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DIAMOND ON LADDER SYSTEMS AND COUNTABLY METACOMPACT
TOPOLOGICAL SPACES

RODRIGO CARVALHO , TANMAY INAMDAR , AND ASSAF RINOT

Abstract. The property of countable metacompactness of a topological space gets its importance from
Dowker’s 1951 theorem that the product of a normal space X with the unit interval [0, 1] is again normal
iff X is countably metacompact. In a recent paper, Leiderman and Szeptycki studied Δ-spaces, which is a
superclass of the class of countably metacompact spaces. They proved that a single Cohen real introduces a
ladder system L over the first uncountable cardinal for which the corresponding space XL is not a Δ-space,
and asked whether there is a ZFC example of a ladder system L over some cardinal κ for which XL is
not countably metacompact, in particular, not a Δ-space. We prove that an affirmative answer holds for
the cardinal κ = cf(��+1). Assuming �� = ℵ� , we get an example at a much lower cardinal, namely

κ = 222ℵ0
, and our ladder system L is moreover �-bounded.

§1. Introduction. Throughout, κ denotes a regular uncountable cardinal.
A ladder system over a stationary subset S of κ is a sequence �L = 〈A� | � ∈ S〉 such
that eachA� is a cofinal subset of �. It is �-bounded iff otp(A�) ≤ � for all � ∈ S. The
corresponding topological space X �L has underlying set (κ × {0}) ∪ (S × {1}) with
all points in (κ × {0}) being isolated and, for every � ∈ S, the neighborhoods of
(�, 1) consisting of sets of the form (A× {0}) ∪ {(�, 1)} for some A an end segment
of A� .

A topological space X is a Δ-space (resp. countably metacompact) iff for very
decreasing sequence 〈Dn | n < �〉 of subsets of X (resp. closed subsets of X) with
empty intersection, there is a decreasing sequence 〈Un | n < �〉 of open subsets of
X with empty intersection such that Dn ⊆ Un for all n < �.

It is well-known that the product of two normal topological spaces need not be
normal, but what about the product of a normal space X and the unit interval [0, 1]?
It is a classical theorem of Dowker [8] that the product X × [0, 1] is again normal
iff X is countably metacompact, hence the importance of this notion. The notion of
a Δ-space is due to Knight [17].

In a recent paper by Leiderman and Szeptycki [19], a systematic study of Δ-spaces
is carried out, motivated by the Cp-theory of such spaces (see [16, Theorem 2.1]).
Section 5 of [19] is dedicated to the study of spaces of the form X �L. It is proved that
in ZFC there is an �-bounded ladder system �L over ℵ1 for which X �L is countably
metacompact, that under Martin’s axiom all �-bounded ladder systems �L over ℵ1
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2 RODRIGO CARVALHO, TANMAY INAMDAR, AND ASSAF RINOT

satisfy that X �L is countably metacompact, and that in the forcing extension after
adding a single Cohen real, there exists an �-bounded ladder system �L over ℵ1 for
which the space X �L is not a Δ-space. At the end of that section, Problem 5.11 asks
whether there is a ZFC example of a ladder system �L over some cardinal κ whose
corresponding space X �L is not countably metacompact, hence not a Δ-space. We
answer this question in the affirmative, as follows.

Theorem A. For κ := cf(��+1) there are co-boundedly many regular cardinals
� < �� such that Eκ� := {� < κ | cf(�) = �} carries a �-bounded ladder system �L
such that X �L is not countably metacompact.

Theorem A fits into a well-known programme of obtaining analogues in ZFC
of statements which are undecidable at small cardinals. Often times, the price
is that these results concern higher cardinals and it suggests the fruitfulness
of an asymptotic viewpoint to statements in infinite combinatorics. So, here
the Leiderman–Szeptycki consistency result for κ = ℵ1 is obtained in ZFC at

κ = cf(2�), where � := sup{2ℵ0 , 22ℵ0 , 222ℵ0
, ...}. The proof builds heavily on Shelah’s

contributions to this programme, where he previously showed that refined forms
of Jensen’s results for Gödel’s constructible universe [15] hold asymptotically in
any universe of set theory. This includes refined forms of the GCH [25], of the
square principle [24] and of the diamond principle [26]. These refined results often
state that a desired phenomenon holds at all but some indispensable small set of
‘bad’ cardinals, and typically, these ‘bad’ cardinals include ℵ0 (see, for instance,
[6, Theorem 3.5], [27, Section 2], and [1, Lemma 8.13], the latter two highlighting
the role played by ℵ1-complete ideals having well-defined rank functions). In our
context, this raises the question whether a ladder system �L as in Theorem A may be
obtained to concentrate at points of countable cofinality, thereby ensuring that the
corresponding spaceX �L be first countable. The next two theorems provide sufficient
conditions beyond ZFC for an affirmative answer.

The first theorem yields a ladder system of interest from a weak arithmetic
hypothesis, the failure of which is consistent [11], but has a very high consistency
strength.1

Theorem B. If there exists an infinite cardinal � such that κ := 222�

is a finite
successor of �, then Eκ� carries an �-bounded ladder system �L for which X �L is not
countably metacompact.

In particular, if 222ℵ0
< ℵ� , then the conclusion holds for κ := 222ℵ0

.

The second theorem yields a ladder system of interest from the existence of a
particular type of a Souslin tree.

Theorem C. If there exists a (resp. coherent) κ-Souslin tree, then there exists a
ladder system �L over some stationary subset of κ (resp. over Eκ�) for which X �L is not
countably metacompact.

1Indeed, the failure asserts that 2� ≥ �+�+1 for every infinite cardinal �, so it in particular requires
the singular cardinals hypothesis (SCH) to fail everywhere.
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LADDER SYSTEMS AND CMC SPACES 3

Note that in Theorems A, B, and C, the cardinal κ was not defined in terms of
the ℵ-hierarchy. This is not a coincidence, as a simple generalisation of [3, Claim 1]
implies that for any ordinal α, upon forcing Martin’s axiom together with the
continuum being greater than ℵα , for every �-bounded ladder system �L over a
stationary subset of Eκ� , X �L is countably metacompact.

Ultimately, our proofs of Theorems A and B go through a diamond-type principle
on ladder systems studied by Shelah under various names (see [26, 27]): middle
diamond, super black box, Ps1. We opt for the following nomenclature.

Definition 1. For a ladder system �L = 〈A� | � ∈ S〉 over some stationary S ⊆ κ
and a cardinal 
,♦( �L, 
) asserts the existence of a sequence 〈f� | � ∈ S〉 such that:

• for every � ∈ S, f� is a function from A� to 
;
• for every function f : κ → 
, there are stationarily many � ∈ S such that
f � A� = f� .

Note that Jensen’s diamond principle ♦(S) is simply ♦( �L, 2) for the degenerate
ladder system �L = 〈� | � ∈ S〉. In [26], Shelah proved that ♦( �L,�) holds in ZFC for
various ladder systems �L and cardinals �. A central case reads as follows.

Fact 2 (Shelah). Suppose that Λ ≤ � is a pair of uncountable cardinals such that
Λ is a strong limit. Denote κ := cf(2�). Then, for co-boundedly many regular cardinals
� < Λ, there exists a �-bounded ladder system �C = 〈C� | � ∈ Eκ�〉 with eachC� a club
in � such that ♦( �C,�) holds.2

That Fact 2 should have applications in set-theoretic topology was anticipated
ever since [26] was written, and yet Theorem A is the first application.

