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Abstract

We define a weak λ-calculus, λσw , as a subsystem of the full λ-calculus with explicit sub-

stitutions λσ⇑. We claim that λσw could be the archetypal output language of functional

compilers, just as the λ-calculus is their universal input language. Furthermore, λσ⇑ could be

the adequate theory to establish the correctness of functional compilers. Here we illustrate

these claims by proving the correctness of four simplified compilers and runtime systems

modelled as abstract machines. The four machines we prove are the Krivine machine, the

SECD, the FAM and the CAM. Thus, we give the first formal proofs of Cardelli’s FAM and

of its compiler.

Capsule Review

This paper describes a single framework in which one can carry out the formalizations

and proofs of correctness for a variety of abstract machines. Although the basic ideas are

known, this is the first thorough treatment of several abstract machines within lambda-sigma.

Moreover, the paper contains the first correctness proof for one machine, the FAM, that

uses environments in a more sophisticated way; it seems that this proof would be hard if

carried out without the support that lambda-sigma offers for manipulating environments. The

paper is useful also because, by virtue of working in a single framework, it can bring out the

similarities and differences between the different machines: a direct comparison between the

machines is possible by inspecting the lambda-sigma reduction strategy that each implements.

ã This work was partially supported by the ESPRIT Basic Research Project 6454–CONFER.
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1 Introduction

It is folklore to define a compiler as a translator from a high-level language intended

for humans to a low-level language intended for machines. For mostly theoretical

issues such as semantics or correctness of high-level program transformations, real

programming languages are too complicated and lack generality. Instead, it is

convenient to use an archetypal language, standing as a suitable abstraction of a

whole class of programming languages. The λ-calculus is widely accepted as such a

paradigm of all functional programming languages, due to its simplicity, consistency

and generality. More precisely, the λ-calculus captures the essence of functionality.

It is a non-ambiguous (i.e. Church–Rosser) reduction system where any strategy can

be specified, yielding call-by-value or call-by-name functional languages. Moreover,

it can be extended by adding extra rewriting rules to treat arithmetic or data

structures (Plotkin, 1977).

In opposition to this commonly accepted view of λ-calculus as universal abstract

syntax, there is no consensus among writers of functional compilers about the choice

of an archetypal target language. With respect to the formal description of their out-

put, published compilers for functional languages fall into three classes: they either

compile to combinator or supercombinator (Augustsson, 1984) terms, to λ-terms in

continuation passing style (CPS) (Appel, 1992), or to abstract machines (Landin,

1964; Cousineau et al., 1985; Cardelli, 1984; Crégut, 1990; Leroy, 1990). These dif-

ferent approaches are praised for their peculiarities: combinators for their rewriting

aspects and adequacy for lazy evaluation (Peyton-Jones, 1987), CPS for its ability to

encode explicitly a given strategy and abstract machines for their closeness to real

computers. None of these frameworks is designed to express the others. In fact, they

do not claim to be universal, but each claims to be the best.

Nevertheless, a few common concepts arise here. The functions are to be compiled,

that is, a fixed code should perform the actions specified in the body of a function,

this code remaining unchanged at every invocation of the function. The variables in

a function are of two kinds: either formal parameters or free variables. The values

of parameters change at every function call, whereas the values of free variables

remain the same. Thus, the low-level object that represents a function is a closure:

a pair of a code and an environment that collects the values of the free variables at

function creation time. Therefore, our universal target language should be a calculus

of closures.

Furthermore, the basic operations performed by the various existing runtime

systems are the same: applying a closure, creating a closure, or retrieving the value

of a variable in some environment. These operations are the true instructions of

abstract machines. Thus, in the rest of this paper we focus mostly on them, as a still

widely accepted formal description of functional runtime systems, which we intend

to surpass.

Closures are naturally expressed in the λ-calculus with explicit substitutions (Aba-

di et al., 1996; Curien et al., 1996) as a term (λx.M) [s], where M is a term standing

for a piece of code, and s is a substitution, that is, an environment, collecting the

values of free variables. We now need some rules to compute on closures. First, we
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need to apply a closure (λx.M) [s] to an argument N, yielding the explicit application

of the new substitution t = x\N . s to the body M, written M [x\N . s]. Then, we have

to propagate the substitution t inside the body M, until the substitution t reaches a

variable, which should then be replaced by its value, or a λ-abstraction, whose body

is code for a new closure. The rule for applying closures along with simple rules to

propagate substitutions define the weak λσ-calculus, λσw .

Compilation takes as input a λ-term N and produces a λσw-term M. It turns

out that both terms are valid terms of λσ⇑, a general calculus of explicit substi-

tutions (Curien et al., 1996) and that the compilation process can be expressed

as a rewriting in λσ⇑. While designing λσw , we took particular care to select only

the term constructs and rewriting rules that are actually required to express the

basic steps performed by the existing functional runtime systems. We are satis-

fied that this pragmatic approach yields a confluent calculus, which moreover is a

subcalculus of λσ⇑.

In this paper, we first introduce the weak λσ-calculus and give a unified presenta-

tion of abstract machines. Afterwards, we show that the basic operations of abstract

machines correspond to certain rewriting steps in the weak λσ-calculus. More pre-

cisely, the deterministic evaluation strategy implemented by an abstract machine is

identified as a rewriting strategy in λσw . We make this correspondence fully explicit

for the Krivine machine, the SECD, the FAM and the CAM. The FAM example

involves a true compilation of the input λ-term to a λσw-term, which requires the

full power of λσ⇑ to assert its correctness. Thereby, we give the first known proof

of the correctness of a FAM-based compiler and runtime system. Other execution

models are briefly discussed in section 7.

We thus illustrate our claim that weak λ-calculus with explicit substitutions is

an adequate tool to study the execution of compiled functional programs (Abadi

et al., 1996; Curien et al., 1996; Maranget, 1991). More ambitiously, we claim that

λσw is a good candidate for being the universal formalism of compiled functional

languages: it expresses the essence of compiled functionality (closures and step by

step substitutions), it is simple (as an ordinary, first order term rewriting system),

and it is non-ambiguous (it has the Church–Rosser property). Moreover, as shown

by the FAM, the full λ-calculus with explicit substitutions may be a good formal

language to describe the whole compilation process. This confirms the versatility

of λσ, which has been used recently to study advanced topics in the λ-calculus,

such as higher order unification (Dowek et al., 1995), or issues in logic, such as the

interpretation of sequent calculus (Herbelin, 1994).

2 Preliminaries

2.1 The lambda-calculus with explicit substitutions

The traditional weak λ-calculus is an attempt to model the execution of machine

code within the λ-calculus; it conforms with the basic intuition that functions, once

compiled, are code and cannot change (otherwise, there would be no compilation).

A tentative definition of weak reduction is thus to suppress the (ξ) rule from the
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definition of the λ-calculus.

M →M ′

(ξ)

λx.M → λx.M ′

This negative definition has the major drawback that it does not lead to a consistent

definition of the weak λ-calculus as a Church–Rosser rewriting system. To see this,

consider the following derivations:

(λxy.y x) ((λz.z) (λz.z))

λy.y ((λz.z) (λz.z)) (λxy.y x) (λz.z)

λy.y (λz.z)

�
�
�
��+

Q
Q
Q
QQs

�
�

�
��+

The problem lies in a discrepancy between intuition and formalism. Using ordinary

λ-terms only, what is intuitively perceived as the invariable code λy.y x with respect

to the possibly changing binding [x\(λz.z) (λz.z)] has to be represented by the

fully substituted abstraction λy.y ((λz.z) (λz.z)), so that the redex (λz.z) (λz.z) is

now located under a λ and cannot be contracted without invoking the (ξ) rule.

This undesirable divergence can be corrected by delaying substitution, that is, by

introducing explicit closures. Then we get:

(λxy.y x) ((λz.z) (λz.z))

(λy.y x)[x\(λz.z) (λz.z)] (λxy.y x) (λz.z)

(λy.y x)[x\λz.z]

�
�
�
��+

Q
Q
Q
QQs

�
�

�
��+

Q
Q
Q
QQs

Informally, ‘reduction is not allowed under λ’s’ is replaced by ‘substitution does

not cross λ’s’. Closing the Church-Rosser diagram for the weak λ-calculus is not

anecdotic. It means that weak λ-calculus is a consistent formalism, in which various

computations results and strategies to reach them can be compared.

Variable names do not appear at runtime, they have been compiled into memory

accesses. We represent such accesses by De Bruijn indices. The De Bruijn notation

avoids the α-conversion burden, replacing a given occurrence of a variable by the

number of λ’s that separates this occurrence from its binder.

A natural setting for a formal treatment of closures is λσ, the λ-calculus with

explicit substitutions (Abadi et al., 1996; Curien et al., 1996). We first recall the

definition of Λσ , the two sorted algebra of λσ-terms.

terms: M ::= n (MM) λM M [s], with n ≥ 1

substitutions: s ::= id ↑ M . s s ◦ s
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(App) (M1 M2) [s] → (M1 [s] M2 [s])

(FVar) 1 [M . s] → M

(RVar) n+1 [M . s] → n [s]

(Clos) (M [s]) [t] → M [s ◦ t]
(AssEnv) (s ◦ t) ◦ u → s ◦ (t ◦ u)
(MapEnv) (M . s) ◦ t → M [t] .(s ◦ t)
(ShiftCons) ↑ ◦ (M . s) → s

(IdL) id ◦ s → s

Fig. 1. System σw for weak substitution rules.

The new term construct M [s] represents explicitly the application of substitution s

to term M. The substitutions themselves are made explicit: we have two special

substitutions id and ↑, whereas substitutions are structured as lists of terms M . s or

as compositions s ◦ s.
We note ΛDB the subset of Λσ that coincides with ordinary λ-terms.

λDB-terms: N ::= n (NN) λN, with n ≥ 1

The λσ-calculi that we use are plain (i.e. non-conditional) term rewriting systems.

This means that any subterm can be reduced as soon as it matches the left-hand

side of a rule. The propagation of substitutions inside terms and substitutions is

defined by the term rewriting system σw (see figure 1).

There is one rule per term construct in the algebra of λσ-terms, except for λ.

The propagation of substitutions through application nodes and accesses inside

list-structured substitutions are handled by the first three rules of figure 1 in a

straightforward manner. The case of functions is more subtle. In the simplest case

of the so-called ‘shared environment machines’ (Krivine machine or SECD, for

instance), functions are compiled as abstractions, i.e. as code, and execution will

only pair these abstractions with an environment, producing closures. The ‘copied

environment machines’, such as the FAM, are more sophisticated: a function λM is

compiled into a closure (λM ′) [s], where s collects the references of M to a global

environment, whereas the free variables in λM ′ refer only to s. At run-time, applying

some substitution t to the closure (λM ′) [s] will result in applying t to s, thus

composing the two substitutions into one new substitution s ◦ t – as illustrated by

the rewriting rule (Clos). Hence, we need rules to substitute inside substitutions; in

other words, rules to compose substitutions. These rules are the remaining four rules

of σw . Here again, there is one rule per term construct in the sort of substitutions.

As we need the composition operator on substitutions ‘◦’ to express certain

computations, we differ significantly from recent calculi of explicit substitutions

without composition (Lescanne, 1994).

