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1 Introduction

Functional programming languages are an excellent tool for teaching algorithms and

data structures. This paper explains binomial heaps, a beautiful data structure for

priority queues, using the functional programming language Haskell (Peterson and

Hammond, 1997). We largely follow a deductive approach: using the metaphor of a

tennis tournament we show that binomial heaps arise naturally through a number

of logical steps. Haskell supports the deductive style of presentation very well: new

types are introduced at ease, algorithms can be expressed clearly and succinctly,

and Haskell’s type classes allow to capture common algorithmic patterns. The paper

aims at the level of an undergraduate student who has experience in reading and

writing Haskell programs, and who is familiar with the concept of a priority queue.

2 Priority queues

The abstract data type ‘priority queue’ provides at least the following five operations:

∅ represents the empty queue; HaI denotes the queue, which contains a as the single

element; insert a q inserts a into queue q; q1 ] q2 denotes the union of queues

q1 and q2 (sometimes termed ‘meld’); and splitMin q extracts a minimal element

from q . The notation has been chosen to emphasize the fact that priority queues

are conceptually bags, i.e. unordered collections possibly with duplicates. Priority

queues are the data type of choice when an efficient access to the smallest element

of a varying collection of elements is required. Applications include discrete event

simulation and job scheduling. Here is the class definition for priority queues.

data MinView q a = Min a (q a) | Infty

class PriorityQueue q where

∅ :: (Ord a)⇒ q aH·I :: (Ord a)⇒ a → q a

insert :: (Ord a)⇒ a → q a → q a

(]) :: (Ord a)⇒ q a → q a → q a

splitMin :: (Ord a)⇒ q a → MinView q a

insert a q = HaI ] q
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94 R. Hinze

Table 1. Ladies’ singles of the 1996 All England Championship

Quarterfinal Semifinal Final Champion

K Date
vs. K Date
M Pierce

vs. S Graf
S Graf
vs. S Graf
J Novotna

vs. S Graf
J Wiesner
vs. A Sanchez Vicario
A Sanchez Vicario

vs. A Sanchez Vicario
M Fernandez
vs. M McGrath
M McGrath

While the meaning of the first four operations should be clear, splitMin is in need of

explanation. The call splitMin q has two possible outcomes: if q is empty splitMin q

returns Infty , otherwise it yields Min a q ′ where a is a minimal element of q and q ′
consists of all elements in q except a .

Note that PriorityQueue is a constructor class (Jones, 1995); the class variable

q ranges over type constructors rather than types (q has kind ∗ → ∗). A similar

comment applies to the definition of MinView : the parameter q is a type constructor

while a is a type.

To derive an efficient implementation of priority queues we proceed in two steps.

First, we consider a simple instance of the problem, namely, to determine the smallest

of a fixed bag of elements. In a second step we drop the restriction that all elements

are given in advance by making the algorithms incremental.

3 Tournament trees

Let us assume that we look for the best of, say, n tennis players. The first idea which

probably crosses one’s mind is to organize a knock-off tournament.1 For definiteness,

consider the results of the Ladies’ singles of the 1996 All England Championship

listed in Table 1. We see that the course of matches forms a full binary tree; each

external node corresponds to a participant, and each internal node corresponds to

the winner of a match. The tree representation is shown in Figure 1(a). Regarded as

a data structure for priority queues tournament trees appear to be deficient because

of the many repeated entries they contain. The champion, for instance, appears on

every level of the tree. We may repair this defect if we label each internal node with

the loser of the match, instead of the winner, and drop the external nodes altogether.

1 It is important to be concrete here. If we posed the abstract problem of determining the smallest of a
bag of elements we would probably provoke solutions like foldl min ∞.
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(a) tournament tree (b) topped loser tree

Fig. 1. Different representations of the tournament listed in Table 1.

We thus turn the tree of winners into a tree of losers. Since every participant – with

the exception of the champion – loses exactly one match the labelling of nodes is

now unique. If we place the champion additionally at the top of the tree we obtain

the structure displayed in Figure 1(b).