At the beginning of this paper, we shall give an accessible proof of Fact 2.
Our motivation for doing so is twofold. First, this will pave the way for the
proof of Theorem B. Second, ladder systems are a rich source of examples and
counterexamples in set-theoretic topology (see, for example, [20]), and weak
diamonds have proved to be useful in studying abstract elementary classes (see,
for example, [2]), so we hope that this paper will help popularise this result of
Shelah and its variations. In particular, we expect the next theorem to find further
applications.

Theorem D. Suppose that ℵ� is a strong limit. For every positive integer n, for all
infinite cardinals � ≤ 
 < ℵ� , there are a cardinal κ < ℵ� , a �-bounded ladder system
�L = 〈A� | � ∈ Eκ�〉 and a map g : κ → 
 such that for every function f : [κ]n → 
,
there are stationarily many � ∈ Eκ� such that f“[A� ]n = {g(�)}.

1.1. Organisation of this paper. In Section 2 we include a proof of Fact 2 and
some variants. This section is written at a slower pace hoping to introduce readers
to the basic construction of diamonds on ladder systems. The reader we have in
mind here is a topologist or a model-theorist who is not necessarily familiar with
Shelah’s revised GCH and the approachability ideal. While the results here are due
to Shelah or can be extracted from [26], some of the proofs make use of ideas and
concepts from recent papers of the authors of this paper.

2A ladder system as above, i.e., consisting of sets which are closed subsets of their suprema, is called
a C-sequence.
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4 RODRIGO CARVALHO, TANMAY INAMDAR, AND ASSAF RINOT

In Section 3 we prepare the ground for Theorem B, and we prove Theorem D
which is of independent interest. Here, we shall assume the reader is comfortable
with the content of Section 2.

Section 4 is focused on topological applications of diamonds on ladder systems
and our other main results. In particular, the proof of Theorems A, B, and C will
be found there.

1.2. Notation and conventions. The set of all infinite regular cardinals below κ is
denoted by Reg(κ). For a set X, we write [X ]κ for the collection of all subsets of X
of size κ. The collections [X ]≤κ and [X ]<κ are defined similarly. In the specific case
when X is a set of ordinals and n is an integer≥ 2, we will identify [X ]n with the set of
ordered tuples (α1, ... , αn) where α1 < ··· < αn are all from X. For a set of ordinals
A, we write acc(A) := {α ∈ A | sup(A ∩ α) = α > 0} and nacc(A) := A \ acc(A).
For cardinals 
 and �, 
+� denotes the �th cardinal after 
: so if 
 = ℵα , then

+� = ℵα+�. The map α 
→ �α is defined by recursion on the class of ordinals,
setting �0 := ℵ0, �α+1 := 2�α and �α :=

⋃
�<α �� for every infinite limit ordinal α.

§2. Diamonds on ladder systems.

2.1. Motivation. Diamonds on ladder systems have already found deep applica-
tions in algebra [28, 29], but in view of the overall limited number of applications
thus far, we would like to further motivate this concept by recalling an application
to model theory and mentioning a natural strengthening of it that is still an open
problem.

To start, note that Definition 1 concerns itself with guessing one-dimensional
colourings f : κ → 
, but in the same way one may also wish to guess higher-
dimensional colourings f with dom(f) = [κ]2 or even dom(f) = <�κ. Here is a
concrete variation:

Definition 2.1. For a ladder system �L = 〈A� | � ∈ S〉 over some stationary
S ⊆ κ and a cardinal 
, ♦<�( �L, 
) asserts the existence of a sequence 〈f� | � ∈ S〉
such that:

• for every � ∈ S, f� is a function from <�A� to 
;
• for every function f : <�κ → 
, there are stationarily many � ∈ S such that
f � <�A� = f� .

One of the reasons for the interest in higher-dimensional variations of Definition 1
is provided by the following application.

Fact 2.2 (Shelah [26, Theorem 0.1]). Suppose that �L = 〈A� | � ∈ S〉 is a ladder
system over some stationary S ⊆ κ and � is an infinite cardinal such that ♦<�( �L, 2�)
holds.

Then, for every relational language L of size at most �, there is a sequence
〈M� | � ∈ S〉 of L-structures such that for every L-structure M with carrier set κ,
for stationarily-many � ∈ S,M� is a substructure of M with carrier set A� .

The application is rather straightforward. Let L be a relational language with
relational symbols 〈Ri | i < �〉. The hypothesis of ♦<�( �L, 2�) provides us with a
sequence 〈f� | � ∈ S〉 where for every � ∈ S, f� : <�A� → �2, and such that for
every function f : <�κ → �2, the set {� ∈ S | f� = f � <�A�} is stationary.
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LADDER SYSTEMS AND CMC SPACES 5

For every � ∈ S, letM� be the structure with carrier set A� and relations given as
follows: for a finite tuple 〈α0, ... , αn–1〉 ∈ <�A� and an index i < �,

M� |= Ri(〈α0, ... , αn–1〉) ⇐⇒ f�(〈α0, ... , αn–1〉)(i) = 1 & arity(Ri) = n.

Now given an L-structure M = 〈κ,Ri〉i<� , define a function f : <�κ → �2 by
letting

f(〈α0, ... , αn–1〉)(i) = 1 ⇐⇒ M |= Ri(〈α0, ... , αn–1〉) & arity(Ri) = n.

Then it is clear thatM� is a substructure of M whenever f� = f � <�A� .

Remark 2.3. As indicated by Shelah in [26, Section 0], obtaining diamonds on
ladder systems which would allow for strengthening of Fact 2.2 by requiring the
M� ’s to be elementary substructures of M is one of the key open problems in this
area.

As for the matter of when ♦<�( �L, 
) or other higher-dimensional variants hold,
we leave to the interested reader the task of translating the arguments from the
upcoming subsection to their purpose with the assurance that no extra ingenuity
is required. As the differences are minor we have chosen to focus on the most
transparent case.

2.2. Results. In this subsection, we reproduce some results from [26] with the
goal of proving Fact 2 and laying the groundwork for Section 3.

We start by considering two (one-dimensional) generalisations of ♦( �L, 
) and a
generalisation of the Devlin–Shelah weak diamond principle Φ [7].

Definition 2.4. Suppose that �L = 〈A� | � ∈ S〉 is a ladder system over some
stationary S ⊆ κ, and that �, 
 are cardinals greater than 1.

• ♦∗( �L,�, 
) asserts the existence of a sequence 〈P� | � ∈ S〉 such that:
– for every � ∈ S, |P� | < �;
– for every function f : κ → 
, there are club many � ∈ S such that
f � A� ∈ P� .

• ♦( �L,�, 
) asserts the existence of a sequence 〈P� | � ∈ S〉 such that:
– for every � ∈ S, |P� | < �;
– for every function f : κ → 
, there are stationarily many � ∈ S such that
f � A� ∈ P� .

• Φ( �L,�, 
) asserts that for every function F : (
⋃
�∈S

A��) → 
, there exists
a function g : S → 
 such that, for every function f : κ → �, there are
stationarily many � ∈ S such that F (f � A�) = g(�).

We encourage the reader to determine the monotonicity properties of the above
principles; another easy exercise is to verify that for every ladder system �L over a
subset of κ and every cardinal �, ♦∗( �L,�κ, �) holds.

Note that for κ a successor cardinal, the principle ♦∗(S) is simply ♦∗( �L, κ, 2)
for the degenerate ladder system �L = 〈� | � ∈ S〉. Also note that ♦∗( �L,�, 
) =⇒
♦( �L,�, 
) and ♦( �L, 
) ⇐⇒ ♦( �L, 2, 
). Less immediate from these two observa-
tions, but clear after expanding the definitions is that ♦( �L,�) =⇒ Φ( �L,�, 
) for
any cardinal 
. This implication admits a converse, as follows.
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6 RODRIGO CARVALHO, TANMAY INAMDAR, AND ASSAF RINOT

Lemma 2.5. Suppose that �L = 〈A� | � ∈ S〉 is a �-bounded ladder system over some
stationary S ⊆ κ. If Φ( �L,�, �|�|) holds, then so does ♦( �L,�).

