by demanding that these two terms balance, but this would imply that the
amplitude of fluctuations in wind forcing changes with the state of the ice cover. This is
clearly unphysical; hence, these two terms in principle do not balance. Due to the lack
of any thermodynamic significance of the velocity fluctuations, we shall not consider the
energy balance equation any further.

To complete the momentum balance equation we have to evaluate the integral in (3.8)
to determine σ , and to do this we need to solve the KCE (2.10).

3.2. Chapman–Enskog analysis
In order to obtain solutions to (2.10) using the Chapman–Enskog method (Lebowitz et al.
1960; Lifshitz & Pitaevskii 2005; de Groot & Mazur 2013), we first make the equation
dimensionless by choosing R as the length scale, Ω−1

0 as the time scale, R Ω0 as the
velocity scale and m/(Ω2

0 R4) as the scale for P . Using these, we get the dimensionless
KCE to be

∂Pd

∂td
+ vd · ∇xdPd + Fext

d · ∇vdPd = 1
ε

∇vd · {M S(v′
d)Pd + ∇vdPd

}
, (3.11)

where the subscript d denotes a dimensionless variable, ε = Ω3
0 R2/D, and

M= ( f R Ω0)/D is the dimensionless threshold force. As Ω0 ∼ 10−4 s−1, R ∼ 103 m
and D ∼ 1 m2 s−3, we have ε � 1. Using this small parameter we now expand Pd in a
perturbative series

Pd =P(0)
d + ε P(1)

d + ε2 P(2)
d + . . . , (3.12)

where P(0)
d is the local equilibrium distribution. We demand that

∫
P(0)

d

⎡
⎢⎢⎢⎣

1
vd(

vd − u∞
d

)2

2

⎤
⎥⎥⎥⎦ dv =

⎡
⎣ ρd

ρd u∞
d

ρd E

⎤
⎦, (3.13)

and that the deviations from the local equilibrium distribution do not contribute to the
macroscopic variables, i.e.

∫
P(i)

d

⎡
⎢⎢⎢⎣

1
vd(

vd − u∞
d

)2

2

⎤
⎥⎥⎥⎦ dv =

⎡
⎣0

0
0

⎤
⎦; i = 1, 2, 3, . . . . (3.14)

Using the expansion in (3.11) we get

ε

[
∂P(0)

d

∂td
+ vd · ∇xdP(0)

d + Fext
d · ∇vdP(0)

d

]
=

[
∇vd ·

{
M S(v′

d)P(0)
d + ∇vdP(0)

d

}]

+ ε
[
∇vd ·

{
M S(v′

d)P(1)
d + ∇vdP(1)

d

}]
+ O(ε2).

(3.15)
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3.2.1. Calculation of P(0)
d

Collecting terms of O(1) gives

∇vd ·
[
M S(v′

d)P(0)
d + ∇vdP(0)

d

]
= 0. (3.16)

To solve this equation, we introduce the drift vector L, which is defined as

L≡M S(v′
d) =M v′

d

|v′
d | . (3.17)

In component form, this is written as

(Lu′,Lv′) =
⎛
⎝M u′

d√
u′2

d + v′2
d

,M v′
d√

u′2
d + v′2

d

⎞
⎠ . (3.18)

Using ∇vd = ∇v′
d

it is easily seen from (3.18) that

∂Lu′

∂v′
d

= ∂Lv′

∂u′
d

= −M u′
d v′

d(
u′2

d + v′2
d

)3/2 , (3.19)

which implies that L can be expressed as the gradient of a potential, i.e. L= ∇v′
d
Φ, and

that the total probability flux vanishes everywhere (Risken 1996). The required solution is
readily found to be

P(0)
d (u′

d , v′
d) =N exp (−Φ). (3.20)

The integration constant N is determined by requiring that∫
P(0)

d dv′
d = ρd , (3.21)

where ρd = ρ/(m/R2) is the dimensionless mass density, and

Φ =
∫

Lu′ du′
d +

∫
Lv′ dv′

d . (3.22)

Using (3.18) to evaluate the integrals, we get

Φ = 2 M
√

u′2
d + v′2

d , (3.23)

which gives

P(0)
d (v′

d) = 2 ρd M2

π
exp

(−2 M |v′
d |). (3.24)

The solution P(0)
d represents the generalised Laplace distribution.