Since there is no rule for crossing λ’s, a λσ-closure, i.e. a term of the form (λM) [s],

cannot be reduced at its root. Hence, λσ-closures are (weak) values, similar to weak

head normal forms. In our case of an archetypal target language, λσ-closures are

the only values. In a more general setting that would also consider arithmetic and

data structures, additional values would be integers, lists, etc.
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In the weak setting, λσ-closures are destructured only by applying them to

arguments:

(Beta) ((λM1) [s] M2) → M1 [M2
. s]

The system λσw is defined by the rules of σw plus the rule (Beta). From (Curien et

al., 1996), where a system also named λσw , very close to ours, is studied, we deduce

that the weak substitution system σw is both strongly normalizing and confluent

and, by using the Yokouchi lemma, that the reduction system λσw is confluent.

Moreover, our system λσw is a subcalculus of λσ⇑, a very general λ-calculus with

explicit substitutions that enjoys confluence on open terms and can encode most, if

not all, other calculi of explicit substitutions (Curien et al., 1996).

(Lambda) (λM) [s] → λ(M [ ⇑ (s)])

(VarShift1) n [↑] → n+1

(VarShift2) n [↑ ◦ s] → n+1 [s]

(FVarLift1) 1 [ ⇑ (s)] → 1

(FVarLift2) 1 [ ⇑ (s) ◦ t] → 1 [t]

(RVarLift1) n+1 [ ⇑ (s)] → n [s ◦ ↑]
(RVarLift2) n+1 [ ⇑ (s) ◦ t] → n [s ◦ (↑ ◦ t)]
(ShiftLift1) ↑ ◦ ⇑ (s) → s ◦ ↑
(ShiftLift2) ↑ ◦ ( ⇑ (s) ◦ t) → s ◦ (↑ ◦ t)
(Lift1) ⇑ (s) ◦ ⇑ (t) → ⇑ (s ◦ t)
(Lift2) ⇑ (s) ◦ ( ⇑ (t) ◦ u) → ⇑ (s ◦ t) ◦ u
(LiftEnv) ⇑ (s) ◦ (M . t) → M .(s ◦ t)
(LiftId) ⇑ (id) → id

(IdR) s ◦ id → s

(Id) M [id] → M

Fig. 2. System σ⇑ for strong substitution rules.

The terms of λσ⇑ are the terms of λσ plus the additional ‘lifted’ substitution

construct ⇑ (s), whereas the rules of the strong substitution system σ⇑ are the

rules of σw plus the strong substitution rules of figure 2. With respect to strong

substitution, λσ-closures are not values any more, since any λσ-closure (λM) [s] now

immediately reduces to λ(M [ ⇑ (s)]), by the rule (Lambda). Most of the other rules

of σ⇑ make explicit the de Bruijn indices adjustments. The remaining two rules –

(IdR) and (Id) – define the substitution id as the identity. As it can be expected, σ⇑
is a terminating and confluent rewriting system (Curien et al., 1996).

The full system λσ⇑ is defined by the strong substitution rules of σ⇑ plus the

following rule for applying λ-abstractions to their arguments:

(BetaStrong) ((λM1) M2) → M1 [M2
. id]

The system λσ⇑ is both confluent and correct with respect to the λ-calculus (Curien

et al., 1996).
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One easily sees that λσw is a subcalculus of λσ⇑, since the weak β-rule (Beta) is a

shortcut for the following λσ⇑-derivation:

((λM1) [s] M2)
(Lambda)
−→ (λ(M1 [ ⇑ (s)]) M2)

(BetaStrong)
−→ (M1 [ ⇑ (s)]) [M2

. id]
(Clos)
−→

M1 [ ⇑ (s) ◦ (M2
. id)]

(LiftEnv)
−→ M1 [M2

.(s ◦ id)]
(IdR)
−→ M1 [M2

. s]

Thus, as a subsystem of the strong system λσ⇑, the weak system λσw is also correct

with respect to the λ-calculus. This correctness is to be understood as follows: given

any λσ-term M, the σ⇑-normal form σ⇑(M) is a λDB-term. Furthermore, if M reduces

to M ′ by the rule (StrongBeta), then σ⇑(M) β-reduces to σ⇑(M
′) in one or more

steps. Conversely, β-reduction in λDB can be simulated by a (StrongBeta) rewriting

step followed by σ⇑-normalization. Again, refer to Curien et al. (1996, Section 5) for

details and proofs.

In this paper, functional programs are modelled as closed λ-terms. More precisely,

given a λ-term in De Bruijn notation N, the free variables in N are collected by

calculating F0(N), where, for any integer d, Fd is defined by:

Fd(n) = ∅ if n ≤ d
Fd(n) = {n− d} if n > d

Fd(N1 N2) = Fd(N1) ∪Fd(N2)

Fd(λN) = Fd+1(N)

By definition, a λDB-term N is closed, if and only if, the set F0(N) is empty.

Furthermore, given any λσ-term M, we say that M is closed, if and only if its

σ⇑-normal form is closed. This closeness property is preserved by reduction:

Lemma 1

Let M be a closed λσ-term. Then, for all M ′ such that M
λσ⇑−→M ′, the λσ-term M ′ is

also closed.

Proof

The property holds for λDB-terms and β-reduction. It smoothly extends to λσ-terms

and λσ⇑ reduction.

2.2 Abstract machines

In the rest of this paper, we describe four machines, while unifying their presenta-

tions.

Instructions differ between machines, but for any machine, a code segment is a

possibly empty list of instructions:

code ::= () instruction; code

A closure is a code segment associated with an environment, an environment being

a list of closures:

closure ::=
(
code/environment

)
environment ::= () closure . environment
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M

Machine states and transitions︷ ︸︸ ︷

︸ ︷︷ ︸
λσ-terms and λσw-steps

L
D0 D1

... Df (terminal state)

M0 = M [id]

M0 M1
... Mf (S-normal form)

��
��
��*

HHHY

HHHj

- - -

- - -
? ? ?

S S S

. . .

Fig. 3. Summary of bisimulation conditions.

A typical code segment will be written C , a typical environment e and a typical

closure f or
(
C/e

)
.

The states of the machines are non-empty lists of frames, the exact structure of

frames depending upon the machines.

state ::= frame frame :: state

The behaviour of an abstract machine is specified by a deterministic transition

system. Briefly, a transition system is a triple (E, Et,→), where E is a set of states,

Et is the subset of terminal states and → is the transition relation defined over

(E − Et) × E. The transitive closure of → is written →∗. A transition system is

deterministic when, for every state D, there exists at most one state D′ such that

D → D′.

At this point, the puzzled reader may have a look at the machine descriptions in

sections 3–6, bearing in mind the following notations:

Convention:Our stacks grow right to left. For instance, pushing the element x onto

the stack S yields the new stack x : S . When appropriate, we freely interpret stacks

as sequences or arrays. That is, given n elements x1, x2, . . . , xn, the stack S =

xn : · · · : x2 : x1 : () is simply written xn : · · · : x2 : x1. A subsequence xj : · · · : xi is writ-

ten −→xj,i. For instance, −−→xn,n−i : S is a stack with the i elements xn, xn−1, . . . , xn−i standing

on top of it.

2.3 Implementation of a strategy by a machine

In Rittri (1988), bisimulations are used to establish the equivalence of two transition

systems Σ1 and Σ2. In our work, Σ1 always defines an abstract machine whereas Σ2

is a subsystem of λσw . The states of Σ2 are λσ-terms and its transition relation is

a rewriting strategy
S−→, a strategy being a deterministic subrelation of the general

λσw-reduction relation.

We present a simplified setting, where a bisimulation is given by two partial

functions, the compile-and-load function L that translates λσ-terms into machine

states, and the decompilation function . that translates machine states into λσ-terms.
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For simplicity, we retain the word ‘bisimulation’ to name the relations we define

between abstract machines and λσ. We say that a machine implements a strategy S

when the following four conditions are satisfied:

1. Initial condition: LetM be a λσ-term such thatL(M) exists. ThenL(M) = M [id].

2. The machine follows the strategy S: If D1 → D2 and D1 exists, then D2 exists and

we have either D2 = D1 —and we say the machine performs a silent transition –

or D1
S−→D2.

3. Terminal states translate to normal forms: Let M be a λσ-term such that L(M)

exists. If L(M)→∗ D and D is a terminal state, then D is a S-normal form.

4. Machine and strategy progress at the same pace. There cannot be infinitely many

consecutive silent transitions.

The diagram in figure 3 summarizes the bisimulation conditions, in the ideal case

when there are no silent transitions.

Condition 1 is justified by the strong rule (Id): M [id]→M of λσ⇑. Basically, the

rule (Id) states that ‘id’ is the identity substitution that maps variables to themselves.

This point is important, since it is a first illustration of using λσ⇑ to assert the

correctness of the compilation.

As defined in condition 2, silent transitions perform only administrative work on

the abstract machinery.

Observe that, by the last three bisimulation conditions and by the determinacy of

machines and strategies, the converse property of condition 2 holds. Let D1 be a

machine state, such that D1 exists and that D1
S−→M2. Then, there exists a machine

state D2, with D2 = M2 and D1 →∗ D2, where →∗ is zero or more silent transitions

followed by one non-silent transition.

3 The Krivine Machine

As a gentle introduction to our framework, we describe the Krivine machine –

see (Crégut, 1990), for instance. This machine is very simple:

instruction ::= Grab Push(code) Access(n)

frame ::= closure

A typical state D is thus a stack of closures, which we write fn :: fn−1 :: . . . :: f1.

A λDB-term is compiled as follows:

[[ n ]] = Access(n)

[[ λN ]] = Grab; [[N ]]

[[ (N1 N2) ]] = Push([[N2 ]]); [[N1 ]]

Loading of compiled code is just pairing with the empty environment: L(N) =(
[[N ]]/()

)
.
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The execution of programs is defined by the following transition rules:(
Access(1)/

(
C0/e0

)
. e
)

:: D
lvar−→

(
C0/e0

)
:: D(

Access(n+ 1)/
(
C0/e0

)
. e
)

:: D
rvar−→

(
Access(n)/e

)
:: D(

Push(C ′);C/e
)

:: D
push
−→

(
C/e

)
::
(
C ′/e

)
:: D(

Grab;C/e
)

::
(
C ′/e′

)
:: D

grab
−→

(
C/
(
C ′/e′

)
. e
)

:: D

Then, we define the decompilation procedure from machine states to λσ-terms.

First, we just reverse the compilation scheme [[ ]], and extend the resulting decom-

pilation procedure to closures and environments:

Access(n) = n

Grab;C = λ C

Push(C ′);C = (C C ′)

(
C/e

)
= C [e]

() = id

f . e = f . e

Finally, observing that new frames are introduced by the execution of the Push

instruction, which is the code equivalent of an application, the state constructor ::

is decompiled as an application:

fn :: fn−1 :: . . . :: f1 = (. . . (fn fn−1) . . . f1)

In the expression above, the λσ-term fn is said to be in head position. The head

position is the leftmost position with respect to application nodes, since fn = Cn [en]

is not an application.

Now, we show several properties of the compilation and decompilation functions.

First, these two transformations are one another inverse:

Lemma 2

[[N ]] = N, for any λDB-term N.

As a corollary, we get the initial condition 1. Then, we show a weakened condi-

tion 2, in order to make the strategy of the Krivine machine appear naturally.

Lemma 3

Let D and D′ be two machine states such that D is defined and D → D′. Then D′

exists and we have the reduction D
λσw−→∗ D′.

Proof

We give the example of a push transition:(
Push(C ′);C/e

)
:: D0

push
−−−−−−−−→

(
C/e

)
::
(
C ′/e

)
:: D0

.

y .

y
(. . . (C C ′) [e] . . . f1)

λσw−−−−−−−−→ (. . . (C [e] C ′ [e]) . . . f1)

Therefore, the execution of the instruction Push is equivalent to the application of

the λσw-reduction rule (App). Similarly, the transitions lvar, rvar, and grab implement

the reduction rules (FVar), (RVar) and (Beta). Finally, all reductions are performed

in head position.
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By the detailed proof of the previous lemma, it is not difficult to see that

condition 2 holds, once the weak leftmost strategy, or K-strategy, is adopted.