Proof. Denote 
 := �|�|. Let �h = 〈h� | � < 
〉 be some enumeration of ��. For
every � ∈ S, fix an injection 
� : A� → �. Fix a function F : (

⋃
�∈S

A��) → 
 such
that for all � ∈ S and f̄ : A� → �,

(F (f̄) = �) =⇒ (h� ◦ 
� = f̄).

Now, assuming that Φ( �L,�, 
) holds, we may fix a function g : S → 
 such that for
every function f : κ → �, the set {� ∈ S | F (f � A�) = g(�)} is stationary in κ.

For every � ∈ S, let f� := hg(�) ◦ 
� . We claim that 〈f� | � ∈ S〉 witnesses that
♦( �L,�) holds. Indeed, given f : κ → �, consider the stationary set S ′ := {� ∈ S |
F (f � A�) = g(�)}. For every � ∈ S ′, it is the case that

f� = hF (f�A� ) ◦ 
� = f � A�,
as sought. �

We can at this stage describe the structure of the proof of Fact 2 given below. To
start, in Lemma 2.9 we establish an instance of the principle ♦∗( �L, ...). The caveat
here is that the second parameter, the width of the diamond sequence, will be rather
large. Using this very wide diamond and an instance of a colouring principle which
is established in Lemma 2.8, we will then in Lemma 2.10 derive an instance of the
principle Φ( �L,�, 
). Crucially for us here, the parameter 
, the number of colours,
will be large. Finally, we will use Lemma 2.5 to obtain a narrow diamond sequence
on the ladder system. The details are in Corollary 2.12.

The upcoming proof of Fact 2 will make multiple uses of Shelah’s revised GCH
theorem [25] that was briefly mentioned in the paper’s introduction. To state it, we
shall need the following definition.

Definition 2.6. For cardinals 
 ≤ �:
• �[
] stands for the least size of a subfamily A ⊆ [�]≤
 satisfying that every

element of [�]
 is the union of less than 
 many sets from A;
• m(�, 
) stands for the least size of a subfamily A ⊆ [�]
 satisfying that for every
b ∈ [�]
 , there is an a ∈ A with |a ∩ b| = 
.

Note that for 
 a regular cardinal, m(�, 
) ≤ �[
].

Fact 2.7 (Shelah’s RGCH [25]). For every pair Λ ≤ � of uncountable cardinals
such that Λ is a strong limit, for co-boundedly many 
 ∈ Reg(Λ), �[
] = �.

As a warm up, we prove the following lemma that may be extracted from the proof
of [26, Claim 1.11]. It concerns the principle onto(...) that was recently introduced
in the paper [13] by the second and third authors.

Lemma 2.8. Suppose that 
, � are infinite cardinals such that 2
 ≤ m(�, 
) = �.
Then onto({�}, [2�]≤�, 
) holds, i.e., there is a colouring c : �× 2� → 
 such that,

for every B ∈ [2�]�
+

,3 there exists an α < � such that c[{α} × B] = 
.

3This is not a typo. The second parameter of the principle onto is the ideal J = [2�]≤�, and the
quantification here is over all sets B that are J-positive, hence, the focus on [2�]�

+
.
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Proof. Let A be a witness for m(�, 
) = �. The next claim is of independent
interest. It may be proved using elementary submodels, but we give a more
elementary (for the reason of avoiding elementary submodels) proof due to Ido
Feldman.

Claim 2.8.1. For every H ⊆ �2 of size �+, there exists an a ∈ A such that the set
{h � a | h ∈ H} has size at least 
.

Proof (Feldman). For two distinct functions g, h ∈ �2, denote

Δ(g, h) := min{� < � | g(�) �= h(�)}.

Now, let a family H ⊆ �2 of size �+ be given.
� If there exists a function g : �→ 2 such that D(g) := {Δ(g, h) | h ∈ H \ {g}}

has size greater than or equal to 
, then pick a ∈ A such that |a ∩D(g)| = 
, and
for each � ∈ a ∩D(g), pick some h� ∈ H such that Δ(g, h�) = �. Then � 
→ h� � a is
injective over a ∩D(g).

� Otherwise, for every g : �→ 2, let �g : otp(D(g)) → D(g) be the increasing
enumeration ofD(g), so that ḡ := g ◦ �g is an element of <
2. As 2<
 ≤ 2
 ≤ �, we
may find g �= h inH such that ḡ = h̄. Consider � := Δ(g, h). Then � ∈ D(g) ∩D(h).
In addition, since g � � = h � �, D(g) ∩ � = D(h) ∩ �. In particular, for
� := otp(D(g) ∩ �), we get that�g(�) = � = �h(�) and henceg(�) = ḡ(�) = h̄(�) =
h(�), contradicting the definition of �. So this case does not exist. �

For each a ∈ A, let Ga be the collection of all functions g : a
 → 
 such that

|{f ∈ a
 | g(f) �= 0}| ≤ 
.

Clearly, |Ga | = 2
 ≤ �. For each g ∈ Ga , we lift g to a function ĝ : �
 → 
 by letting

ĝ(h) := g(h � a).

Now, let 〈gα | α < �〉 be an injective enumeration of {ĝ | a ∈ A, g ∈ Ga}, and let
〈h� | � < 2�〉 be an injective enumeration of �2. Define a colouring c : �× 2� → 

via c(α, �) := gα(h�). To see that c is as sought, let B ∈ [2�]�

+
. By Claim 2.8.1, pick

a ∈ A such that {h� � a | � ∈ B} has size at least 
. Pick B ′ ⊆ B of order type 
 on
which � 
→ h� � a is injective. It follows that we may define a function g : a
 → 
 in
Ga via

g(f) :=

{
otp(B ′ ∩ �), if � ∈ B ′ and f = h� � a,
0, otherwise.

Pick α < � such that ĝ = gα . Then, c[{α} × B ′] = 
. �

Our next step is proving the following lemma that is easily extracted from the
beginning of the proof of [26, Claim 1.10]. It uses two fine approximations in ZFC
of Gödel’s constructible universe: the revised GCH theorem and the approachability
ideal I [κ].

Lemma 2.9. Suppose that Λ ≤ � is a pair of uncountable cardinals such that Λ is a
strong limit. Denote κ := cf(2�). Then, for co-boundedly many � ∈ Reg(Λ), there is a
�-bounded C-sequence �C over some stationary S ⊆ Eκ� such that ♦∗( �C, 2�, 2�) holds.
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8 RODRIGO CARVALHO, TANMAY INAMDAR, AND ASSAF RINOT

Proof. We start with the following claim which guides our choice of �.

Claim 2.9.1. There is a co-bounded set of � ∈ Reg(Λ) such that for every cardinal
κ < 2�, κ[�] < 2�.