3.2.2. Calculation of P(1)
d

Next, at O(ε) we have

∇vd ·
{
M S(v′

d)P(1)
d + ∇vdP(1)

d

}
= ∂P(0)

d

∂td
+ vd · ∇xdP(0)

d + Fext
d · ∇vdP(0)

d . (3.25)

Using the solution (3.24) we evaluate the right-hand side of (3.25). To determine the time
and spatial derivatives we note that the dependence of P(0)

d on t and x is through the
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macroscopic variables. Hence, we get

∂P(0)
d

∂td
= ∂P(0)

d

∂ρd

∂ρd

∂td
+ ∂P(0)

d

∂u∞
d

· ∂u∞
d

∂td
+ ∂P(0)

d

∂C
∂C
∂td

+ ∂P(0)
d

∂Hd

∂Hd

∂td
, (3.26)

and

∂P(0)
d

∂xd
= ∂P(0)

d

∂ρd

∂ρd

∂xd
+ ∂P(0)

d

∂u∞
d

· ∂u∞
d

∂xd
+ ∂P(0)

d

∂C
∂C
∂xd

+ ∂P(0)
d

∂Hd

∂Hd

∂xd
. (3.27)

In the absence of thermal growth and ridging and rafting, the evolution equations for C
and Hd , where Hd =H/R, are given by (cf. Hibler 1979)

∂C
∂td

+ vd · ∇xdC = 0, (3.28)

and
∂Hd

∂td
+ vd · ∇xdHd = 0. (3.29)

Using (3.5), (3.6), (3.28) and (3.29) to eliminate the time derivatives in (3.26) and
combining all the terms on the right-hand side of (3.25) gives

right-hand side =
[
−∇xd · u∞

d + 2 M
|v′

d | v′
dv′

d : ∇xd u∞
d

]
P(0)

d . (3.30)

In writing (3.30) we have omitted all terms that are linear in v′
d because∫

v′
d P(0)

d dv′
d = 0. (3.31)

Equation (3.30) suggests the functional form P(1)
d = G P(0)

d (Lebowitz et al. 1960;
Lifshitz & Pitaevskii 2005), with

G = a
(
v′

dv′
d − 1

2 v′2
d δ

)
: ∇xd u∞

d . (3.32)

Here, a is a constant and δ is the Kronecker delta. This form of P(1)
d also satisfies the

constraints imposed in (3.14) (Lifshitz & Pitaevskii 2005). Using this in the left-hand side
of (3.25) gives

left-hand side = ∇vd ·
[
P(0)

d ∇vdG
]
. (3.33)

Evaluating the expression (3.33) and comparing it with (3.30), along with the
observationally consistent (Agarwal & Wettlaufer 2017) assumption that ∇xd · u∞

d ≈ 0,
gives a = −1/2. Hence, the required solution is

P(1)
d = −1

2

[(
v′

dv′
d − 1

2
v′2

d δ

)
: ∇xd u∞

d

]
P(0)

d . (3.34)

3.3. The stress tensor
Now, in order to determine the stress tensor we revert to the dimensional forms of (3.24)
and (3.34), as this makes it easier to obtain the rheological properties in dimensional form.
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These expressions are

P(0)(x, v′, t) = ρ(x, t) Λ2

2 π
exp

(−Λ |v′|), (3.35)

with Λ = 2 f/D, and

P(1)(x, v′, t) = − 1
2 D

[(
v′v′ − 1

2
v′2 δ

)
: ∇x u∞

]
P(0)(x, v′, t). (3.36)

Using (3.8), we have (in index notation)