Additionnaly, there are no silent transitions. The K-strategy is described below in

the small step formalism:

1 [M . s]
K

−→M n+1 [M . s]
K

−→ n [s]

(N1 N2) [s]
K

−→ (N1 [s] N2 [s]) ((λN) [s] M)
K

−→ N [M . s]

M1

K

−→M ′1

(M1 M2)
K

−→ (M ′1 M2)

It remains to show condition 3 on terminal states.

Lemma 4

Let D be a reachable, terminal state, then D is a K-normal form:

Proof

The Krivine machine may stop for two reasons:

• When D =
(
Grab;C/e

)
. Then, we get D = (λC) [e], which is a λσ-closure and a

K-normal form.

• When D =
(
Access(m)/()

)
:: D0, i.e. when an access fails. Then, we get D =

(. . . (m fn−1) . . . f1), which is also a K-normal form. Moreover, since we have

σ⇑(M1 M2) = (σ⇑(M1) σ⇑(M2)), the σ⇑-normal form σ⇑(D) admits at least m as

a free variable. Thus, by Lemma 1, this case can occur only when the initial

program is not a closed λDB-term.

Finally, as the Krivine machine does not perform silent transition, the final result of

this section immediately follows from the previous lemmas.

Theorem 1

The Krivine machine implements the K-strategy.

4 The SECD machine

4.1 SECD in the λDB-calculus

The original SECD machine of Landin (1994) used named variables. In our pre-

sentation, we consider a slightly modified SECD machine that reduces λDB-terms.

Our choice to define machine states as lists of frames also induces minor syntactic

modifications with respect to usual presentations of the SECD machine.

An instruction is a λDB-term or a new symbol @.

instruction := λDB-term @

An argument stack AS is a list of closures.

stack := () closure : stack
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Finally, a frame of the SECD machine is a 〈AS • e • C〉 triple:

frame := 〈stack • environment • code〉

Thus, a SECD state is written D = 〈ASn • en • Cn〉 :: · · · :: 〈AS2 • e2 • C2〉 ::

〈AS1 • e1 • C1〉.
The transition rules are as follows:

〈AS • e • (N1 N2);C〉 :: D
app
−→ 〈AS • e • N2;N1; @;C〉 :: D

〈AS • e • λN;C〉 :: D
lam−→ 〈

(
N/e

)
:AS • e • C〉 :: D

〈
(
N0/e0

)
: f :AS • e • @;C〉 :: D

@−→ 〈() • f . e0 • N0〉 :: 〈AS • e • C〉 :: D

〈f • e • ()〉 :: 〈AS ′ • e′ • C ′〉 :: D
dump
−→ 〈f :AS ′ • e′ • C ′〉 :: D

〈AS • f1 · · · fn . e • n;C〉 :: D
var−→ 〈fn :AS • f1 · · · fn . e • C〉 :: D

The SECD machine looks very much like an interpreter and the compile and load

function is minimal: for any λDB-term N, we define L(N) = 〈() • () • N〉.

4.2 The decompilation

As in the previous case of the Krivine machine we view the decompilation func-

tion as an inverse of the compilation function. For the most simple structures –

environments, closures and stacks – there is very little to do.

Environments:

{
() = id

f . e = f . e

Closures:
(
N/e

)
= (λN) [e]

Stacks: fn : fn−1 : · · · : f1 = fn : fn−1 : · · · : f1

From the SECD point of view, the results of computations are closures
(
N/e

)
.

From the general λσ point of view, results are weak values, i.e. closure terms λN [s],

where N is a λDB-term and s is a substitution. In the more precise case of the

interpretation of the SECD in the λσw-calculus, values are translations of SECD

closures. These Landin values or L-values are defined by the following grammar:

L-values: V ::= (λN) [e]

L-environments: e ::= id V . e

Observe that a L-value (λN) [e] is a λσw-normal form, since N is a λDB-term, which

is irreducible by the rules of λσw .

The decompilation of frames and states is a bit more complicated, it is best

described as the composition of two functions. The first decompilation phase Φ

decompiles the closures appearing inside environments and stacks.

Φ(〈ASn • en • Cn〉 :: · · · :: 〈AS1 • e1 • C1〉) = 〈ASn • en • Cn〉 :: · · · :: 〈AS1 • e1 • C1〉
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Given a state D = 〈ASn • en • Cn〉 :: · · · :: 〈AS1 • e1 • C1〉, we write Φ(D) =

〈Sn • sn • Cn〉 :: · · · :: 〈S1 • s1 • C1〉, where the new Si’s are stacks of L-values and

the si’s are λσ-substitutions, that stand for the respective translations of argument

stacks ASi and environments ei.

Then, the decompilation D of a state D is computed by proving a judgment

Φ(D) ⇓ D, using the following rules:

〈M • s • ()〉 ⇓M (Res) 〈() • s • N〉 ⇓ N [s] (Code)

〈S • s • C〉 ⇓M
(AppRight)

〈S • s • C;N; @〉 ⇓ (N [s] M)

〈S • s • C〉 ⇓M1 (where S 6= ())
(AppLeft)

〈S :M2 • s • C; @〉 ⇓ (M1 M2)

〈Sn • sn • Cn〉 ⇓Mn 〈Mn : Sn−1 • sn−1 • Cn−1〉 :: · · · :: 〈S1 • s1 • C1〉 ⇓M
(State)

〈Sn • sn • Cn〉 :: 〈Sn−1 • sn−1 • Cn−1〉 :: · · · :: 〈S1 • s1 • C1〉 ⇓M
In the decompilation rules above, the stacks S grow right-to-left and we use

shortcuts in notations: the empty stack is written () (rule (Code)), a stack with a

single element M is simply written M (rule (Res)), in a stack S :M2, M2 is the

bottom element of the stack (rule (AppLeft)) and in a stack (M1 : S2), M1 is the

topmost element of the stack (rule (State)). Finally, it is worth noticing that a side

condition S 6= () (i.e. S is not empty) applies to the premise of the rule (AppLeft).

The basic idea of our decompilation procedure is as follows: in a triple 〈S • s • C〉
such that 〈S • s • C〉 ⇓M holds, the stack S is a list of the subterms of M that have

already been computed by the machine, whereas the code segment C represents the

part of M whose computation is still pending, the external references in C being

relative to the current substitution s. Decompilation is by induction on the 〈S • s • C〉
triple structure. At each inductive decompilation step, some subterms are combined.

One of these subterms is neither fully reduced nor yet-to-be-computed: it is being

computed. As such, it is produced, by the decompilation of a sub-state of 〈S • s • C〉
(cf. the rules (AppLeft) and (AppRight)).

The simplest cases are when everything has been computed (rule (Res)) and when

computations have not even started (rule (Code)). Things get more interesting in

the intermediate situation where a computation is being performed. Consider a state

D = 〈AS • e • C; @〉. We get Φ(D) = 〈S • s • C; @〉 and thus D = (P1 P2). If P2 is

not fully reduced yet, then it is the decompilation of a sub-state of D, whereas P1

is N [s] where N is an instruction (here a λDB-term) whose execution has not even

started (rule (AppRight)). If P2 is a reduced term, then it stands at the bottom of

the stack S :P2 (i.e. M2 = P2), while the term P1 is the decompilation of a sub-state

of D (rule (AppLeft)). The last rule (State), which performs the decompilation of

multi-frame states, is inspired by the transition dump.

In the next section we prove that, given a state D such that D exists, then, for any

state D′ that can be computed from D by the SECD machine, the λσ-term D′ also

exists. At present, we just state two simple results on judgments and proof trees:

Lemma 5

Let D be a state of the SECD machine, such that D exists. Then the following

properties hold:
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···
Tn···

···
Tn−1···

···
Tn−2···

···
T2···

···
T1···

(State)······
(State)

· · ·
(State)

〈Mn : Sn−1 • sn−1 • Cn〉 :: · · · :: 〈S1 • s1 • C1〉 ⇓ D
(State)

〈Sn • sn • Cn〉 :: 〈Sn−1 • sn−1 • Cn〉 :: · · · :: 〈S1 • s1 • C1〉 ⇓ D

Fig. 4. Structure of the proof of Φ(D) ⇓ D.

1. Let 〈S • s • C〉 ⇓ M be a judgment that appears in the proof tree of Φ(D) ⇓ D.

Then, all the λσ-terms in S except, possibly, the topmost one are L-values.

2. The λσ-term D is unique.

Proof

The first proposition is easy, once one understands the structure of the proof of

Φ(D) ⇓ D. Consider a state D = 〈ASn • en • Cn〉 :: 〈ASn−1 • en−1 • Cn−1〉 :: · · · :: 〈AS1 •

e1 • C1〉, we get Φ(D) = 〈Sn • sn • Cn〉 :: 〈Sn−1 • sn−1 • Cn−1〉 :: · · · :: 〈S1 • s1 • C1〉. The

proof tree of Φ(D) ⇓ D is schematized in figure 4. In this figure, Tn stands for a proof

tree whose conclusion is 〈Sn • sn • Cn〉 ⇓Mn. The only inference rules that can appear

inside Tn are either rules (AppRight) or rules (AppLeft). In the first case, the stack

component of the premise is the same as the stack component of the conclusion.

In the second case, the stack component of the premise is built by taking all the

elements of the stack component of the conclusion except the bottom one. Thus,

any judgment 〈S • s • C〉 ⇓ M occurring inside Tn is such that S is a prefix of Sn.

Therefore, since Sn is ASn, all the λσ-terms in S are L-values. Moreover, given an

integer i ∈ [1 . . . n− 1], the proof tree Ti admits the judgment 〈Mi+1 : Si • si • Ci〉 ⇓Mi

as its conclusion. Thus, given any judgment 〈S • s • C〉 ⇓ M occurring inside Ti, the

stack S is a prefix of Mi+1 : Si, where Si is ASi. Therefore, all the λσ-terms in S

except, possibly, the first one are L-values. The λσ-term Mi+1 is a decompilation

result. In general, this is not a L-value.

The second proposition follows from a more general result: given any triple

〈S • s • C〉, there exists at most one proof tree of a judgment 〈S • s • C〉 ⇓ M.

Ambiguity may only occur when C = C ′; @ and we just need to check that

the decompilation rules (AppLeft) and (AppRight) may not apply simultaneously.

Otherwise, there would exist a state 〈S • s • C ′; @〉 = 〈S ′ :M ′2 • s • C ′′;N ′′; @〉, such

that the following two proof nodes hold:

〈S ′ • s • C ′′;N ′′〉 ⇓M ′1
(AppLeft)

〈S ′ :M ′2 • s • C ′′;N ′′; @〉 ⇓ (M ′1 M
′
2)

〈S ′ :M ′2 • s • C ′′〉 ⇓M ′′
(AppRight)

〈S ′ :M ′2 • s • C ′′;N ′′; @〉 ⇓ (N ′′ [s] M ′′)
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However, the judgment 〈S ′ • s • C ′′;N ′′〉 ⇓ M ′1 can only be proved by the ax-

iom (Code), because N ′′ is a λDB-term and that no other rule applies in this case.

Thus, we get S ′ = (), which is impossible because of the side condition of (AppLeft)

S ′ 6= ().

In the following, we assume that all the proof trees we consider are proofs of

judgments Φ(D) ⇓ D. Thus they have the structure pictured in figure 4, where all the

stacks in Tn hold L-values and all the elements except, possibly, the topmost in the

stacks in Tn−1, . . . , T1 are L-values.