Proof. By Fact 2.7, for every κ ∈ [Λ, 2�), there is a cardinal �κ < Λ such that
for every � ∈ Reg(Λ) \ �κ, κ[�] = κ. Now, as cf(2�) > � ≥ Λ, it follows that there is
Γ, an unbounded subset of cardinals in 2�, and a cardinal � < Λ such that for every
κ ∈ Γ, �κ < �. In particular, for every � ∈ Reg(Λ) \ �, for every κ ∈ Γ,
κ[�] = κ < 2�. This, combined with the observation that for any cardinals κ0 < κ1

and cardinal �, κ[�]
0 ≤ κ[�]

1 , verifies the claim. �

Let � be any cardinal in the co-bounded subset of Reg(Λ) given by the claim.
Hereafter, all we shall need to assume about � is that it is a regular cardinal smaller
than � andm(κ, �) < 2� for allκ < 2�. As�+ ≤ � < κ, by [24, Claim 1.2 and Lemma
1.4], there exists a stationary S ⊆ Eκ� that lies in I [κ]. By possibly intersecting S
with some club, this means that there exists a �-bounded C-sequence �C = 〈C� |
� ∈ S〉 satisfying the following weak coherence property: for every pair � < � of
ordinals from S, for all � ∈ nacc(C�) ∩ nacc(C�), C� ∩ � = C� ∩ � . We shall prove
that ♦∗( �C, 2�, 2�) holds.

To this end, we fix the following objects:

(i) Let h : κ → 2� be increasing and cofinal.
(ii) Let C := {C� ∩ � | � ∈ S, � ∈ nacc(C�)}, so that |C| = κ and it consists of

sets of size less than �.
(iii) Let T := {f | ∃C ∈ C [f ∈ C (2�)]}. For each C ∈ C, since |C | < � < �, it

is the case that 2� ≤ |C (2�)| ≤ (2�)|C | = 2�. As |C| = κ, we conclude that
|T | = 2�.

(iv) Let 〈fi | i < 2�〉 be an enumeration of T.
(v) For � < κ, denote T<� := {fi | i < h(�)}, so that |T<� | < 2�.

For every � ∈ S, let

P� := {f ∈ C� h(�) | ∀� ∈ nacc(C�) [f � (C� ∩ �) ∈ T<� ]}.

We shall show that the sequence 〈P� | � ∈ S〉 is a witness for ♦∗( �C, 2�, 2�). We begin
by estimating its width. Implicit in the upcoming proof are the ‘tree powers’ from
the hypotheses of [26, Claim 1.10].

Claim 2.9.2. Let � ∈ S. Then |P� | < 2�.

Proof. Consider the set Q� := {g ∈ T<� | ∃� ∈ nacc(C�) [g ∈ C�∩�h(�)]}. For
every f ∈ P� , bf := {q ∈ Q� | q ⊆ f} is nothing but {f � � | � ∈ nacc(C�)}. So
from otp(C�) = cf(�) = �, we infer that (bf,⊆) is order-isomorphic to (�,∈),
satisfying that

⋃
b = f for every b ∈ [bf ]�. In particular, |bf ∩ bf′ | < � for all

f �= f′ from P� .
Set κ := |Q� |. As κ ≤ |T<� | < 2�, the choice of � ensures that m(κ, �) < 2�. In

particular, we may fix a subfamily A� ⊆ [Q� ]� of size less than 2� such that, for every
f ∈ P� , there exists af ∈ A� with |af ∩ bf | = �. Then f 
→ af forms an injection
from P� to A� , so that |P� | < 2�. �
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We are left with verifying that 〈P� | � ∈ S〉 has the required guessing property. So
let f : κ → 2�. Let D ⊆ κ be a club such that � ∈ D implies that:

(i) for every � < �, f(�) < h(�);
(ii) for every � < �, for every �′ ∈ S such that � ∈ nacc(C�′), we have
f � (C�′ ∩ �) ∈ T<� .

Here we use the weak coherence property of �C to ensure that the requirement in
(ii) can indeed be satisfied. Now suppose that � ∈ D. Then for every � ∈ nacc(C�),
f � (C� ∩ �) ∈ T<� and Im(f � (C� ∩ �)) ⊆ h(�). So indeed f � C� ∈ P� . �

The last step is proving the next lemma that we extracted from the end of the proof
of [26, Claim 1.10]. The new ingredient here is the use of the principle onto(...). It
generalizes Kunen’s lemma [18, Theorem 7.14] that ♦– implies ♦ which amounts to
the case �1 = κ = �+ = 2� = 
, using [13, Lemma 8.3(1)].

Lemma 2.10. Suppose that:

• �L = 〈A� | � ∈ S〉 is a ladder system over some stationary S ⊆ κ;
• ♦( �L, 2�, 2�) holds with � < κ;
• onto({�}, [2�]≤�, 
) holds.

Then Φ( �L, 2�, 
) holds.

Proof. Fix a bijection 
 : �(2�) ↔ 2�. For every α < �, define a map

α : 2� → 2� via


α(�) := 
–1(�)(α).

The point is that for every function � : �→ 2� and every α < �,


α(
(�)) = �(α).

For every x ⊆ κ, for every map � : x → 2�, for every α < �, we let �α := 
α ◦ �,
so �α : x → 2� as well.

Now, let F : (
⋃
�∈S

A�2�) → 
 be given. Let 〈P� | � ∈ S〉 be a witness for
♦( �L, 2�, 2�). Without loss of generality, we may assume that for every � ∈ S, each
element of P� is a function from A� to 2�. In particular, for all � ∈ S, � ∈ P� , and
α < �, �α is a map from A� to 2� so that F (�α) is a well-defined ordinal less than 
.
In other words, for all � ∈ S and � ∈ P� ,

h� := 〈F (�α) | α < �〉

is a map from � to 
.

Claim 2.10.1. Let � ∈ S. There exists a function g� : �→ 
 such that, for every
� ∈ P� , there exists an α < � with h�(α) = g�(α).

Proof. Fix a witness c : �× 2� → 
 to onto({�}, [2�]≤�, 
). Notice that for every
� ∈ P� , the set B� := {� < 2� | ∀α < � [h�(α) �= c(α, �)]} has size no more than �,
since otherwise, by the choice of c, we may pick an α < � such that c[{α} × B�] =

, and in particular, h�(α) ∈ c[{α} × B�]. Now, as |P� | < 2�, it follows that we
may pick � ∈ 2� \

⋃
�∈P� B�. Define g� : �→ 
 via g�(α) := c(α, �). Then g� is as

sought. �
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Switching the roles of � and α in the preceding claim, we may fix a sequence
〈gα : S → 
 | α < �〉 such that, for every � ∈ S, for every � ∈ P� , there exists an
α < � with h�(α) = gα(�).

Claim 2.10.2. There exists an α < � such that for every function f : κ → 2�, the
following set is stationary in κ :

{� ∈ S | F (f � A�) = gα(�)}.

Proof. Suppose not. Then, for every α < �, we may fix a function fα : κ →
2� and a club Dα ⊆ κ disjoint from {� ∈ S | F (fα � A�) = gα(�)}. Define a map
� : κ → 2� via:

�(�) := 
(〈fi(�) | i < �〉).

Now, as 〈P� | � ∈ S〉 witnesses ♦( �L, 2�, 2�), we may pick � ∈
⋂
α<� Dα ∩ S such

that �̄ := � � A� is in P� . For every α < �, recall that �̄α is defined as 
α ◦ �̄, so that,
for every � ∈ A� ,

�̄α(�) = 
α(
(〈fi(�) | i < �〉)) = fα(�).

That is, for every α < �, �̄α = fα � A� . As �̄ ∈ P� , we may pick some α < � such
that h�̄(α) = gα(�). But, by the definition of h�̄,

h�̄(α) = F (�̄α).