σ
(0)
ik = −

∫
v′

i v′
k P(0) dv′ = −

∫
v′2 P(0) dv′ δik, (3.37)

which gives

σ
(0)
ik = −3 ρ

2
D2

f 2
0

[
exp

( H
H0

)
− 1

]−2

coth2
( C
C0

)
δik, (3.38)

where f0 =F0/m. This is the isotropic part of the stress tensor. We rewrite this expression
as

σ
(0)
ik = −Π δik, (3.39)

where

Π = 3 ρ

2
D2

f 2
0

[
exp

( H
H0

)
− 1

]−2

coth2
( C
C0

)
(3.40)

is the pressure. Clearly, we have Π � 0.
The deviatoric part of the stress tensor is given by

σ
(1)
ik = −

∫
v′

i v′
k P(1) dv′ = 1

2 D

∂u∞
m

∂xn

∫
v′

i v′
k

[
v′

m v′
n − 1

2
v′2 δmn

]
P(0) dv′. (3.41)

Assuming sea ice to be an isotropic material, the integral in the above equation can be
expressed in terms of only Kronecker deltas. The combination that on contraction with
indices m and n gives zero is (Lifshitz & Pitaevskii 2005)∫

v′
i v′

k

[
v′

m v′
n − 1

2
v′2 δmn

]
P(0) dv′ =A (δim δkn + δin δkm − δik δmn) . (3.42)

The value of A is found by contracting indices i and m and k and n (Lifshitz & Pitaevskii
2005), which gives

A= 1
8

∫
v′4 P(0) dv′. (3.43)

Hence,

σ
(1)
ik = 1

16 D

∂u∞
m

∂xn
(δim δkn + δin δkm − δik δmn)

∫
v′4 P(0) dv′. (3.44)

Evaluating the integral finally leads to

σ
(1)
ik = ρ

15 D3

32 f 4
0

[
exp

( H
H0

)
− 1

]−4

coth4
( C
C0

) (
∂u∞

i

∂xk
+ ∂u∞

k

∂xi

)
, (3.45)

where we have used ∇x · u∞ ≈ 0.
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The above equation can be written as

σ
(1)
ik = η γ̇ik, (3.46)

where

η = ρ
15 D3

16 f 4
0

[
exp

( H
H0

)
− 1

]−4

coth4
( C
C0

)
(3.47)

is the dynamic shear viscosity of the ice cover, and

γ̇ik = 1
2

(
∂u∞

i

∂xk
+ ∂u∞

k

∂xi

)
(3.48)

is the rate-of-strain tensor. It is apparent that η depends strongly on H(x, t) and C(x, t).
The momentum balance equation now becomes

Du∞

Dt
= − 1

ρ
∇xΠ + 1

m
(Fa − Fo + FG + FH ) − 2 Ω0 k × u∞ + 1

ρ
∇x · (η γ̇

)
.

(3.49)
This completes the development of our continuum theory.

4. Results
We shall now compare our theoretical results – both at the floe and continuum scales –
with observations and simulations. Setting up and solving a canonical problem has, in our
case, the disadvantage that there are no appropriate laboratory experiments to compare
the results with. For this reason, we have to rely on results from observational data
analyses (Rampal et al. 2009) and large-scale simulations of sea ice circulation in the
Arctic performed using Newtonian rheology (Rothrock 1975a).

4.1. Marginal distributions
We begin with the PDFs of velocity fluctuations. The marginal equilibrium distributions,
Pu′ and Pv′ , are obtained from the joint distribution (3.35) using

Pu′ =
∫ ∞

−∞
P(0)(u′, v′) dv′ = ρ Λ2

2 π

∫ ∞

−∞
exp

(
−Λ

√
u′2 + v′2

)
dv′, (4.1)

and

Pv′ =
∫ ∞

−∞
P(0)(u′, v′) du′ = ρ Λ2

2 π

∫ ∞

−∞
exp

(
−Λ

√
u′2 + v′2

)
du′. (4.2)

The integrals in (4.1) and (4.2) cannot be evaluated to give analytical expressions for Pu′
and Pv′ , so we determine them numerically. The components u′ and v′ enter (3.24) as
the fluctuating speed V ′ = √

u′2 + v′2. This makes obtaining the PDF for the fluctuating
speed, PV ′ , straightforward, which is found to be

PV ′ = ρ Λ2 V ′ exp
(−Λ V ′). (4.3)

For the purpose of comparing Pu′ , Pv′ and PV ′ with observations, we assume that ρ is
constant.