4.3 Correctness

In this section, we show the correctness of the SECD machine by establishing a

bisimulation between this machine and a strategy in the λσ-calculus. Thus, we review

the conditions of section 2.3, one after the other:

Lemma 6 (Initial condition)

Let N be a λDB-term. Then, we have L(N) = N [id]

Proof

Quite straightforward, since we have L(M) = 〈(() • () • N〉 and thus we get

〈() • () • N〉 ⇓ N [id] by the decompilation rule (Code).

Our idea is first to guess the strategy of the SECD machine (the L-strategy), and

then to prove formally that the SECD implements the L-strategy.

We guess the axioms of the L-strategy, by considering some simple SECD tran-

sitions D → D′. First consider the state D = 〈() • e • (N1 N2)〉, by the decompilation

rule (Code), we get D = (N1 N2) [e]. Moreover, we have the SECD transition

〈() • e • (N1 N2)〉
app
−→ 〈() • e • N2;N1; @〉. The λσ-term D′ = (N1 [e] N2 [e]) is

computed by the following proof tree:

〈() • e • N2〉 ⇓ N2 [e] (Code)

(AppRight)

〈() • e • N2;N1; @〉 ⇓ (N1 [e] N2 [e])

Hence we get the strategy axiom

(N1 N2) [s]
L

−→ (N1 [s] N2 [s]) (App)

Similarly, from the transitions var and @, we guess the following two extra axioms:

n [M1
.M2 · · ·Mn

. s]
L

−→ Mn (Varn)

M is a L-value
(Beta)

((λN) [s] M)
L

−→ N [M . s]

Notice that the remaining two transitions lam and dump do not suggest any new

axiom, since, for these transitions D → D′, we get D = D′. Therefore, these two

transitions are silent transitions.

Our presentation of the axiom (Beta) highlights an important point: at the time

of function application, the argument M is not any λσ-term, it is a L-value.
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Then, we guess the inference rules of the L-strategy. We consider a state D =

〈AS • e • C;N; @〉 such that D → D′ with D′ = 〈AS ′ • e • C ′;N; @〉 (i.e, the code C

is not empty and we do not consider the case of a transition @). Thus we get:

〈AS • e • C〉 ⇓M
(AppRight)

〈AS • e • C;N; @〉 ⇓ (N [e] M)

and

〈AS ′ • e • C ′〉 ⇓M ′
(AppRight)

〈AS ′ • e • C ′;N; @〉 ⇓ (N [e] M ′)

Assume that the reduction M
L

−→M ′ holds. We get a first context rule:

M2

L

−→M ′2
(AppRight)

(M1 M2)
L

−→ (M1 M
′
2)

By considering the case where both λσ-terms D and D′ are computed using the

decompilation rule (AppLeft), we get a second context rule:

M1

L

−→M ′1 and M2 is a L-value
(AppLeft)

(M1 M2)
L

−→ (M ′1 M2)

Here again, we enforce the condition that the argument M2 is a L-value, to ensure

that the L-strategy is deterministic.

The rule (State) plugs the term Mn into the hole X of the context 〈X : Sn−1 • sn−1 •

Cn−1〉 :: · · · :: 〈S1 • s1 • C1〉. The following lemma shows that this combination of

subterm and context is compatible with the L-strategy.

Lemma 7

Consider any provable judgment 〈P : S • s • C〉 :: D ⇓ M and any λσ-term P ′,

such that P
L

−→ P ′. Then, there exists a λσ-term M ′ such that the judgment

〈P ′ : S • s • C〉 :: D ⇓M ′ holds and we have M
L

−→M ′.

Proof

Simple induction on the proof of 〈P : S • s • C〉 :: D ⇓M.

1. The base case of rule (Res) is obvious.

2. In the case of the rule (AppRight), we have:

〈P : S • s • C〉 ⇓M
〈P : S • s • C;N; @〉 ⇓ (N [s] M)

By induction hypothesis and by the decompilation rule (AppRight), there ex-

ists M ′, such that we get:

〈P ′ : S • s • C〉 ⇓M ′

〈P ′ : S • s • C;N; @〉 ⇓ (N [s] M ′)

Hence the result, by the rule (AppRight) of the L-strategy.
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3. In the case of the decompilation rule (AppLeft), by a similar argument, we get:

〈P : S • s • C〉 ⇓M1

〈P : S :M2 • s • C; @〉 ⇓ (M1 M2)
and

〈P ′ : S • s • C〉 ⇓M ′1
〈P : S :M2 • s • C; @〉 ⇓ (M ′1 M2)

Observe that M2 cannot be the topmost element of the stack P : S :M2. Therefore,

M2 is a L-value (cf. lemma 5-1). Hence the result, by the rule (AppLeft) of the

L-strategy.

4. In the case of the rule (State), assuming D = 〈S ′ • s′ • C ′〉 :: D′, we have:

〈P : S • s • C〉 ⇓M1 〈M1 : S ′ • s′ • C ′〉 :: D′ ⇓M
〈P : S • s • C〉 :: D ⇓M

By induction hypothesis, there exists M ′1, such that 〈P ′ : S • s • C〉 ⇓ M ′1 holds

and M1

L

−→ M ′1. Therefore, still by induction hypothesis, there exists M ′, such

that 〈M ′1 : S ′ • s′ • C ′〉 :: D′ ⇓ M ′ holds and M
L

−→ M ′. Hence the result, since

〈P ′ : S • s • C〉 :: D ⇓M ′ holds, by the decompilation rule (State).

Then, our idea is to interpret the instruction to be executed next as a λσ-term to

be plugged in the same context 〈X : S • s • C〉 :: D that holds the terms P and P ′

in the previous lemma. In a first case, the instruction itself is a λσ-term or, more

precisely, a λDB-term.

Lemma 8

Let N be any λDB-term, such that the judgment 〈S • s • N;C〉 :: D ⇓M holds. Then

the judgment 〈N [s] : S • s • C〉 :: D ⇓M holds.

Proof

By induction on states. There are two base cases. First assume that C is empty. We

get:

〈() • s • N〉 ⇓ N [s] (Code) 〈N [s] • s • (〉) ⇓ N [s] (Res)

The second base case is when C = @, we get:

〈P • s • ()〉 ⇓ P
(AppRight)

〈P • s • N; @〉 ⇓ (N [s] P )

〈N [s] • s • ()〉 ⇓ N [s]
(AppLeft)

〈N [s] :P • s • @〉 ⇓ (N [s] P )

Then, we consider the inductive cases, first assuming that D is empty. That is, we

consider a judgment 〈S • s • N;C ′; @〉 ⇓ M, where C ′ is not empty. We have two

subcases:

• If we have the proof node:

〈S • s • N;C ′′〉 ⇓ Q
(AppRight)

〈S • s • N;C ′′;P ; @〉 ⇓ (P [s] Q)

Then, by induction hypothesis, the judgment 〈N [s] : S • s • C ′′〉 ⇓ Q holds. There-

fore, so does the judgment 〈N [s] : S • s • C ′′;P ; @〉 ⇓ (P [s] Q), by the inference

rule (AppRight).
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• The other case, where the judgments are proved by the rule (AppLeft), is similar.

Finally, consider the case where D = 〈S ′ • s′ • C ′〉 :: D′ is not empty. We have:

〈S • s • N;C〉 ⇓ P 〈P : S ′ • s′ • C ′〉 :: D′ ⇓M
(State)

〈S • s • N;C〉 :: 〈S ′ • s • C ′〉 :: D′ ⇓M
By a simple inductive argument, the judgment 〈N [s] : S • s • C〉 ⇓ P hold and we

get:

〈N [s] : S • s • C〉 ⇓ P 〈P : S ′ • s′ • C ′〉 :: D′ ⇓M
(State)

〈N [s] : S • s • C〉 :: 〈S ′ • s • C ′〉 :: D′ ⇓M

When the next instruction to be executed is @, it must be given two arguments

to be interpreted as an application node in Λσ .

Lemma 9

If 〈M1 :M2 : S • s • @;C〉 :: D ⇓ M holds, then 〈(M1 M2) : S • s • C〉 :: D ⇓ M also

holds.

Proof

Easy induction on proof trees.

Now we show that the SECD machine indeed follows the L-strategy.

Lemma 10

Let D and D′ be two states of the SECD machine such that D exists and D → D′

by one transition step. Then, D′ exists and we have two possibilities:

1. D′ = D, if → is a transition dump or lam.

2. D
L

−→ D′, otherwise.

Proof

First consider the transition dump, which is special. We have D = 〈f • e • ()〉 :: 〈AS ′ •
e′ • C ′〉 :: D0 and D′ = 〈f :AS ′ • e′ • C ′〉 :: D0. Computing D, we have:

〈f • e • ()〉 ⇓ f 〈f :AS ′ • e′ • C ′〉 :: Φ(D0) ⇓M
(State)

〈f • e • ()〉 :: 〈AS ′ • e′ • C ′〉 :: Φ(D0) ⇓M
Observe that the right premise of the rule above is Φ(D′) ⇓ M. In other words, we

get D′ = D.

All other transitions correspond to the execution of an instruction. First, consider

the case of the instruction @. Thus, we state D = 〈
(
N0/e0

)
: f :AS • e • @;C〉 :: D0

and D′ = 〈() • f . e0 • N0〉 :: 〈AS • e • C〉 :: D0. On the one hand, by lemma 9,

we get 〈((λN0) [e0] f) :AS • e • C〉 :: Φ(D0) ⇓ D. On the other hand, by the decom-

pilation rule (State), we get 〈N0 [f . e0] :AS • e • C〉 :: Φ(D0) ⇓ D′. Moreover, by the

axiom (Beta) and since f is a L-value, we get:

(((λN0) [e0] f)
L

−→ N0 [f . e0]

Hence the result, by Lemma 7.

Then, in the three remaining cases, we have D = 〈AS • e • N;C〉 :: D0, where N is

a λDB-term.
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1. If N is a variable n (i.e., D = 〈AS • e • n;C〉 :: D0 where e = f1 · · · fn . er ), then,

on the one hand, by lemma 8, we get:

〈n [e] :AS • e • C〉 :: Φ(D0) ⇓ D

On the other hand, we get:

〈fn :AS • e • C〉 :: Φ(D0) ⇓ D′

Hence the result, by the strategy axiom (Varn) and lemma 7.

2. If N is an abstraction λN0, then, on the one hand, by lemma 8, we get:

〈(λN0) [e] :AS • e • C〉 :: Φ(D0) ⇓ D

Thus, since D′ = 〈
(
N0/e

)
:AS • e • C〉 :: D0 and

(
N0/e

)
= (λN0) [e], we get

D = D′.

3. If N is an application (N1 N2), then, by lemma 8, we get:

〈(N1 N2) [e] :AS • e • C〉 :: Φ(D0) ⇓ D

Here, we have D′ = 〈AS • e • N2;N1; @;C〉 :: D0. Thus, by two applications of

Lemma 8, first to N2 and then to N1, followed by one application of Lemma 9,

we get:

〈(N1 [e] N2 [e]) :AS • e • C〉 :: Φ(D0) ⇓ D′

Hence, the result, by the strategy axiom (App) and by lemma 7.

Now, we prove the final Condition 3.

Lemma 11

Let N be λDB-term, and D be a terminal state, with L(N) →∗ D. Then, D is a

L-normal form.