To represent topped loser trees in Haskell we reuse the data type MinView building

upon the standard definition of labelled binary trees.

type ToppedTree a = MinView BinTree a

data BinTree a = Bin a (BinTree a) (BinTree a) | Empty

Let us consider next how to determine the second-best player. Assuming a transitive

ranking only those players who lost to the champion must be taken into account.

In the example above there are three candidates for the second prize: N, D, and

S. Consequently, two additional matches are required; the tree-structure of the

tournament suggests to let S compete against the winner of D vs. N.

Unfortunately, we cannot set up the matches on the basis of a topped loser tree. It

simply does not provide enough information to determine the champion’s opponents.

This can be seen if we annotate its edges with the established ranking, cf Figure 2(a).

The problem is that some players dominate the left, others the right subtree but we

cannot tell which one. A cure, however, is ready at hand: We arrange the tree such

that a loser always dominates the left subtree. Then the champion’s opponents are

located on the right spine. The modified tree is displayed in Figure 2(b).

S
D M

FWNP

(a) original loser tree

S
M D

F W NP

(b) left-ordered loser tree
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Fig. 2. Determining the second-best player

The left-ordering property must be taken into account whenever a match is played,

i.e. two topped trees are melded.
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u t t u

b

a

t u

a

b

ba
+⇐

a%b a>b⇐

Note that the subtrees, t and u , are swapped if a 6 b. Having fixed the data

structure and its properties we are now ready to give the first implementation of

priority queues.2

instance PriorityQueue ToppedTree where

∅ = InftyHaI = Min a Empty

Infty ] u = u

t ] Infty = t

Min a t ]Min b u

| a 6 b = Min a (Bin b u t)

| otherwise = Min b (Bin a t u)

splitMin Infty = Infty

splitMin (Min a t) = Min a (secondBest t)

where secondBest Empty = Infty

secondBest (Bin a ′ l r) = Min a ′ l ] secondBest r

This instance has the amazing property that (]) can be performed in constant

time. On the negative side splitMin exhibits Θ(n) worst-case behaviour.3 Consider,

for example, the call splitMin (foldr insert ∅ [n , n − 1 . . 1]). The crux is that (])

is repeatedly applied to trees of different sizes resulting in a degenerated tree.

Interestingly, the performance depends very much on the order of elements: the call

splitMin (foldr insert ∅ [1 . . n ]), for example, takes only constant time.

4 Bottom-up tournament trees

We have seen that repeated insertions into a topped tree may result in a degenerated

list-like structure degrading the performance of subsequent splitMin operations.

This never happens in a tennis tournament because the participants are known in

advance. Dropping this assumption we are faced with the following problem:

Again, we look for the best of n tennis players. But, due to prior commitments the

players do not arrive at the same time; rather they join the tournament one after the

other. We probably do not even know how many players are going to participate.

We only require the series of matches to be fair: opponents should always have

2 The instance declaration is not legal Haskell since ToppedTree is not a datatype defined by data or by
newtype. A datatype, however, introduces an additional data constructor which affects the readability
of the code. Instead we employ type declarations as if they worked as newtype declarations.

3 Since Haskell is a lazy language the bounds are amortized rather than worst-case bounds (Okasaki,
1996b).
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played the same number of matches, i.e. only trees of equal size should be linked.

Can we make arrangements to cope with this – from an organizer’s point of view

quite unpleasant – situation?

The answer is yes and the solution is quite simple, too. Returning to the Ladies’

singles assume that the participants arrive in the following order: D, P, G, N, W, S,

F, and M. Now, whenever a new player shows up we perform as many matches as

possible. Here are three snapshots just after W, S, and F joined the tournament.

G

D

P N

G

D

P N

G

D

P NW W

S

W

S

F

When the last player, M, arrives three pending matches can be carried out resulting

in the tree of Figure 1(b). We see that the original tree is constructed in a left-to-

right, bottom-up fashion. A match is performed if and only if there are two trees

of equal size. This condition guarantees that all loser trees are perfectly balanced.