We use results from the analysis of the International Arctic Buoy Program data by
Rampal et al. (2009). A total of 450 drifters deployed between 1979 and 2001 were used,
and data from only those buoys whose positions were at least 100 km away from the coasts
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Figure 3. Comparison of our theoretical PDF for the fluctuating speed with observations. Circles are data from
figure 10 in Rampal et al. (2009) and the solid curve is the functional form of the solution from theory (4.3).
The value of ρ and Λ obtained from the fit are 0.94 g cm−2 and 0.238 (cm s−1)−1, respectively. The inset
shows the same figure in log–linear plot.

were chosen. Rampal et al. (2009) chose a two-dimensional Cartesian coordinate system
centred at the North Pole, with one of the axes pointing along the Greenwich meridian. For
the analysis, the time period for winter was chosen from November to mid-May, and for
summer from mid-June to mid-September. Further details on the procedure used to obtain
the mean velocity, including the choice of length and time scales for averaging, and the
velocity fluctuations can be found in Rampal et al. (2009).

In figure 3 we show the comparison between the theoretical PDF for the fluctuating
speed and the observational PDF from Rampal et al. (2009). The functional form of the
solution (4.3) is fit to the observational data, and ρ and Λ, which are the only fitting
parameters, are determined from this fit. The values obtained are ρ = 0.94 g cm−2 and
Λ = 0.24 (cm s−1)−1. The value of ρ obtained here is substantially smaller than the one
used in the simulations of Rothrock (1975a,b) (ρ = 300 g cm−2).

Using these values of ρ and Λ we compute the integral in (4.1) numerically to determine
Pu′ . Noting that Pu′ and Pv′ have the same functional forms (4.1) and (4.2), we compare
Pu′ with observations and find that Pu′ and Pv′ for the velocity components are again
Laplace distributions. This is shown in figure 4. As noted by Rampal et al. (2009), it is
remarkable that the PDFs for u′ and v′ are approximately the same in each season, showing
the fluctuations are isotropic and stationary.

The agreement between theory and observations seen in figures 3 and 4 provides
confidence in our mean field theory. The modelling of the floe–floe interactions using
a Coulomb friction term makes the floe exhibit a stick-slip behaviour in its dynamics
(Elmer 1997; de Gennes 2005). This is similar in some aspects to the ‘crack-slip’ behaviour
suggested by Thorndike (1986).

While the mean field theory has its advantages, it also has its limitations: the theory
cannot explain the flattened tails in the PDF of speed (figure 3) and the marginal
distributions (figure 4). One can speculate that this might be due to the advection of floes
into a region of lower ice concentration or mean thickness or both. Incorporating such
details when comparing results with observations is difficult. One can only infer the value
of f/D from the fit, but determining f and D separately would require further analysis of
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Figure 4. Comparison of our theoretical PDFs for ice velocity fluctuations with observations. Symbols are
data from figure 9 in Rampal et al. (2009) and the solid curve is the PDF obtained from (4.1) after numerically
evaluating the integral. The value of ρ and Λ used are 0.94 g cm−2 and 0.238 (cm s−1)−1, respectively
(see figure 3).

the wind stress and ice field data to determine C, H and B, which is beyond the scope of
the current work.

4.2. Sea ice rheology
Some of the previously developed viscous models of sea ice did not contain a pressure
term, with the challenge lying in relating the pressure to the state of the ice cover (Rothrock
1970). Our approach allows us to determine explicitly the dependence of ice pressure and
shear viscosity on the state of the ice cover. Here, we will explore these dependences in
more detail.