Altogether,

F (fα � A�) = F (�̄α) = h�̄(α) = gα(�),

contradicting the fact that � ∈ Dα ∩ S. �

This completes the proof. �

Remark 2.11. Straight-forward adjustments to the preceding proof establish
the following. Suppose that ♦( �L,�, 2�) holds for a given ladder system �L over
a stationary subset of κ, and a given cardinal � < κ. For every cardinal 
, if
onto({�}, J, 
) holds for some �-complete proper ideal J over �, then so does
Φ( �L, 2�, 
). For a list of sufficient conditions for onto({�}, J, 
) to hold, see the
appendix of [14].

On another front, note that the principles ♦( �L,�, 
) and Φ( �L,�, 
) can be
strengthened by adding an extra parameter I, an ideal on κ extending NSκ �S.
In each case, the set of good guesses � is now required to be a set in I+ instead of
merely a stationary subset of S. We leave to the interested reader to verify that most
of the results in this section hold for these strengthenings for I any �+-complete ideal
on κ extending NSκ �S. The only change that needs to be made is that the second
hypothesis of Lemma 2.10 will now require ♦∗( �L, 2�, 2�) instead of ♦( �L, 2�, 2�),
which is what Lemma 2.8 produces anyway.

We are now in a condition to prove Fact 2.

Corollary 2.12. Suppose that Λ ≤ � is a pair of uncountable cardinals such that
Λ is a strong limit. Denote κ := cf(2�). Then, for co-boundedly many regular cardinals
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� < Λ, there exists a �-bounded C-sequence �C over a stationary S ⊆ Eκ� such that
♦( �C � S ′, �) holds for every stationary S ′ ⊆ S.

Proof. By Lemma 2.9, for co-boundedly many� ∈ Reg(Λ), there is a�-bounded
C-sequence �C over some stationary S ⊆ Eκ� such that ♦∗( �C, 2�, 2�) holds. In
particular, ♦( �C � S ′, 2�, 2�) holds for any given stationary S ′ ⊆ S. By Fact 2.7, we
may fix 
 ∈ Reg(Λ) above 2� such that �[
] = �. As Λ is a strong limit, 2
 < Λ ≤ �.
Thus, by Lemma 2.8, onto({�}, [2�]≤�, 
) holds. Now, let S ′ ⊆ S be stationary. By
Lemma 2.10, Φ( �C � S ′, 2�, 
) holds. In particular, Φ( �C � S ′, �, 2�) holds. Then, by
Lemma 2.5, ♦( �C � S ′, �) holds. �

Before concluding this section, we would like to briefly describe an additional
configuration which provide narrow diamonds over a ladder system. Above, we used
Shelah’s beautiful revised GCH theorem, Fact 2.7, to obtain instances of cardinals

 ≤ � such that m(�, 
) = �. The following folklore fact provides other instances
(see the proof of [5, Lemma 5.12]).

Fact 2.13. For all infinite cardinals 
 ≤ � < 
+ cf(
), m(�, 
) = � holds.

Using Fact 2.13 we can trace through the proofs of this section to obtain the
following theorem. The reader may first consider Corollary 2.15 which deals with
the simplest case of the theorem, where � := ℵ0, in which case �+� = ℵ� .

Theorem 2.14. Suppose that � is an infinite regular cardinal, and � is a cardinal
such that � < 2� < 22� ≤ � < 2� < �+�. Then κ := 2� is a regular cardinal admitting
a �-bounded C-sequence �C over a stationary S ⊆ Eκ� such that ♦( �C � S ′, �) holds for
every stationary S ′ ⊆ S.

Proof. Let α < � be such that κ = �+α . If κ were to be singular, then
cf(2�) = cf(α) < � < �, contradicting Konig’s lemma. So κ is regular. Next, as
2� < �+�, for every cardinal κ ∈ [�, 2�), it is the case that � ≤ κ < �+�, and so
Fact 2.13 implies that m(κ, �) = κ < 2�. As made clear right after Claim 2.9.1,
we then get a �-bounded C-sequence �C over some stationary S ⊆ Eκ� such that
♦∗( �C, 2�, 2�) holds. In particular, ♦( �C � S ′, 2�, 2�) holds for any given stationary
S ′ ⊆ S. Now let 
 := 2�. As � < 
 < � < �+�, it is the case that 
 < � < 
+
 , so
Fact 2.13 implies thatm(�, 
) = �. Then, by Lemma 2.8, onto({�}, [2�]≤�, 
) holds.
Then, by Lemma 2.10, Φ( �C � S ′, 2�, 
) holds. In particular, Φ( �C,�, 2�) holds. Then,
by Lemma 2.5, ♦( �C � S ′, �) holds. �

Corollary 2.15. For every n ∈ [3, �) such that �n < ℵ� , there is an �-bounded

C-sequence �C overE�n
� such that ♦( �C,�) holds. In particular, if κ := 222ℵ0

is smaller
than ℵ� , then there is an �-bounded C-sequence �C over Eκ� such that ♦( �C,�) holds.

Remark 2.16. With a bit more work, one can show that if ℵ� is a strong limit,
then for every uncountable cardinal � < ℵ� , there is a finite set Θ ⊆ ℵ� such that
for every cardinal � with cf(�) /∈ Θ, there exists a �-bounded C-sequence �C over
E�

+

� such that ♦( �C,�) holds. This is obtained by developing stepping up methods
which allow for transferring diamonds on ladder systems from smaller cardinals to
larger cardinals.
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Having discussed the methods from the preceding remark and its limitations with
Jing Zhang, the following question emerged:

Question 2.17 (Zhang). Suppose that ℵ� is a strong limit and �ℵ� holds. Does
there exist a cardinal � < ℵ� , and a �-bounded ladder system �L over a nonreflecting
stationary subset of Eℵ�+1

� such that ♦( �L,�) holds?

§3. Club guessing with diamonds. The main result of this section concerns
the following n-dimensional version of Definition 1. The main technical result,
Theorem 3.5, additionally incorporates club guessing into the ladder system on
which diamond holds.

Definition 3.1. For a ladder system �L = 〈A� | � ∈ S〉 over some stationary
S ⊆ κ a cardinal 
 and a positive integer n, ♦n( �L, 
) asserts the existence of a
sequence 〈f� | � ∈ S〉 such that:

• for every � ∈ S, f� is a function from [A� ]n to 
;
• for every function f : [κ]n → 
, there are stationarily many � ∈ S such that
f � [A� ]n = f� .

Remark 3.2. One may also consider the variation of♦n( �L, 
) where the functions
above are of the form f� : nA� → 
 and these serve to guess a function f : nκ → 
.
However, in case 
 is infinite the two are easily seen to be equivalent.

The main corollary to the results of this section is the following, which proves
Theorem D.

Corollary 3.3. Suppose that ℵ� is a strong limit. For every positive integer n, for
all infinite cardinals � ≤ 
 < ℵ� , there are a cardinal κ < ℵ� , and a �-bounded ladder
system �L over Eκ� such that ♦n( �L, 
) holds and is moreover witnessed by a sequence
〈f� | � ∈ S〉 consisting of constant maps.

Proof. By Theorem 3.5, taking Ω := �. �
Towards the proof of Theorem 3.5, we shall need the following strong variation

of Lemma 2.8.

Lemma 3.4. Suppose that 
, � are infinite cardinals such that �
 = �. Then there is
a proper 
+-complete ideal I over � such that onto(I+, [2�]<
, 
) holds. That is, there
is a colouring c : �× 2� → 
 satisfying that for allA ∈ I+ and B ∈ [2�]
 , there exists
an α ∈ A such that c[{α} × B] = 
.

Proof. As �
 = �, by the Engelking–Karlowicz theorem, [9], we may fix a
sequence �f = 〈fα | α < �〉 of functions from 2� to � such that for every function
g : x → � with x ∈ [2�]
 , there exists an α < � such that g ⊆ fα . Let us identify a
useful feature of �f.