The resulting structures, topped full binary trees, are called pennants by Sack and

Strothotte (1990). Since a full binary tree of height h contains 2h+1 − 1 nodes, a

pennant of height h contains 2h nodes. This implies that a tournament of size n

contains a pennant of height i if the i-th bit in the binary representation of n is 1.

In Haskell we represent a tournament by a list of topped trees. For reasons, that

will become clear later, we call the data structure ‘binary binomial heap’.

type BinBinomialHeap a = [ToppedTree a ]

A tournament of size 13 = 1 + 0 + 4 + 8, for example, is represented by the list

[ , ε, , ].

The list contains an empty pennant (abbreviated by ε) which corresponds to the 0

in the binary representation of 13. Okasaki (1996a) discusses alternative representa-

tions.

5 Digression: Binary addition

Since the representation of a tournament is uniquely determined by the binary

decomposition of the number of participants it probably comes as no surprise that

the operations on heaps resemble arithmetic functions on binary numbers: inserting

an element is analogous to incrementing a number, melding two tournaments is

analogous to adding two numbers. For that reason we will briefly review the method

of summing binary numbers. To abstract away from clerical details of representation
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we first introduce a class for binary digits.

class (Eq b)⇒ BinaryDigit b where

zero :: b

carry , sum :: b → b → b

The function sum calculates the sum bit of two bits, carry accordingly determines

the carry bit. Recall from the course on computer architecture that a single step of

the binary addition is performed by a full adder which calculates the sum of three

bits, the two input bits and the carry bit.

fullAdder :: (BinaryDigit b)⇒ b → b → b → (b, b)

fullAdder c a b = (s2, sum c1 c2)

where (s1, c1) = halfAdder a b

(s2, c2) = halfAdder c s1

A half adder calculates the sum of two bits.

halfAdder :: (BinaryDigit b)⇒ b → b → (b, b)

halfAdder a b = (sum a b, carry a b)

A binary number is represented by a list of binary digits, the least significant

digit coming first. Keeping the digits in increasing order of weight is a natural

choice since addition proceeds from the least to the most significant digit. To

make the representation unique we furthermore disallow trailing zeros. The Haskell

function for binary addition, addWithCarry , essentially corresponds to a ripple-carry

addition (Cormen et al., 1991, pp. 661–662). Contrary to an electronic circuit we

must arrange for the likely case that the numerals have unequal length. The helper

function addDigit takes care of these cases.

add :: (BinaryDigit b)⇒ [b ]→ [b ]→ [b ]

add x y = addWithCarry zero x y

addWithCarry :: (BinaryDigit b)⇒ b → [b ]→ [b ]→ [b ]

addWithCarry c [ ] y = addDigit c y

addWithCarry c x [ ] = addDigit c x

addWithCarry c (a : x ) (b : y) = s : addWithCarry c′ x y

where (s , c ′) = fullAdder c a b

addDigit :: (BinaryDigit b)⇒ b → [b ]→ [b ]

addDigit c x | c ≡ zero = x

addDigit c [ ] = [c ]

addDigit c (a : x ) = s : addDigit c′ x

where (s , c ′) = halfAdder c a

If we represent binary digits by integers,

instance BinaryDigit Int where

zero = 0

carry m n = (m + n) ‘div ‘ 2

sum m n = (m + n) ‘mod ‘ 2
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we can try adding 3 and 6: add [1, 1] [0, 1, 1] = [1, 0, 0, 1]. Due to the overloading

we can reuse add to meld two lists of pennants. All we have to do is to supply the

following instance declaration.

instance (Ord a)⇒ BinaryDigit (ToppedTree a) where

zero = Infty

carry (Min a t) (Min b u)

| a 6 b = Min a (Bin b u t)

| otherwise = Min b (Bin a t u)

carry = Infty

sum Infty u = u

sum t Infty = t

sum (Min ) (Min ) = Infty

Note that we omit the necessary, but straightforward Eq instance declaration for

topped trees. The function carry corresponds to melding two topped trees. The only

difference is that carry returns Infty if one of the arguments is empty. The function

sum determines the ‘remainder’ of a meld. It is instructive to see add in action:

] , ε, ].= [] [ ε, ,, ε,add [

The running time of add is determined by the length of the input lists. Since a

tournament of size n comprises dlog2(n+ 1)e pennants the worst-case running time

of (]) (= add ) is Θ(log n). For insert one can derive tighter bounds: incrementing a

binary number only takes Θ(1) amortized time (Okasaki, 1996b).