Proof

Let us state D = 〈ASn • en • Cn〉 :: · · · :: 〈AS1 • e1 • C1〉. First observe that, by

Lemma 10, D exists. Then, by studying the SECD transitions, we distinguish three

possibilities for D to be a terminal state:

1. n = 1 and C1 = (), then, the stack AS1 holds exactly one closure f (Otherwise it

cannot be decompiled) and we get D = 〈f • () • ()〉 = f, which is a L-value and a

L-normal form.

2. Cn = @;C ′n and the stack ASn has zero or one element. In fact, this case cannot

occur here, since Φ(D) ⇓M holds. The proof of this judgment must include a proof

〈ASn • en • @;C ′n〉 ⇓ Mn, which in turn must include a proof of 〈S • en • @〉 ⇓ P ,

where S is a stack with less elements than ASn. This latter judgment can be proved

only by the rule (AppLeft). Thus, the stack S has at least two elements and so

does the stack ASn.
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3. Cn = m;C ′n and en = f1 · · · fk . id, with k < m. Then, D is a L-failure term W ,

where L-failure terms are defined as follows:

W ::= m [f1 · · · fk . id] with k < m

M W W f

where M stands for a λσ-term and f for a L-value. The subterm m [f1 · · · fk . id] is

a L-normal form which is not a L-value. It stands in L-redex position inside D.

Thus, D is a L-normal form which is not a value. Moreover, the σ⇑-normal

form σ⇑(D) is not a closed λDB-term, since it admits at least one free variable

m−k = σ⇑(m [f1 · · · fk . id]). Therefore, by Lemma 1, this case may only occur when

the initial program is not a closed λDB-term.

Lemma 12

The SECD cannot perform infinitely many consecutive silent transitions.

Proof

Let S be a measure on states, code segments and λDB-terms, defined as follows:

S(〈ASn • sn • Cn〉 :: · · · :: 〈AS1 • s1 • n〉) = n+S(C1) + · · ·S(Cn)

S(@;C) = S(C)

S(N;C) = S(N) +S(C)

S(()) = 0

S(N1 N2) = 1 +S(N1) +S(N2)

S(λN) = 1

S(n) = 1

Now, given a transition D → D′ that is not app, we have S(D) > S(D′). Thus, any

computation of the SECD that does not include the transition app must be finite.

Since the transition app corresponds to the rewriting axiom (Beta), it is not silent.

Hence the result.

Finally, we conclude:

Theorem 2

The SECD machine implements the L-strategy.

5 The Functional Abstract Machine

5.1 Basics

The Functional Abstract Machine (FAM) was designed by Cardelli (Cardelli, 1984)

as a “SECD machine optimized to allow very fast function application and the use

of true stack”.

The FAM has four instructions:

instruction ::= Local

Global(n) (n ≥ 1)

Apply

Fun(n, code) (n ≥ 0)
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The frames of the FAM consist in an argument stack, an environment and a code.

stack ::= () closure : stack

frame ::= 〈stack • environment • code〉

The transitions rules of the FAM are defined as follows:

〈AS : f • e • Local;C〉 :: D
local−→ 〈f :AS : f • e • C〉 :: D

〈AS •
−→
f1,n • Global(i);C〉 :: D

global
−→ 〈fi :AS •

−→
f1,n • C〉 :: D

〈
(
C0/e0

)
: g :AS • e • Apply;C〉 :: D

apply
−→ 〈g • e0 • C0〉 :: 〈AS • e • C〉 :: D

〈−→fn,1 :AS • e • Fun(n, C0);C〉 :: D
closure−→ 〈

(
C0/
−→
f1,n

)
:AS • e • C〉 :: D

〈f : • • ()〉 :: 〈AS • e • C〉 :: D
return−→ 〈f :AS • e • C〉 :: D

Specifically, observe how the instruction Local selects the bottom element f of the

argument stack AS : f and how the n arguments
−→
fn,1 that the instruction Fun(n, C0)

pops are taken in reverse order to build a new environment
−→
f1,n. By contrast with

the Krivine machine, the FAM builds a full environment when it creates a closure.

One says that the FAM has ‘copied environments’ (whereas the Krivine machine

has ‘shared environments’).

Cardelli (1984) only gives a few ‘compilation hints’ for the FAM. One of these

hints consists in compiling a function λN as a closure
(
C/e

)
, where the environment

e has been optimized to retain only the global variables of λN. This idea is described

as a simple transformation in λσ. For instance the λ-abstraction N = λ(1 (5 7))

is transformed into the λσ-closure M = (λ(1 (2 3))) [4 . 6 . id]. That is, the free

variables 5 and 7 are ‘abstracted out’ or ‘lifted’ and regrouped in the closure

environment 4 . 6 . id, whereas in the body of M, the lifted variables 5 and 7 are

replaced by 2 and 3, respectively, the new indices reflecting the final positions of

lifted variables in the closure environment. As a first intuition of the correctness of

such a transformation, observe that the terms N [id] and M are the same function.

For any argument P , we get:

(N [id] P )
(Beta)
−→ (1 (5 7)) [P . id]

σw−→∗ P (4 6)

M P
(Beta)
−→ (1 (2 3)) [P . 4 . 6 . id]

σw−→∗ P (4 6)

We now describe our general free variable abstraction procedure. The setF0(N) =

{n1, . . . , nm} of the free variables in a λDB-term N can be arbitrarily ordered as a

list −→n1,m = n1 : . . . : nm. This list is then given as a first argument to our abstraction

scheme C, which, given any λDB-term N, outputs a λσ-term C(F0(N) , N).

C(−→n1,m , ni) = i

C(−→n1,m , (N1 N2)) = (C(−→n1,m , N1) C(−→n1,m , N2))

C(−→n1,m , λN) =

{
(λC(1 : p1+1 : · · · : pk+1 , N)) [C(−→n1,m , p1 · · · pk . id)]

where p1 : · · · : pk =F0(λN)

C(−→n1,m , N . s) = C(−→n1,m , N) .C(−→n1,m , s)

C(−→n1,m , id) = ↑m
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To get the intuition behind the scheme C, think that the output λσ-term is to be

executed at run-time in an environment s = M1 · · ·Mi · · ·Mm
. id, where Mi is the

run-time value of the variable ni of the input term. The translation (λM) [t] of a

λ-abstraction λN is also to be interpreted in this environment s. At run-time the

current substitution s will be applied to t, in order to yield a new current substitution

that only retains the values of the free variables of λN. Thus, t is the list of the

positions in s of these free variables. The substitution t ends with the new special

substitution ↑m, which ultimately discards s. This discarding operator is an ordinary

λσ-substitution:

↑0 = id, ↑1 = ↑, ↑m = ↑ ◦ ↑m−1 when m > 1

The action of ↑m is then expressed by the following σw-derivation:

↑m ◦ (M1
.M2 · · ·Mm

. id)
(AssEnv)
−→

↑ ◦ (↑m−1 ◦ (M1
.M2 · · ·Mm

. id))
σw−→∗ . . .

↑ ◦ (Mm
. id)

(ShiftCons)
−→ id

The correctness of the procedure C with respect to the substitution rules of the

full (strong) σ⇑-calculus can be stated quite simply. We first prove two technical

lemmas on free variables and substitutions.

Lemma 13

For any λDB-term N and any integer d, we have the following implication:

n ∈ Fd(N) ⇒ n = 1 or n− 1 ∈ Fd+1(N)

Proof

By induction on N:

• If N = n, then we have three subcases. If n ≤ d, then Fd(N) = Fd+1(N) = ∅. If

n = d+1 thenFd(N) = {1} andFd+1(N) = ∅. If n > d+1, thenFd(N) = {n−d}
and Fd+1(N) = {n− d− 1}.
• If N = (N1 N2), then we get the result by direct induction.

• If N = λN0, then, by definition, we get Fd(N) = Fd+1(N0) and Fd+1(N) =

Fd+2(N0). Hence the result, since we have n ∈ Fd+1(N0) ⇒ n = 1 or n− 1 ∈
Fd+2(N0) by induction hypothesis.

Lemma 14

Let N be a λDBterm. The following σ⇑ equality holds, for any substitution s and

integer d:

N [ ⇑d (s)] =σ⇑ N [1 . 2 · · · d .(s ◦ ↑d)]

(Where ⇑d (s) stands for

d times︷ ︸︸ ︷
⇑ (· · · ⇑ (s) · · ·))
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Proof

A simple proof by induction on N is possible. In fact, as exposed in Curien et

al. (1996, Sections 3.2 and 4.1), ⇑d (s) and 1 . 2 · · · d .(s ◦ ↑d) perform the same

replacements on ground terms. Operationally, both substitutions behave as s after

it went through d nested levels of λ’s.

Proposition 1 (Correctness of compilation)

The C compilation scheme never fails and is correct. More precisely, given a λDB-

term N, let −→n1,m such that F0(N) ⊆ −→n1,m. Then C(−→n1,m , N) is a λσ-term M, such that

M [n1 · · · nm . id] and N are σ⇑-equivalent.

Proof

We prove the following proposition: for any λDB-term N and any vector of indices
−→n1,m, such that F0(N) ⊆ −→n1,m, the λσ-term M = C(−→n1,m , N) exists. Moreover, given

any substitution s, we have the following conversion:

M [n1 · · · nm . s]
σ⇑−→∗ N

The proof is by induction on N. In the proof, we state t(−→n1,m, s) = n1 · · · nm . s.

• If N is a variable n, then, by hypothesis, n is one of the ni and we have

C(−→n1,m , N) = i. Furthermore, by the σw-rules (RVar) and (FVar), we get

i [t(−→n1,m, s)]
σw−→∗ ni

• If N = (N1 N2), then, by definition of F, we have F0(N) = F0(N1) ∪F0(N2),

and thus F0(N1) ⊆ −→n1,m and F0(N2) ⊆ −→n1,m. Thus, we can apply the induction

hypothesis and both M1 = C(−→n1,m , N1) and M2 = C(−→n1,m , N2) exist. So does

M = C(−→n1,m , N) = (M1 M2). Furthermore, we have

M [t(−→n1,m, s)]
σ⇑−→∗ N

by the σw-rule (App) and by induction hypothesis.

• If N = λN0, then let −→p1,k be F0(N), the set of the free variables of N, expressed

as De Bruijn indices with respect to the scope of N itself.

By definition of F, we have −→p1,k = F1(N0) and thus, by lemma 13, we have

F0(N0) ⊆ 1 : p1+1 : · · · : pk+1. Therefore,M0 = C(1 : p1+1 : · · · : pk+1 , N0) exists,

by induction hypothesis. Now, all the variables in the substitution u = p1 · · · pk . id
belong to F0(N). Thus they can be compiled in the compile-time environment
−→n1,m ⊇ F0(N) and so does the substitution u. Let u0 be C(−→n1,m , u). Finally, the

λσ-term M = (λN0) [u0] exists.