Claim 3.4.1. For every sequence 〈Bi | i < 
〉 of elements of [2�]
 , for some α < �,
for every i < 
, fα[Bi ] = 
.

Proof. Let 〈Bi | i < 
〉 a sequence of elements of [2�]
 be given. First, let 〈B∗
i |

i < 
〉 be a sequence of pairwise disjoint sets such that for each i < 
, B∗
i ∈ [Bi ]
 .

Then let x :=
⋃
i<
 B

∗
i , and let g : x → � be such that for each � ∈ x, g(�) = � iff
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for some i < 
, � ∈ B∗
i and otp(B∗

i ∩ �) = �. Then if α < � is such that g ⊆ fα ,
then for every i < 
 we have that fα[Bi ] = 
. �

Now let I denote the collection of all A ⊆ � for which there exists B ∈ [[2�]
 ]


such that, for every α ∈ A, for some B ∈ B it is the case that fα[B] �= 
. It is clear
that I is a 
+-complete ideal over � and it is proper by Claim 3.4.1. Now pick
c : �× 2� → 
 such that c(α, �) = fα(�) whenever fα(�) < 
. Then c and I are as
sought. �

The next theorem deals with getting a witness for ♦n( �L, 
) from Definition 3.1
with several additional features. First, the local functions 〈f� | � ∈ S〉 witnessing
♦n( �L, 
) are the simplest possible: they are constant maps—see the function g in
Clause (1) below. Second, the sequence 〈Sj | j < κ〉 of Clause (2) shows that we
have κ-many disjoint stationary sets each of which carries the desired diamond.
This is motivated by results such as [22, Theorem A.1] that uses a guessing
principle with � many pairwise disjoint active parts to construct 2� many pairwise
nonhomeomorphic Dowker spaces. Unlike the usual diamond and some of its
variants (see, for example, [4, Theorem 3.7] and [10, Lemma 3.19]) that abstractly
admit a partition into κ many active parts, here we do not know of such a partition
theorem, hence the explicit inclusion of Clause (2). One possible explanation for
the lack of a partition theorem is that for cardinals � < 
 < κ, the collection
corresponding to the failure of diamond on �-bounded ladder systems for 
-
colourings does not form a κ-complete ideal which prevents the use of standard
non-saturation results such as Ulam’s theorem and its generalisations [13].

The third feature of the next theorem is motivated by the study of relative club
guessing and can be most concisely expressed as CG�(Eκ�, T, κ) in the sense of
[12, Definition 2.2]. To make our explanation self-contained, notice that the � ∈ Sj
below not only guesses the global function f on the set [B� ]n, but additionally, given
a club D ⊆ κ we ensure that � simultaneously guesses the club D relative to T, that
is, B� ⊆ D ∩ T . For more on the utility of this feature, we refer the reader to [12].

When reading the next theorem for the first time, the reader may want to begin

by considering the case when n = 1 and Ω = � = 
 = �, so that κ = 222ℵ0
.

Theorem 3.5. Suppose that n is a positive integer, Ω, � ≤ 
 are infinite cardinals
with � regular, κ := �n+2(
) is smaller than Ω+� , and T ⊆ κ is stationary. Then there
are:

(1) a map g : Eκ� → 
,
(2) a partition 〈Sj | j < κ〉 of Eκ� into stationary sets, and
(3) a �-bounded ladder system �L = 〈B� | � ∈ Eκ�〉,

such that for every clubD ⊆ κ, for every function f : [κ]n → 
, for every j < κ, there
is a � ∈ Sj such that B� ⊆ D ∩ T and f“[B� ]n = {g(�)}.

Proof. By the Erdős–Rado theorem, the cardinal � := (�n–1(
))+ satisfies
� → (�)n
 . Put � := 2<� and � := 2� . Consequently, � = �n(
), � = �n+1(
), and
κ = �n+2(
) = 2�. Altogether,

max{Ω, �} ≤ 
 < � ≤ � < � = �� < κ < Ω+�.
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Fix an m < � such that κ = �+m+1 and let Λ := �+m, so that � ≤ Λ. Note that
Hausdorff’s lemma implies that Λ� = Λ < κ. In addition, since �� = �, Lemma 3.4
provides us with a �+-complete proper ideal I over � such that onto(I+, [κ]<�, �)
holds.

Claim 3.5.1. There exists a �-bounded C-sequence 〈C� | � ∈ R〉 such that:

• R ⊆ acc(κ) ∩ Eκ≤� is stationary;
• for every � ∈ R, for every � ∈ acc(C�), � ∈ R and C� = C� ∩ �;
• for every club D ⊆ κ, for every ε < κ, there exists a � ∈ R ∩ Eκ� such that

nacc(C�) ⊆ D ∩ T and min(C�) ≥ ε.

Proof. The proof is similar to that of [23, Lemma 2]. As κ = Λ+ and Λ� = Λ,
for every � ∈ acc(κ) ∩ Eκ≤� we may let 〈C�,j | j < Λ〉 be an enumeration of all clubs
in � of order-type no more than �. In addition, using Λ� = Λ, by the Engelking–
Karlowicz theorem, we may fix a sequence �f = 〈fi | i < Λ〉 of functions from κ
to Λ such that for every function g : x → Λ with x ∈ [κ]� , there exists an i < Λ
such that g ⊆ fi . Denote C i� := C�,fi (�). Clearly, for every i < Λ, �C i := 〈C i� | � ∈
acc(κ) ∩ Eκ≤�〉 is a �-bounded C-sequence.

We claim that there exists an i < Λ such that for every club D ⊆ κ, for every
ε < κ, there exists a � ∈ R ∩ Eκ� such that:

(1) nacc(C i�) ⊆ D ∩ T ;
(2) min(C i�) ≥ ε
(3) for every � ∈ acc(C i�), C i� = C i� ∩ �.

Indeed, otherwise, for each i < Λ, we may fix a club Di ⊆ κ and some εi < κ such
that for every � ∈ R ∩ Eκ� , either (1) fails for Di or (2) fails for εi or (3) fails. Let
D :=

⋂
i<ΛDi and ε := supi<Λ εi . As T is stationary, we may now fix some � ∈ Eκ�

above ε such that D ∩ T is cofinal in �. Fix a club C in � of order-type � such that
nacc(C ) ⊆ D ∩ T and min(C ) = ε. Pick a function g : acc(C ) ∪ {�} → Λ such
that g(�) = j implies C ∩ � = C�,j . Pick an i < Λ such that g ⊆ fi . This implies
that

C i� = C�,fi (�) = C�,g(�) = C,

and for � ∈ acc(C ),

C i� = C�,fi (�) = C�,g(�) = C ∩ �.

Then we arrive at the following contradiction:

(i) nacc(C i�) = nacc(C ) ⊆ D ∩ T ⊆ Di ∩ T ;
(ii) min(C i�) = min(C ) = ε ≥ εi ;

(iii) for every � ∈ acc(C i�), C i� = C ∩ � = C i� ∩ �.
Thus, pick i < Λ such that for every club D ⊆ κ, for every ε < κ, there exists a

� ∈ R ∩ Eκ� such that (1)–(3) holds. Set

R := {� ∈ acc(κ) ∩ Eκ≤� | ∀� ∈ acc(C i�) [C i� ∩ � = C i� ]}.