In the limits H→ 0 and/or C → 0 both pressure, Π , and viscosity, η, diverge, which
is unphysical. This is because the continuum theory is not valid in the limit of vanishing
ice cover. However, the motion of isolated ice floes in this limit can still be studied using
the kinetic theory developed in § 2. For this reason, we are interested in the dynamics of a
near complete ice cover. We take C ∈ [0.8, 1] which gives coth(C/C0) = 1. Thus, the only
relevant variable for the state of the ice cover now is H.

4.2.1. Pressure
The pressure field in sea ice is now given by

Π(x, t) = 3 ρ(x, t)

2
D2

f 2
0

[
exp

(H(x, t)

H0

)
− 1

]−2

. (4.4)

It is seen that as H increases the pressure decreases, but it increases with increasing ρ.
This variation of Π with H is counterintuitive, but becomes clearer with the following,
rather crude, analogy. In a dilute gas, the pressure in the gas (Πg) depends on the density
(ρg) and temperature (Tg) of the gas as (Harris 1971)

Πg = ρg RTg, (4.5)
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Figure 5. The dependence of kinematic viscosity, ν = η/ρ, on the mean thickness, H, based on the
expression 4.6 for D = 1 m2 s−3 and f0 = 1 m s−2 .

which is the ideal gas law, with the gas constant R. Comparing (4.5) and (4.4) we see that
for a fixed D, H determines the mobility of sea ice – the smaller the value of H the more
mobile the ice floes are and hence larger the pressure will be because of increased number
of collisions. Hence, H determines the pressure in sea ice like Tg determines the pressure
in an ideal gas. This analogy is apt only because of similar mechanisms of ‘microscopic’
interactions in a gas and sea ice: (elastic) collisions between molecules in the former and
(inelastic) collisions between floes in the latter.

4.2.2. Shear viscosity
The kinematic viscosity of sea ice, ν = η/ρ, is

ν = 15 D3

16 f 4
0

[
exp

( H
H0

)
− 1

]−4

. (4.6)

To highlight the dependence of ν on H we fix the constants D = 1 m2 s−3 and
f0 = 1 m s−2 . The variation in ν with H is shown in figure 5. We see that ν varies by
O(1010) as the mean thickness varies from 0.1 to 5 m. This behaviour is again explained
using the analogy with a dilute gas, as an increased mobility at smaller H means larger
momentum transfer between different regions.

In the Arctic basin, the mean thickness is larger closer to the boundaries of the basin
because of ridging (Kwok et al. 2009; Kwok & Cunningham 2015). Hence, the result
from our theory implies that the viscosity of sea ice increases as one moves from the
boundary regions to the interior of the basin. This explains why previous numerical studies
found that a large value of shear viscosity, η = 1012 kg s−1, was required to generate
sufficient stresses in the interior of the basin, but a smaller value of η = 6 × 109 kg s−1

was required to observe realistic drift of sea ice and the formation of shear zones near
the boundaries (Rothrock 1975a,b). This conflict over the choice of the value of η (or ν)
is resolved through its dependence on H, which has been found here. Hence, our theory
is able to provide a qualitative explanation for the behaviour observed in the large-scale
simulations, but a more detailed analysis of observational data are required to determine
the quantitatively correct values of shear viscosity.
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5. Summary and discussion
In summary, we have studied the motion of the Arctic sea ice cover at both the floe and
continuum scales. We first considered the motion of a single ice floe and developed a
mean field theory for its interactions with the neighbouring floes, neglecting phase change
and ridging and rafting processes. The only variables used to represent the neighbouring
floes were the ice concentration and the mean thickness. We assumed that only jostling
and shearing modes of interaction drove the system towards local equilibrium and used a
Coulomb friction term (Elmer 1997) to model the force resulting from these interactions.
Using the Langevin equation for the floe velocity, we obtained the corresponding KCE for
the PDF of the floe’s velocity. A Chapman–Enskog analysis of this equation led to the
continuum equations of motion and a viscous rheology that emerged from the floe scale
dynamics. The pressure in the ice cover and the shear viscosity were found to depend
strongly on the mean thickness.