Furthermore, since we have C(−→n1,m , pi) [t(−→n1,m, s)]
σ⇑−→∗ pi (by induction) and

↑m ◦ t(−→n1,m, s) = s (by σw-reduction), we get:

u0 ◦ t(−→n1,m, s)
σ⇑−→∗ p1 · · · pk . s

Thus, we get the following σ⇑-conversions:

M [t(−→n1,m, s)]
(Clos)
−→ (λM0) [u0 ◦ t(−→n1,m, s)]

σ⇑−→∗ (λM0) [p1 · · · pk . s]
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Now, by the strong substitution rule (Lambda), we get

M0 [t(−→n1,m, s)]
σ⇑−→∗ λ(M0 [ ⇑ (p1 · · · pk . s)])

Let us consider N ′0, the σ⇑-normal form of M0, which is a λDB-term (Curien et al.,

1996)[Lemma 4.8]. By definition of reduction, we get:

M0 [t(−→n1,m, s)]
σ⇑−→∗ λ(N ′0 [ ⇑ (p1 · · · pk . s)])

Our Lemma 14 applies here and we get:

M0 [t(−→n1,m, s)] =σ⇑ λ(N
′
0 [1 .((p1 · · · pk . s) ◦ ↑)])

Hence, by the σ⇑-rules (MapEnv) and (VarShift1), on the one hand we finally get:

M0 [t(−→n1,m, s)] =σ⇑ λ(N
′
0 [1 . p1+1 · · · pk+1 .(s ◦ ↑)]) (1)

On the other hand, by application of the induction hypothesis to N0 we get:

M0 [1 . p1+1 · · · pk+1 .(s ◦ ↑)]
σ⇑−→∗ N0

Therefore, by the Church–Rosser property and since N0 is a σ⇑ normal form,

we get:

N ′0 [1 . p1+1 · · · pk+1 .(s ◦ ↑)]
σ⇑−→∗ N0 (2)

Finally, still by the Church–Rosser property, from (1) and (2) above, we conclude:

M [t(−→n1,m, s)]
σ⇑−→∗ λN0 = N

It is important to notice that the λσ-terms N and M [id] only differ by substitution

steps. As a consequence, M [id] and N are more than just β-equivalent λ-terms, they

are the same λ-term.

Corollary 15

Let N be a closed λDB-term (i.e., a program) and M be its compilation C(∅ , N). The

initial condition M [id] =σ⇑ N holds.

The output M of C is not just any λσ-term. First, all substitutions in M are of

the general form s = M1
.M2 · · ·Mm

. ↑k . The integer m is the length of substitution s

and we write m = length(s). Second, M = C(−→n1,k , N) itself can be characterized by a

predicate Pk that is defined as follows:

Pk(n) = (n ≤ k)
Pk(M1 M2) = Pk(M1) ∧Pk(M2)

Pk((λM) [s]) = Pls+1(M) ∧Pk(s), where ls = length(s)

Pk(M) = false otherwise

Pk(M . s) = Pk(M) ∧Pk(s)
Pk(↑n) = (n = k)

Pk(s) = false otherwise
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Intuitively, Pk(M) holds, when M is to be evaluated with respect to an environment

of size k. If N is a closed λDB-term, then we get P0(C(∅ , N)).

Let M be a λσ-term that is a result of the first compilation procedure C. Giving M

as input to the second compilation procedure [[ ]] generates FAM code.

[[ 1 ]] = Local

[[ n + 1 ]] = Global(n)

[[ (M1 M2) ]] = [[M2 ]]; [[M1 ]]; Apply

[[ (λM0) [M1 · · ·Mn
. ↑m] ]] = [[M1 ]]; . . . ; [[Mn ]]; Fun(n, [[M0 ]])

Finally, a closed λDB-term N is compiled first to the term M = C(∅ , N) and then

to the code C = [[M ]]. Execution starts from the initial state L(M) = 〈() • () • C〉.

5.2 Decompilation

First, we inverse the compilation procedure [[ ]]. We do so by proving judgments C ⇓m
M, which read “the code segment C stands for the λσ-term M in an environment

of size m”.

Local ⇓m 1 (Local) Global(i) ⇓m i+1 (Global)

C2 ⇓m M2 C1 ⇓m M1
(Apply)

C2;C1; Apply ⇓m (M1 M2)

C1 ⇓m M1 · · · Cn ⇓m Mn C0 ⇓n+1 M0
(Fun(n))

C1; · · · ;Cn; Fun(n, C0) ⇓m (λM0) [M1 · · ·Mn
. ↑m]

The decompilation of FAM closures, environments and stacks naturally follows

from code decompilation.

Closures:
(
C/f1

. f2 · · · fn
)

= (λM) [f1
. f2 · · · fn], where C ⇓n+1 M

Environments: f1
. f2 · · · fn = f1

. f2 · · · fn . id

Stacks: fn : . . . : f2 : f1 = fn : . . . : f2 : f1

Closures are the values of the FAM: they are expected as final results. Terms

produced by decompiling closures are the counterparts of these results in λσ. We

call them C-values, they can be defined structurally:

C-values: V ::= (λM) [e] where m = length(e) and Pm+1(M)

C-environments: e ::= id V . e

Lemma 16

Let M be a λσ-term such that Pm(M) holds. Then we have [[M ]] ⇓m M.

Proof

Obvious induction on M.

The decompilation of machine states is best understood as a two-stage process.

In a first step, we translate the frames 〈AS • e • C〉 into triples 〈S • s • C〉. Roughly,
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〈M • s • ()〉 ⇓M (Res)

C ⇓m M
(Code)

〈() • s • C〉 ⇓M [s]

〈S • s • C2〉 ⇓M2 C1 ⇓m M1
(AppRight)

〈S • s • C2;C1; Apply〉 ⇓ (M1 [s] M2)

〈S • s • C1〉 ⇓M1
(AppLeft)

〈S :M2 • s • C1; Apply〉 ⇓ (M1 M2)

〈S • s • Ci〉 ⇓Mi Ci+1 ⇓m Mi+1 · · · Cn ⇓m Mn C0 ⇓n+1 M0
(Fun(n,i))

〈S :Mi−1 : · · · :M1 • s • Ci;Ci+1; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·Mi

.((Mi+1 · · ·Mn
. ↑m) ◦ s)]

〈Sn • sn • Cn〉 ⇓Mn 〈Mn : Sn−1 • sn−1 • Cn−1〉 :: · · · :: 〈S1 • s1 • C1〉 ⇓M
(State)

〈Sn • sn • Cn〉 :: 〈Sn−1 • sn−1 • Cn−1〉 :: · · · :: 〈S1 • s1 • C1〉 ⇓M

(Where S is a non-empty stack and m is the length of the substitution s)

Fig. 5. Decompilation rules for FAM triples.

the stack S is the translation of the argument stack AS and the substitution s is

the translation of the environment e. The translation of the bottom element of AS

is incorporated either in S or in s. In the latter case, this bottom element is the

argument of a pending function call. The following procedure Φ operates this first

transformation:

Φ(〈ASn : fn • en • Cn〉 :: . . . :: 〈AS2 : f2 • e2 • C2〉 :: 〈AS1 • e1 • C1〉)

〈ASn • fn . en • Cn〉 :: . . . :: 〈AS2 • f2
. e2 • C2〉 :: 〈AS1 • e1 • C1〉

In a second step, the value of D is computed by proving a judgment Φ(D) ⇓ D,

with the axioms and inference rules of figure 5. Our decompilation procedure is a

partial function from syntactic FAM states to λσ-terms. The whole purpose of this

section is to show that decompilation is total on accessible FAM states.

At first, our state decompilation procedure may seem a bit complicated. However,

it is a simple extension of the code decompilation procedure. In a triple 〈S • s • C〉,
like in the case of the SECD, the stack S is the list of the subterms that have

already been computed by the machine, whereas the code segment C encodes the

subterms that are still to be computed. Decompilation rules combine these two

sets of subterms. The rules (Res), (Code), (AppLeft), (AppRight) and (State) are

basically the same as the homonymous decompilation rules of the SECD.

The new rule (Fun(n,i)) performs the decompilation of 〈S • s • C ′; Fun(n, C0)〉.
This operation resembles the decompilation of a triple 〈S • s • C ′; Apply〉. More

specifically, the λσ-substitution M1 · · ·Mi
.((Mi+1 · · ·Mn

. ↑m) ◦ s) stands for a closure

environment that is not fully computed yet, where the term Mi is the subterm

being currently computed, while the subterms M1,. . . , Mi−1 are fully reduced and

the computation of the subterms Mi+1,. . . , Mn is yet to be started.

We now prove that the decompilation rules effectively define a deterministic

procedure for decompiling FAM states. First, we prove a strong non-ambiguity

property for code segments.
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Lemma 17

A decompilable code is any code segment C , such that there exists an integer m

and a λσ-term M, with C ⇓m M. A strict suffix is any code segment C , such that

there exists a non-empty code segment C ′ and that the concatenation C ′;C is a

decompilable code.

1. In a proof tree, all the code segments that appear in judgments 〈S • s • C〉 ⇓ M,

where S is a non-empty stack, are strict suffixes.

2. Strict suffixes cannot be decompiled.

Proof

The first proposition is proved by induction on proof trees, starting from the fact

that the empty code is a strict suffix. The second proposition is proved by induction

on the length of decompilable codes.

Corollary 18

Code decompilation is non-ambiguous.

Proof

Let m be an integer and C be a code. We show by induction on C that there does

not exist two different terms M and M ′ such that C ⇓m M and C ⇓m M ′ hold.

• The base case C = Local or C = Global(i+ 1) is straightforward.

• The code segment C ends by the instruction Apply. Assume there were two

different decompositions C = C2;C1; Apply and C = C ′2;C ′1; Apply. Then, for

instance, C ′1 would be a decompilable suffix of C1.

• A similar reasoning applies when C ends by the instruction Fun(n, C0).

Lemma 19

The decompilation of machines states is non-ambiguous.

Proof

The proof is by induction on state size. Consider any state D, if D is made of two

or more frames, the deterministic decompilation rule (State) applies. Now, suppose

that D is a single frame, i.e. Φ(D) = 〈S • s • C〉.
If the code C is empty or ends by a Local or Global(i) instruction, only one

non-recursive rule may apply and decompilation is over.

Otherwise, we have two subcases, either C ends by an Apply or by a Fun(n, C0)

instruction. As far as ambiguity is concerned, these subcases are the same. Thus, for

instance, we assume Φ(D) = 〈S • s • C ′; Fun(n, C0)〉. If the stack S is empty, then only

the rule (Code) may apply unambiguously (cf. Corollary 18). If S contains at least

one element, then we must apply the decompilation rule (Fun(n,i)). By the previous

Lemma 17-2, there is at most one way to cut C ′ into Ci;Ci+1; · · · ;Cn, where Ci is

a strict suffix and Ci+1, . . . , Cn are decompilable code segments. In other words, the

rule (Fun(n,i)) is applied unambiguously.
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Then, as we did in the case of the SECD machine and by the same easy argument,

we see that all proof trees produced by decompiling real FAM states only contain

judgments 〈S • s • C〉 ⇓ M, such that all the λσ-terms in S are C-values, except,

possibly, the topmost one. Furthermore, let D = 〈AS • e • C0〉 :: D0 be a state and let

be a judgment 〈S • s • C〉 ⇓ M that occurs inside the proof tree of 〈AS • e • C0〉 ⇓ P .

Then all the λσ-terms in S are C-values (see figure 4). From now on, we only

consider proof trees that meet this constraint.

5.3 Strategy and correctness

In this section we show that our decompilation scheme meets the conditions of

section 2.3.

Lemma 20 (Initial state condition)

Let N be a closed λDB-term. Let M be C(∅ , N), Then, we have the equality,

L(M) = M [id]

Proof

By lemma 16, we have [[M ]] ⇓0 M. Hence the result, by the decompilation rule

(Code).

[[M ]] ⇓m M
(Code)

〈() • id • [[M ]]〉 ⇓M [id]

The rest of this section is devoted to the C-strategy that the FAM implements. By

contrast with the previous section on the L-strategy and the SECD, we introduce

the C-strategy gradually, to demonstrate how strategy rules are inferred from the

correctness proof of the FAM. However, the pattern of the proof for the FAM and

the C-strategy is the same as the one for the SECD and the L-strategy. Only our

point of view changes, since we now infer the strategy instead of just checking it.