Then 〈C i� | � ∈ R〉 is as sought. �
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Let 〈C� | � ∈ R〉 be given by the claim. It follows that the set

E := {ε < κ | ∀D ⊆ κ club ∃� ∈ R ∩ Eκ� [nacc(C�) ⊆∗ D ∩ T & min(C�) = ε]}

is cofinal in κ. For every j < κ, let E(j) denote the unique ε ∈ E to satisfy
otp(E ∩ ε) = j, and then let:

• Rj := {� ∈ R ∩ Eκ� | min(C�) = E(j)}, and
• Sj :=

⋃
{acc(C�) | � ∈ Rj} ∩ Eκ� .

The sets in 〈Sj | j < κ〉 are pairwise disjoint, since for j < j′ < κ we have that
E(j) �= E(j′), and by the coherence property of 〈C� | � ∈ R〉. Also, for every j < κ
and every club D ⊆ κ there is a � ∈ Rj ∩ Eκ� such that nacc(C�) ⊆∗ D, and hence
acc(C�) ∩D ∩ Eκ� �= ∅ as � < �. It follows that 〈Sj | j < κ〉 is a partition into
stationary sets of some subset S of Eκ� .

For each � ∈ S, let

P� :=
⋃

{[C�\�]n � | � ∈ C�}

and note that

|P� | ≤ Λ� ≤ Λ� = Λ < Λ+ = κ.

For each � ∈ S, since otp(C�) ≤ � but cf(�) = � < �, it is the case that otp(C�) < �.
Combining this with 
 · 2<� = �, let us also fix an enumeration 〈(��,i , B�,i) | i < �〉
of all pairs (�, B) such that � < 
 and B is a cofinal subset of nacc(C�) of order
type �.

Moving on, as κ = 2� = 
�, let us fix a bijection 
 : �
 ↔ κ. For every α < �,
define a map 
α : κ → 
 via


α(�) := 
–1(�)(α).

For every subset C ⊆ κ, for every map � : [C ]n → κ, for every α < �, we let
�α := 
α ◦ �, so that �α is a function from [C ]n to 
. We say that f : [C ]n → 

is good iff there is some cofinal subsetH ⊆ nacc(C ) such that f � [H ]n is constant.

Let � ∈ S and � ∈ P� . So, for some � ∈ C� , � : [C� \ �]n → �. As Im(�) ⊆ κ, for
every α < �, �α : [C� \ �]n → 
, so we let A� := {α < � | �α is good}. Pick a map
h� : �→ � such that for every α ∈ A�, i := h�(α) satisfies thatB�,i is a cofinal subset
of nacc(C� \ �) for which �α � [B�,i ]n is constant with value ��,i .

Claim 3.5.2. Let � ∈ S. There exists a function g� : �→ � such that, for every
� ∈ P� with A� ∈ I+, there exists an α ∈ A� with h�(α) = g�(α).

Proof. Fix a colouring c : �× κ → � witnessing onto(I+, [κ]<�, �). Let � ∈ P�
such thatA� ∈ I+. Note that the setB� := {� < κ | ∀α ∈ A� [h�(α) �= c(α, �)]} has
size less than �. Indeed, otherwise, B� ∈ [κ]� , and so since A� ∈ I+, we may pick
an α ∈ A� such that c[{α} × B�] = �, and in particular, h�(α) ∈ c[{α} × B�].

As |P� | < κ, it follows that we may pick � ∈ κ \
⋃
{B� | � ∈ P� & A� ∈ I+}.

Define g� : �→ � via g�(α) := c(α, �). Then g� is as sought. �
Let 〈g� | � ∈ S〉 be given by the preceding claim.

Claim 3.5.3. Let j < κ. There exists an α < � such that for every function
f : [κ]n → 
, for every club D ⊆ κ, there is a � ∈ Sj such that B�,g� (α) ⊆ D ∩ T
and f“[B�,g� (α)]n = {��,g� (α)}.
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Proof. Suppose not. Then, for every α < �, we may fix a function fα :
[κ]n → 
 and a club Dα ⊆ κ such that for every � ∈ Sj , either B�,g� (α) � Dα ∩ T
or fα“[B�,g� (α)]n �= {��,g� (α)}. Using that 
 : �
 ↔ κ is a bijection define a map
� : [κ]n → κ via:

�(�1, ... , �n) := 
(〈f�(�1, ... , �n) | � < �〉).

Consider the club D := {� ∈
⋂
α<� Dα | �“[�]n ⊆ �}. Pick � ∈ Rj and a large

enough � ∈ C� such that nacc(C� \ �) ⊆ D ∩ T . As otp(nacc(C� \ �)) = �, recalling
that � → (�)n
 holds, for every α < �, we may pick a subset Hα ⊆ nacc(C� \ �) of
order-type � such that fα � [Hα]n is constant, and clearly �α := sup(Hα) is an
element of acc(C� \ �) ∩ Eκ� , and hence of Sj ∩D too. As |C�| = � ≤ � and I is a
proper �+-complete ideal on �, let us now pick a � ∈ Sj ∩D such that A∗ := {α <
� | �α = �} is in I+.

Since � ∈ acc(C�), it is the case that C� = C� ∩ �, and hence, for every α ∈ A∗,
Hα witnesses that fα � [C� \ �]n is good.

Since � ∈ D, we know that �̄ := � � [C� \ �]n is in P� . For every α < �, recall that
�̄α is defined as 
α ◦ �̄, so that, for every (�1, ... , �n) ∈ [C� \ �]n,

�̄α(�1, ... , �n) = 
α(
(〈f�(�1, ... , �n) | � < �〉)) = fα(�1, ... , �n).

That is, �̄α = fα � [C� \ �]n for every α < �, so A�̄ is equal to {α < � | fα � [C� \
�]n is good} and it covers the I+-set A∗, and hence A�̄ ∈ I+. Recalling that g� was
given to us by Claim 3.5.2, we may now pick an α ∈ A�̄ with h�̄(α) = g�(α). By the
definition of h�̄, this means that B�,g� (α) is a cofinal subset of nacc(C� \ �) for which
�̄α � [B�,g� (α)]n is constant with value ��,g� (α). But

B�,g� (α) ⊆ nacc(C� \ �) ⊆ nacc(C� \ �) ⊆ D ∩ T ⊆ Dα ∩ T

and �̄α � [B�,g� (α)]n = fα � [B�,g� (α)]n, contradicting the choice of Dα and fα . �

For every j < κ, let αj < � be given by the preceding claim, and then for every
� ∈ Sj , let B� := B�,g� (αj ) and g(�) := ��,g� (αj ). Then 〈B� | � ∈ S〉, 〈Sj | j < κ〉 and
g : Eκ� → 
 are as sought modulo the fact that S =

⋃
j<κ Sj may possibly be a

proper subset of Eκ� , but this can be mitigated by allocating all the left-out points to
S0 and defining B� and g(�) arbitrarily over these points. �

Remark 3.6. An inspection of the preceding proof shows that if n > 1, then we
may as well take � to be � since in this case, 
 · �� = �. Thus, for n > 1, the proof
yields the same conclusion for κ := �2((�n–1(
))+) (instead of �n+2(
)) assuming
it is smaller than Ω+� .

Remark 3.7. In the special case � = 
, assuming ♦(Eκ�), it is possible to
arrange a�-bounded ladder system �L = 〈A� | � ∈ Eκ�〉 and a sequence 〈f� | � ∈ Eκ�〉
witnessing ♦n( �L, 
) as in Definition 3.1 such that, for some ‘wild’ function
f : [κ]n → 
, for every � in the stationary set {� ∈ Eκ� | f � [A� ]n = f�}, it is the
case thatf � [A� ]n is a bijection. For the purposes of our application in Corollary 4.7
however this is no good, and we need at least a small portion of the Ramsey-theoretic
feature provided by the function g of Theorem 3.5. The reason can be gleaned from
considering the negation of Clause (3) of Fact 4.2.
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We conclude this section with pointing out that similar to Remark 2.16, by using
standard stepping up methods one can transfer Corollary 3.3 to ℵ�+1, as follows.