To compare our theory with observations, we obtained the marginal distributions and
the PDF for the fluctuating speed of the floe. The marginal distributions were found to be
the Laplace distribution, in good qualitative agreement with observations (Rampal et al.
2009). We then placed our viscous model in the context of previous large-scale simulations
of the ice cover (Rothrock 1975a) and were able to provide an explanation for some of
the conflicting aspects of those studies. The qualitative agreement with observations and
the large-scale simulations, despite the many simplifying assumptions made, provides
confidence that our formulation of the problem is physically sound, and that the theory
captures the leading-order physics associated with the motion of the ice cover.

An important aspect of the model that needs highlighting is that the interactions
at the floe scale were modelled using a Coulomb friction term which is the simplest
representation of plastic behaviour (Mellor 2013): if the floe comes to rest, then there is a
certain minimum force – given by the threshold F – that needs to be applied to the floe
to set it in motion again. However, this plastic-like behaviour at the floe scale still leads
to the viscous rheology in the continuum limit. Although the viscous models developed
in the past could not determine the dependence of pressure and viscosity on the state of
the ice cover, our approach allows us to do this. In building our model we assumed that
the ice floes always existed, but this is not always the case. Under the action of wind
and ocean stresses the continuous ice cover fractures into floes, and recent theoretical and
modelling efforts have focussed on modelling this process (Girard et al. 2011; Bouillon &
Rampal 2015; Dansereau et al. 2016). This suggests that the sea ice rheology on shorter
time scales is perhaps the brittle rheology, but on much longer time scales it is viscous:
the ice cover fractures into floes at shorter time scales (Asplin et al. 2012) and once the
floes are produced the momentum transfer happens through shearing and jostling between
the floes, as suggested by Reed & Campbell (1962). This description provides a qualitative
picture of the response of the ice cover over short and long time scales. However, this
picture is not accurate during the early part of the freezing season when smaller floes
coagulate to form larger floes and subsequently a continuous ice cover (Weeks & Ackley
1986).

The relative simplicity of our approach has both advantages and limitations. The first
advantage is that from a detailed study of the motion of a single floe it is possible to
obtain the large-scale behaviour of the ice cover. This provides an answer to one of
the longstanding questions of how the rheological properties of a viscous model relate
to the variables that quantify the state of the ice cover (Rothrock 1975a; Untersteiner
1986). The second advantage is that it allows for analytical tractability, which leads to
the explicit continuum equations starting from the floe dynamics. The last advantage is
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that it provides unambiguous results, with only two free parameters, that can be compared
with observations. This allows for the improvement of the model with relative ease when
compared with most other models that do not have a similar floe-scale picture associated
with them. Our theory also provides an observationally consistent framework to study the
statistical properties of the ice velocity field, which would help in the development of
simplified mathematical models of sea ice motion for incorporation into climate models.

The limitations of the theory are the following. First, the theory does not take into
account the thermal growth and mechanical deformations of the ice floe. This is remedied
by writing the mass of the ice floe as m = ρi π R2 h, where ρi is the constant density of
the ice floe, and rewriting (2.2) as

m
dv

dt
= −v

dm

dt
+ Fa +B ξ(t) − Fo + FG + FH − 2 m Ω0 k × v −F S(v − u∞).

(5.1)

The changes in R(t) and h(t) can now be coupled with the momentum equation (5.1).
This, however, leads to a six-dimensional Fokker–Planck equation which is challenging
to solve – both analytically and numerically. The second limitation is that some of the
key parameters in the theory, such as D and f0, cannot be determined without a detailed
analysis of observational data.

These limitations, however, are not severe and can be overcome by solving the coupled
stochastic differential equations for v and h and by performing a detailed, pan-Arctic
analysis of wind stress and thickness distribution data. Our previous work on the thickness
distribution of sea ice (Toppaladoddi & Wettlaufer 2015, 2017; Toppaladoddi et al. 2023)
and our current theory provide a physical and mathematical framework to achieve this.
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