6 Binary binomial heaps

It remains to implement splitMin which puts our implementation on the testbench.

Since we increased the cost of (]) from Θ(1) to Θ(log n), we expect the running time

of splitMin to improve. The operation proceeds in three steps. First, a pennant with

a minimal root is determined and replaced by zero. This is most easily accomplished

if we are able to compare topped trees as a whole. The following instance declaration

defines a suitable ordering.

instance (Ord a)⇒ Ord (ToppedTree a) where

t 6 Infty = True

Infty 6 u = False

Min a 6 Min b = a 6 b
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Note that the loser trees are not taken into account. This guarantees that comparing

two trees has the same complexity as comparing two elements.

extractMin :: (Ord t ,BinaryDigit t)⇒ [t ]→ MinView [ ] t

extractMin [ ] = Infty

extractMin (a : x ) = case extractMin x of

Infty → Min a [ ]

Min b y | a 6 b → Min a (zero : x )

| otherwise → Min b (a : y)

The type of extractMin is more general than actually needed: extractMin is not

restricted to topped trees but works on binary digits. This extra generality pays off

in the subsequent section when we change the representation of tournaments.

Having determined the required pennant we are left

with the problem of merging the remaining list of pen-

nants with a single full binary tree. Fortunately, we can

convert a full binary tree into a tournament using the

natural correspondence between binary trees and lists

of topped trees. The figure on the right emphasizes the

pennants hidden in a full binary tree.

This correspondence is easily coded as a Haskell program which constitutes the

second step.

dismantle :: BinTree a → [ToppedTree a ]

dismantle Empty = [ ]

dismantle (Bin a l r) = Min a l : dismantle r

In the third and last step we simply meld the two lists. Note that the pennants

resulting from the binary tree must be reversed beforehand. Since all three steps

require Θ(log n) time in the worst case, splitMin requires Θ(log n) time, as well.

instance PriorityQueue BinBinomialHeap where

∅ = [ ]HaI = [Min a Empty ]

(]) = add

splitMin q = case extractMin q of

Infty → Infty

Min (Min a t) ts → Min a (reverse (dismantle t) ] ts)

This instance has the amazing feature that the running time of (]) is completely

independent of the elements contained in the queues – quite contrary to our first

implementation. The pro is also a con: binomial heaps do not adapt to the input

data. You better not use binomial heaps for sorting.

7 Multiway binomial heaps

A data structure for priority queues records our partial knowledge about the or-

dering of its constituents. Different data structures give rise to different types of
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orderings: ordered lists, for example, correspond

to chains, unordered lists to antichains. It is in-

structive to draw the underlying ordering of a

pennant. The diagrams for pennants of height

2, 3, and 4 are shown on the right. A mo-

ment’s reflection reveals that these multiway trees

are obtained through the natural correspondence between binary trees and forests,

described by Knuth (1968, pp. 333–334). Figure 3 illustrates the special case of

transforming a topped binary tree into a multiway tree.

a

a1
a2

an

a2 an

a

a1⇐

ε

t2

t1

tn

F2 FnF1

Fig. 3. Natural correspondence between topped binary trees and multiway trees (Fi is the

forest corresponding to the binary tree ti).