First, we examine proofs of judgments 〈P : S • s • C〉 :: D ⇓ M. Such judgments

are introduced by the rule (State). Doing so, we infer some structural rule of the

C-strategy from the structure of these proof trees. (The similar lemma for the SECD

is Lemma 7.)

Lemma 21

Consider any two λσ-terms P and P ′. If the judgment 〈P : S • s • C〉 :: D ⇓ M
holds for some λσ-term M, then there exists a λσ-term M ′, such that judgment

〈P ′ : S • s • C〉 :: D ⇓M ′ holds. Furthermore, given any relation ∼, such that P ∼ P ′,
we have M ∼M ′, provided ∼ obeys the following structural rules:

M2 ∼M ′2
(M1 M2) ∼ (M1 M

′
2)

M2 is a C-value M1 ∼M ′1
(M1 M2) ∼ (M ′1 M2)

M1 is a C-value · · · Mi−1 is a C-value Mi ∼M ′i
(λM0) [M1 · · ·Mi−1

.Mi
. s] ∼ (λM0) [M1 · · ·Mi−1

.M ′i . s]
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Proof

Simple induction over the proof of 〈P : S • s • C〉 :: D ⇓ M. First consider the case

when D is empty:

1. The base case of rule (Res) is obvious.

2. Consider the rule (AppRight). We have

〈P : S • s • C2〉 ⇓M2 C1 ⇓m M1
(AppRight)

〈P : S • s • C2;C1; Apply〉 ⇓ (M1 M2)

By induction hypothesis, there exists M ′2 such that 〈P ′ : S • s • C2〉 ⇓M ′2. Therefore,

we get:

〈P ′ : S • s • C2〉 ⇓M ′2 C1 ⇓m M1
(AppRight)

〈P ′ : S • s • C2;C1; Apply〉 ⇓ (M1 M
′
2)

3. In the case of the rule (AppLeft), we have

〈P : S • s • C1〉 ⇓M1
(AppLeft)

〈P : S :M2 • s • C1; Apply〉 ⇓ (M1 M2)

Thus, by direct induction, there exists M ′1 such that:

〈P ′ : S • s • C1〉 ⇓M ′1
(AppLeft)

〈P ′ : S :M2 • s • C1; Apply〉 ⇓ (M1 M
′
2)

Furthermore, observe that M2 cannot be the topmost element of the stack

P : S :M2. Thus, M2 is a C-value.

4. In the case of the rule (Fun(n,i)), we have:

〈P : S • s • Ci〉 ⇓Mi Ci+1 ⇓m Mi+1 · · · Cn ⇓m Mn C0 ⇓n+1 M0

〈P : S :Mi−1 : · · · :M1 • s • Ci; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·Mi

.((Mi+1 · · ·Mn
. ↑m) ◦ s)]

By induction there exists M ′i , such that:

〈P ′ : S • s • Ci〉 ⇓M ′i Ci+1 ⇓m Mi+1 · · · Cn ⇓m Mn C0 ⇓n+1 M0

〈P ′ : S :Mi−1 : · · · :M1 • s • Ci; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·M ′i .((Mi+1 · · ·Mn

. ↑m) ◦ s)]
Furthermore, the λσ-terms M1, . . . , Mi−1 are C-values.

Finally, let us assume D = 〈Sn • sn • Cn〉 :: Dn−1. We have the following proof tree:

〈P : S • s • C〉 ⇓Mn 〈Mn : Sn • sn • Cn〉 :: Dn−1 ⇓M
(State)

〈P : S • s • C〉 :: D ⇓M
By induction there exists M ′n, such that 〈P ′ : S • s • C〉 ⇓ M ′n holds, with Mn ∼ M ′n.

Therefore, by a second application of the induction hypothesis, there exists M ′, with

〈M ′n : Sn • sn • Cn〉 :: Dn−1 ⇓M ′ and M ∼M ′. Hence, we get:

〈P ′ : S • s • C〉 ⇓M ′n 〈M ′n : Sn • sn • Cn〉 :: Dn−1 ⇓M ′
(State)

〈P ′ : S • s • C〉 :: D ⇓M ′

Obviously, the C-strategy should be a deterministic subrelation of ∼.
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Then, as we did for the SECD (cf. Lemma 8), our idea is to interpret the

instruction to be executed next as a λσ-term to be plugged in a context. However,

we run across a first difficulty here: unlike SECD instructions, FAM instructions are

not λDB-terms.

Lemma 22

Let D = 〈AS • e • I;C〉 :: D0 be a FAM state such that D exists and the execution

of I is enabled. Then, Φ(D) can be written 〈SI : S • s • I;C〉 :: Φ(D0) and there exists

a λσ-term MI such that 〈SI • s • I〉 ⇓MI .

Proof

More precisely, let us state D = 〈ASn • en • I;Cn〉 :: · · · :: 〈AS1 • e1 • C1〉. By

hypothesis, Φ(D) exists and we have Φ(D) = 〈Sn • sn • I;Cn〉 :: · · · :: 〈S1 • s1 • C1〉.
Then, consider, for instance, the case of the instruction Fun(n0, C0). Since D can

be decompiled, the proof tree Tn exists (i.e., the proof of 〈Sn • sn • I;Cn〉 ⇓ Mn, see

figure 4). There is no other choice for Tn than to terminate by the following proof:

〈fn0
• sn • ()〉 ⇓ fn0

(Res) C0 ⇓n0+1 M0
(Fun(n0,n0))

〈fn0
: · · · : f1 • sn • Fun(n0, C0)〉 ⇓ (λM0) [f1 · · · fn .(↑m ◦ sn)]

Let us state SI = fn0
: · · · : f1 and MI = (λM0) [f1 · · · fn .(↑m ◦ sn)]. By construction

of proofs, SI is a prefix of Sn. In other words, we get Sn = SI : S .

The remaining three instructions are treated similarly. Results are summarized

hereafter (we state s = sn and m = length(s)):

I SI MI

Local () 1 [s]

Global(i) () i+1 [s]

Apply f1 : f2 (f1 f2)

Fun(n, C0) fn0
: · · · : f1 (λM0) [f1 · · · fn0

.(↑m ◦ s)]

From the proof of the lemma above we easily infer the axioms of the C-strategy.

To do so, we consider states DI = 〈AS • e • I〉, The execution of I yields a new state

D′I , a new λσ-term D′I and an axiom DI
C

−→ D′I .

(λM0) [s] is a C-value M is a C-value

((λM0) [s] M)
C

−→M0 [M . s]
n [M1 · · ·Mn

. s]
C

−→Mn

M1 is a C-value . . . Mn is a C-value

(λM0) [M1 · · ·Mn
.(↑m ◦ (P1 · · ·Pm . id))]

C

−→ (λM0) [M1 · · · .Mn
. id]

Notice that the transition return is the only silent transition.

Designing an equivalent to Lemma 8 for the FAM rises a second and more serious

difficulty. The ‘plugging’ of a term X in a context 〈X : S • s • C〉 :: D sometimes
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n [s] .. n [s]
M1 is a C-value M2 is a C-value

(M1 M2) .. (M1 M2)

M1 is a C-value . . . Mn is a C-value

(λM0) [M1 · · ·Mn
.(↑m ◦ s)] .. (λM0) [M1 · · ·Mn

.(↑m ◦ s)]

M2 [s] .. M ′
2

(M1 M2) [s] .. (M1 [s] M ′
2)

M2 .. M
′
2

(M1 M2) .. (M1 M
′
2)

M2 is a C-value M1 .. M
′
1

(M1 M2) .. (M ′
1 M2)

M1 [s] .. M ′
1

((λM0) [M1
. t]) [s] .. (λM0) [M ′

1
.(t ◦ s)]

M1 is a C-value · · · Mi−1 is a C-value Mi .. M
′
i

(λM0) [M1 · · ·Mi−1
.Mi

. s] .. (λM0) [M1 · · ·Mi−1
.M ′

i
. s]

M1 is a C-value · · · Mi is a C-value Mi+1 [s] .. M ′
i+1

(λM0) [M1 · · ·Mi
.((Mi+1

. t) ◦ s)] .. (λM0) [M1 · · ·Mi
.M ′

i+1
.(t ◦ s)]

Fig. 6. Relation ...

initiates a few substitution steps. We encode these steps using a new relation ..,

which is a deterministic subrelation of ∼.

Lemma 23

Consider an instruction I . Further assume that the judgments 〈SI • s • I〉 ⇓ MI and

〈SI : S • s • I;C〉 :: D ⇓ M hold, where the λσ-terms in SI and S are C-values. Then,

there exists a λσ-term M ′, such that 〈MI : S • s • C〉 :: D ⇓ M ′ holds. Furthermore,

we have M .. M ′, where .. is a deterministic relation between λσ-terms defined in

figure 6.

Proof

We first consider the cases where D is empty.

1. If the code C is empty, then we must have S = () and thus M = MI . Hence, we

get M ′ = M by the decompilation rule (Res).

〈MI • s • ()〉 ⇓MI (Res)

By the previous Lemma 22, we get the first three rules of figure 6.

2. If 〈SI : S • s • I;C〉 ⇓ M is proved using the rule (Code), then both stacks SI and

S are empty and we get:

I;C ⇓m P
(Code)

〈() • s • I;C〉 ⇓ P [s]

Then, there are subcases, depending upon the structure of C .
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(a) If C = C2;C1; Apply, then we get:

I;C2 ⇓m M2 C1 ⇓m M1
(Apply)

I;C2;C1; Apply ⇓m (M1 M2)
(Code)

〈() • s • I;C2;C1; Apply〉 ⇓ (M1 M2) [s]

Moreover, by the decompilation rule (Code), we have:

I;C2 ⇓m M2
(Code)

〈() • s • I;C2〉 ⇓M2 [s]

Thus, by induction hypothesis, there exists M ′2 such that 〈MI • s • C2〉 ⇓ M ′2
holds. Furthermore, we have M2 [s] .. M ′2. Hence, we get:

〈MI • s • C2〉 ⇓M ′2 C1 ⇓m M1
(AppRight)

〈MI • s • C2;C1; Apply〉 ⇓ (M1 [s] M ′2)

With (M1 M2) [s] .. (M1 [s] M ′2).

(b) If C = I;C1;C2; · · · ;Cn; Fun(n, C0), then we get:

I;C1 ⇓m M1 C2 ⇓m M2 · · · Cn ⇓m Mn C0 ⇓n+1 M0
(Fun(n))

I;C1;C2; · · · ;Cn; Fun(n, C0) ⇓m (λM0) [M1
.M2 · · ·Mn

. ↑m]
(Code)

〈() • s • I;C1;C2; · · · ;Cn; Fun(n, C0)〉 ⇓ ((λM0) [M1
.M2 · · ·Mn

. ↑m]) [s]

Thus we have M = ((λM0) [M1
.M2 · · ·Mn

. ↑m]) [s]. Then, by an argument

similar to the one used above, there exists a λσ-term M ′, such that M .. M ′

and 〈MI • s • C1; · · · ;Cn; Fun(n, C0)〉 ⇓ M ′ hold. More precisely, we have M ′ =

(λM0) [M ′1 .((M2 · · ·Mn
. ↑m) ◦ s)], with M1 [s] .. M ′1.

3. If 〈SI : S • s • I;C〉 ⇓ M is proved using the rule (AppRight), then we have two

subcases, depending on the position of I with respect to the premises of the

rule (AppRight)

(a) If I is the first instruction of the left premise,

〈SI : S • s • I;C2〉 ⇓M2 C1 ⇓m M1
(AppRight)

〈SI : S • s • I;C2;C1; Apply〉 ⇓ (M1 [s] M2)

Then, by induction there exists a λσ-term M ′2, such that M2 .. M ′2 and

〈MI : S • s • C2〉 ⇓M ′2. Observing that the stack MI : S cannot be empty, we get:

〈MI : S • s • C2〉 ⇓M ′2 C1 ⇓m M1
(AppRight)

〈MI : S • s • C2;C1; Apply〉 ⇓ (M1 [s] M ′2)

Hence the result.