Corollary 3.8. Suppose that ℵ� is a strong limit. For every positive integer n
and every 
 < ℵ� , there exist a ladder system �L = 〈A� | � < ℵ�+1〉 and a function
g : ℵ�+1 → 
 such that for every function f : [ℵ�+1]n → 
, for every uncountable
cardinal � < ℵ� , {� ∈ Eℵ�+1

� | f“[A� ]n = {g(�)}} is a reflecting stationary set.

§4. Ladder systems and topological spaces. In this section, we give the first
topological application of diamonds on ladder systems to topology. While not stated
explicitly so far, we shall want the topological spaces constructed in this paper to at
least be Hausdorff. Thus, we shall need the following folklore fact.

Fact 4.1. For a ladder system �L = 〈A� | � ∈ S〉, all of following are equivalent:
(1) X �L is Hausdorff;
(2) X �L is Hausdorff and regular;
(3) for every pair � < � of ordinals from S, sup(A� ∩ A�) < �.
In particular, if �L is�-bounded, thenX �L is Hausdorff and regular. More generally,

for every �-bounded ladder system �L over a subset of Eκ� , it is the case that X �L
is Hausdorff and regular. A second basic fact will be needed. Namely, by [19,
Proposition 4.1] and a straight-forward generalisation of [3, Claim 1], we have the
following characterisation.

Fact 4.2. For a ladder system �L = 〈A� | � ∈ S〉, all of following are equivalent:
(1) X �L is a Δ-space;
(2) X �L is countably metacompact;
(3) For every function g : S → �, there is a function f : κ → �, such that, for

every � ∈ S, sup{α ∈ A� | f(α) ≤ g(�)} < �.
Remark 4.3. The above characterisation makes it clear that an�-bounded ladder

system �L over �1 for which X �L is not countably metacompact can be constructed
from a gallery of hypotheses. To mention just two, by [4, Theorem 3.7] such a ladder
system exists assuming ♣, and by the proof of [22, Corollary 4.6] such a ladder
system exists assuming ♦(b).

Lemma 4.4. Suppose that � < κ is a pair of regular uncountable cardinals, and that
�L is a �-bounded ladder system over Eκ� such that Φ( �L,�,�) holds. Then X �L is a
regular Hausdorff space that is not countably metacompact.

Proof. Since �L is a �-bounded ladder system over Eκ� , Fact 4.1 implies
that X �L is regular and Hausdorff. Write �L as 〈A� | � ∈ Eκ�〉. Define a function
F : (

⋃
�∈S

A��) → � by letting for all � ∈ S and f : A� → �,

F (f) := min{n < � | sup{α ∈ A� | f(α) = n} = �}.

Since Φ( �L,�,�) holds, we may now fix a function g : S → � such that, for every
function f : κ → �, there are stationarily many � ∈ S such that F (f � A�) = g(�).
In particular, for every function f : κ → � there are stationarily many � ∈ S
such that sup{α ∈ A� | f(α) = g(�)} = �. So, by Fact 4.2, X �L is not countably
metacompact. �
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We are now ready to prove Theorem A. Indeed, it follows by taking Λ = � = ��
in the next theorem.

Corollary 4.5. Suppose that Λ ≤ � is a pair of uncountable cardinals such that Λ
is a strong limit. Denote κ := cf(2�). Then there are co-boundedly many � ∈ Reg(Λ)
such that Eκ� carries a �-bounded ladder system �L such that X �L is a regular Hausdorff
space that is not countably metacompact.

Proof. By Corollary 2.12, there are co-boundedly many uncountable � ∈
Reg(Λ), for which there exists a �-bounded ladder system �L over Eκ� such that
♦( �L,�) holds, in particular, Φ( �L,�,�) holds. Now, appeal to Lemma 4.4. �

Theorem 4.6. If κ := 22ℵ1 is smaller than ℵ�1 , then there exists an �1-bounded
ladder system �L over Eκ�1

for which X �L is a regular Hausdorff space that is not
countably metacompact.

Proof. Denote � := ℵ1 and � := 2�. Note that ℵ1 < � < cf(κ) ≤ κ < ℵ�1 and
hence κ is regular. As 2� < �+�, for every cardinal κ ∈ [�, 2�), it is the case
that � ≤ κ < �+�, and so Fact 2.13 implies that m(κ, �) = κ < 2�. As made
clear right after Claim 2.9.1, we then get a �-bounded C-sequence �C over some
stationary S ⊆ Eκ� such that ♦∗( �C, 2�, 2�) holds. In particular, there is a �-bounded
C-sequence �C over Eκ� such that ♦( �C, 2�, 2�) holds. As �� = �, Lemma 2.8 implies
that onto({�}, [2�]≤�, �) holds. Then, by Lemma 2.10, Φ( �C, 2�, �) holds. Now,
appeal to Lemma 4.4. �

We are also in a condition to prove Theorem B.

Corollary 4.7. If κ := 222ℵ0
is smaller than ℵ� , then there exists an �-bounded

ladder system �L overEκ� for whichX �L is a regular Hausdorff space that is not countably
metacompact.

Proof. Suppose that κ := 222ℵ0
is smaller than ℵ� . Appealing to Theorem 3.5

with (n,Ω, �, 
) := (1, �,�,�), we obtain an �-bounded ladder system �L = 〈A� |
� ∈ Eκ�〉 and a map g : κ → � such that for every function f : κ → �, there are
stationarily many � ∈ Eκ� such that f“A� = {g(�)}. Since �L is a �-bounded ladder
system over Eκ� , Fact 4.1 implies that X �L is regular and Hausdorff. In addition, by
Fact 4.2, X �L is not countably metacompact. �

We conclude this paper by providing a proof of Theorem C. The definition of a
regressive tree may be found in [21, Definition 2.14], and the fact that coherent trees
are regressive is easily shown.

Theorem 4.8. If there exists a κ-Souslin tree T, then there exists a ladder system
�L over some stationary subset of κ for which X �L is a regular Hausdorff space that is
not countably metacompact. If the tree T is regressive, then dom( �L) = Eκ� so that X �L
is moreover first countable.

Proof. By [21, Theorem 2.29], the existence of a κ-Souslin tree T implies that
♣AD(S, 1, 1) holds for some κ-sized pairwise disjoint family S of stationary subsets
of κ. Denote S :=

⊎
S. By [21, Corollary 2.25(2)], if T is regressive, then we may
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moreover secure that S = Eκ� . As S is infinite, let 〈Sn | n < �〉 be a partition of S
in such a way that each Sn covers some set from S, so that ♣AD({Sn | n < �}, 1, 1)
holds. Finally, the latter means that there exists a ladder system �L = 〈A� | � ∈ S〉
such that the following two hold:

(i) for every cofinal A ⊆ κ, for every n < �, there exists a � ∈ Sn such that
sup(A� ∩ A) = �;

(ii) for every pair � < � of ordinals from S, sup(A� ∩ A�) < �.

Now letting g : S → � describe the partition of S, we get that for every function
f : κ → �, by picking n < � such that A := f–1{n} is cofinal in κ, we may find
� ∈ Sn such that sup(A� ∩ A) = �, and hence sup{α ∈ A� | f(α) = g(�)} = �. So
Clause (i) implies that X �L is not countably metacompact by Fact 4.2, and Clause
(ii) ensures that X �L is a regular Hausdorff space by Fact 4.1. �
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