This correspondence suggests to implement priority queues directly by multiway

trees. The data type for general trees is defined as follows.

data Tree a = Root a (Forest a) | Void

type Forest a = [Tree a ]

Dictated by the application we allow that a tree is empty. We restrict, however, the

use of Void to the top-level, ie Void must not appear beneath a Root node. The

transformation pictured in Figure 3 can be rigorously defined by a Haskell function.

tree :: ToppedTree a → Tree a

tree Infty = Void

tree (Min a t) = Root a (forest t)

forest :: BinTree a → Forest a

forest Empty = [ ]

forest (Bin a l r) = Root a (forest l ) : forest r

If we apply tree to a pennant we obtain a binomial tree. This term is motivated by

the fact that a binomial tree of height h contains
(
h
d

)
nodes at depth d. Both, trees

and coefficients, are based on a similar inductive scheme. A binomial tree of height

h + 1 consists of two trees of height h that are linked together: one is made the

leftmost child of the other (see the definition of carry below). Binomial coefficients

satisfy the recurrence
(
h+1
d

)
=
(
h
d

)
+
(
h
d−1

)
.

With regard to the ordering we have that a binomial tree satisfies the heap

property: Every node is smaller or equal than any of its descendants.
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Since ToppedTree and Tree are merely different representations of the same

underlying structure it is not difficult to adapt the code of the preceding sections to

multiway trees. We start by declaring binomial heaps.

type BinomialHeap a = Forest a

To be able to reuse add for melding we make Tree a an instance of BinaryDigit .

instance (Ord a)⇒ BinaryDigit (Tree a) where

zero = Void

carry t@(Root a ts) u@(Root b us)

| a 6 b = Root a (u : ts)

| otherwise = Root b (t : us)

carry = Void

sum Void u = u

sum t Void = t

sum (Root ) (Root ) = Void

Here is our final implementation of priority queues. For reasons of space we omit

the Eq and Ord instance declarations for trees.

instance PriorityQueue BinomialHeap where

∅ = [ ]HaI = [Root a [ ]]

(]) = add

splitMin q = case extractMin q of

Infty → Infty

Min (Root a ts) us → Min a (reverse ts ] us)

Having two different representations of the same structure we may now weigh

up pros and cons of each. The binary coding of binomial heaps is more space

economical. If we estimate the space usage of the term C e1 . . . ek at k + 1 cells,

a binary heap of size n > 1 consumes 3 + 4(n − 1) cells, whereas a multiway heap

requires 3 + 6(n− 1) cells. On the other hand linking and splitting is slightly faster

with the second representation. Linking two pennants requires 7 cells and produces

6 cells of garbage whereas linking two binomial trees requires only 6 cells producing

3 cells of garbage. Furthermore, since binomial heaps use lists both for representing

the subtrees of a tree and for the entire forest the dismantling step becomes

superfluous. Practical experience shows that the advantages and disadvantages nearly

counterbalance each other: binary heaps are only marginally faster. They win the

race, however, due to the lower space requirements.

8 Further reading

Tournament trees and loser trees already appear in Knuth (1973). Binomial heaps

were discovered by Vuillemin (1978). Readers interested in an average case analysis of

insertion and deletion are referred to Brown (1978). Many variants and refinements

of binomial heaps have been developed. An implicit array-based representation of
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binomial heaps (Carlsson et al., 1988), for example, employs heap-ordered pennants.

Binomial heaps also form the basis for an implementation of min-max priority

queues (Khoong and Leong, 1993). We have seen that the loser trees in binary

binomial heap are always perfectly balanced. Høyer (1994) shows that we may relax

this condition and use some form of height-balancing instead.

The first functional implementation of binomial heaps is due to King (1994);

(King, 1996, pp. 28–42) additionally contains a simple proof of correctness. Okasaki

(1996b) shows how to turn the amortized Θ(1) time bound for insert into a worst-

case bound by scheduling delayed computations. Alternatively, one can employ a

non-standard number system which avoids cascading carries: Such a variant based

on skew binary numbers (Myers, 1983) is given in Brodal and Okasaki (1996).

In fact, loc.cit. presents an optimal implementation of priority queues. Constant

worst-case running time for (]) is achieved using a technique called data-structural

bootstrapping (Buchsbaum, 1993). In essence (]) is reduced to insert by allowing

queues to contain other queues.
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