(b) Otherwise, C2 is empty and I is the first instruction of the right premise. We

have:
〈M2 • s • ()〉 ⇓M2 (Res) I;C1 ⇓m M1

(AppRight)

〈M2 • s • I;C1; Apply〉 ⇓ (M1 [s] M2)

Observe that, by hypothesis, M2 is a C-value, as we have S = M2 here.

Then, by the rule (Code), we have 〈() • s • I;C1〉 ⇓ M1 [s]. Thus, by induction,

there exists a λσ-term M ′1, such that 〈MI • s • C1〉 ⇓M ′1 and M1 [s] .. M ′1. Hence

the result, since, by the decompilation rule (AppLeft), we get:

〈MI • s • C1〉 ⇓M ′1
(AppLeft)

〈MI :M2 • s • C1〉 ⇓ (M ′1 M2)
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4. If 〈SI : S • s • I;C〉 ⇓M is proved using the rule (AppLeft), that is, if we have:

〈SI : S • s • I;C1〉 ⇓M1
(AppLeft)

〈SI : S :M2 • s • I;C1; Apply〉 ⇓ (M1 M2)

Then, by a straightforward application of the induction hypothesis, there exists

M ′1, such that M1 .. M
′
1 and

〈MI : S • s • C1〉 ⇓M ′1
(AppLeft)

〈MI : S :M2 • s • C1; Apply〉 ⇓ (M ′1 M2)

5. If 〈SI : S • s • I;C〉 ⇓M is proved using the decompilation rule (Fun(n,i)), then we

have two subcases.

(a) If induction is straightforward, that is, if we have:

〈SI : S • s • I;Ci〉 ⇓Mi Ci+1 ⇓m Mi+1 · · · Cn ⇓m Mn C0 ⇓n+1 M0

〈SI : S :Mi−1 : · · · :M1 • s • I;Ci; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·Mi

.((Mi+1 · · ·Mn
. ↑m) ◦ s)]

where, by hypothesis, SI : S is non-empty and M1, . . .Mi−1 are C-values.

Then, there exists M ′i such that Mi .. M
′
i and

〈MI : S • s • Ci〉 ⇓M ′i Ci+1 ⇓m Mi+1 · · · Cn ⇓m Mn C0 ⇓n+1 M0

〈MI : S :Mi−1 : · · · :M1 • s • Ci;Ci+1; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·M ′i .((Mi+1 · · ·Mn

. ↑m) ◦ s)]
(b) Otherwise, Ci is empty (or I is the first instruction of Ci+1) and we have:

〈Mi • s • (〉) ⇓Mi I;Ci+1 ⇓m Mi+1 · · · Cn ⇓m Mn C0 ⇓n+1 M0

〈Mi : · · · :M1 • s • I;Ci+1; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·Mi−1

.Mi
.((Mi+1 · · ·Mn

. ↑m) ◦ s)]
(Observe that SI and S must be empty here.)

By the decompilation rule (Code), we have 〈() • s • I;Ci+1〉 ⇓Mi+1 [s]. Therefore,

by induction, there exists M ′i+1, such that 〈MI • s • Ci+1〉 ⇓M ′i+1 and Mi+1 [s] ..

M ′i+1. Therefore, by the decompilation rule (Fun(i+1,n)), we get:

〈MI • s • Ci+1〉 ⇓M ′i+1 Ci+2 ⇓m Mi+2 · · · Cn ⇓m Mn C0 ⇓n+1 M0

〈MI :Mi : · · · :M1 • s • Ci+1; · · · ;Cn; Fun(n, C0)〉 ⇓
(λM0) [M1 · · ·Mi

.M ′i+1
.((Mi+2 · · ·Mn

. ↑m) ◦ s)]
Hence the result, since Mi, . . .M1 are C-values by hypothesis.

Now, assume that D is not empty. That is, we have:

〈SI : S • s • I;C〉 ⇓ P 〈P : S ′ • s′ • C ′〉 :: D′ ⇓M
(State)

〈SI : S • s • I;C〉 :: 〈S ′ • s′ • C ′〉 :: D′ ⇓M
Then, by induction, there exists P ′, with P .. P ′ and 〈MI : S • s • C〉 ⇓ P ′. Moreover,

by our lemma 21, there exists M ′, such that 〈P ′ : S ′ • s′ • C ′〉 :: D′ ⇓ M ′. Finally,

we get:

〈MI : S • s • C〉 ⇓ P ′ 〈P ′ : S ′ • s′ • C ′〉 :: D′ ⇓M ′
(State)

〈MI : S • s • C〉 :: 〈S ′ • s′ • C ′〉 :: D′ ⇓M ′

Furthermore, we get M .. M ′, since .. is included in ∼.
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The C-strategy is a combination of the three axioms of Lemma 22, of the relation

∼ (cf. Lemma 21) and of the relation .. (cf. Lemma 23). The exact combination is

given by the proof that the FAM implements a deterministic strategy.

More precisely, we first define a new relation
C

∼ by considering the three reduction

axioms and the inference rules of ∼. That is, we state:

(λM0) [s] and M are C-values
(Beta)

((λM0) [s] M)
C

∼M0 [M . s]
n [M1 · · ·Mn

. s]
C

∼Mn (Varn)

M1 is a C-value · · · Mn is a C-value
(Shiftm)

(λM0) [M1 · · ·Mn
.(↑m ◦ (P1 · · ·Pm . id)]

C

∼ (λM0) [M1 · · · .Mn
. id]

M2
C

∼M ′2
(AppLeft)

(M1 M2)
C

∼ (M1 M
′
2)

M2 is a C-value M1
C

∼M ′1
(AppRight)

(M1 M2)
C

∼ (M ′1 M2)

M1 is a C-value · · · Mi−1 is a C-value Mi

C

∼M ′i
(Fun(n,i))

(λM0) [M1 · · ·Mi−1
.Mi

. s]
C

∼ (λM0) [M1 · · ·Mi−1
.M ′i . s]

Then, we define a step in the C-strategy as a .. step followed by a
C

∼ step. Thus,

for any two λσ-terms M and M ′, we have M
C

−→ M ′ if and only if there exists

M ′′ such that M .. M ′′ and M ′′
C

∼ M ′. Decomposing the rules on closures of ..

and
C

∼ into many smaller rules according to the structure of substitutions yields the

definition of the C-strategy given in figure 7. The C-strategy is given in the same

small step formalism we used for other strategies. Axioms and inference rules are

classified per term construct in the algebra of λσ-term.

Lemma 24

Let D be a FAM state such that D exists. Let D′ be a state such that D reduces to

D′ in one step. We have the following two cases:

1. If D
Return−→ D′ then D = D′.

2. Otherwise, D reduces to D′ by the execution of one instruction I and we have

D
C

−→ D′.

Proof

The first proposition is a direct corollary of definitions (cf. the decompilation

rule (State)).

Let D be a state that evolves into D′ by the execution of one instruction I .

Let us state D = 〈AS • e • I;C〉 :: D0. By lemma 22, Φ(D) can be written as

Φ(D) = 〈SI : S • s • I;C〉 :: Φ(D0), where SI is a stack such that 〈SI • s • I〉 ⇓ MI .

Therefore, by Lemma 23, there exists M such that:

〈MI : S • s • C〉 :: Φ(D0) ⇓M and D .. M
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Then, there are two cases, depending on whether a new frame is created or not:

1. First consider the case where I is Apply. Then, on the one hand, we have

D = 〈
(
C0/e0

)
: f :AS0 • e • Apply;C〉 :: D0 and thus SI = (λM0) [e0] : f, with

m0 = length(e0) and C0 ⇓m0+1 M0. On the λσ-term side, we get MI = ((λM0) [e0] f).

On the other hand, we have D′ = 〈f • e0 • C0〉 :: 〈AS0 • e • C〉 :: D0. Thus, if D′

exists, we have:

C0 ⇓m0+1 M0
(Code)

〈() • f . e0 • C0〉 ⇓M0 [f . e0] 〈M0 [f . e0] : S • s • C〉 :: Φ(D0) ⇓ D′
(State)

Φ(D′) ⇓ D′

Now, let us state M ′I = M0 [f . e0]. Notice that we have MI

C

∼ M ′I , by the

axiom (Beta). Therefore, by lemma 21, there exists a λσ-term M’ such that

〈M ′I : S • s • C〉 :: Φ(D0) ⇓M ′, with M
C

∼M ′.
In other words, D′ exists and we have M

C

∼ D′.
2. Otherwise I is Global(i), Local or Fun(n, C0). In these cases, there exists M ′I such

that Φ(D′) = 〈M ′I : S • s • C〉 :: Φ(D0). The λσ-term M ′I is g, where g is either

a newly created closure (when I is Fun(n, C0)) or a closure retrieved from the

current environment or from the stack (when I is a variable access). Thus, by

Lemma 21, D′ exists and we have 〈M ′I : S • s • C〉 :: Φ(D0) ⇓ D′. Naturally, by our

choice of axioms, we have MI

C

∼M ′I and thus M
C

∼ D′.

Finally, since D .. M and M
C

∼ D′, we get D
C

−→ D′, by definition of
C

−→.

As illustrated by the rules (AppRight), (AppLeft) and (Beta), the FAM follows a

right-to-left call-by-value strategy. With respect to the simpler strategies we already

saw, the C-strategy presents two innovative features.

The first innovation lies in the propagation of substitutions inside terms (rules

(MapApp)), the C-strategy combines several σw-reduction rules in one step. Finally,

the rules (MapClos) and (MapEnv) ensures a similar propagation mechanism inside

the environment component of closures and inside environments themselves.

Second, reduction is now possible inside the environment part s of a closure

(λM0) [s] (rules (ClosRight)). This reduction operates from the left to the right (rules

(ConsLeft) and (ConsRight)). It is important to notice that our simple compila-

tion scheme does not fully exploit the reduction capabilities of the FAM. Here,

the C compilation scheme abstracts only the free variables out of function bod-

ies. As a consequence, when the FAM executes code produced by this simple

scheme, it performs only variable fetching while reducing substitutions. That is,

the term M in the rule (MapEnv) is always a variable and the rule (ConsLeft)

will never be used. The C-strategy can cope with alternative and more sophisti-

cated compilation schemes. In such schemes, complete sub-expressions would be

abstracted out of function bodies and the premise of rule (ConsLeft) could be any

C-reduction.
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(λM0) [s] and M are C-values
(Beta)

((λM0) [s] M)
C

−→M0 [M . s]

n [M1 · · ·Mn
. s]

C

−→Mn (Varn) ↑n ◦ (M1 · · ·Mn
. id)

C

−→ id (Shiftn)

M2 [s]
C

−→M ′
2

(MapApp)

(M1 M2) [s]
C

−→ (M1 [s] M ′
2)

M2

C

−→M ′
2

(AppRight)

(M1 M2)
C

−→ (M1 M
′
2)

M1

C

−→M ′
1 M2 is a C-value

(AppLeft)

(M1 M2)
C

−→ (M ′
1 M2)

s ◦ t
C

−→ s′

(MapClos)

((λM) [s]) [t]
C

−→ (λM) [s′]

s
C

−→ s′

(ClosRight)

(λM0) [s]
C

−→ (λM0) [s′]

M [s]
C

−→M ′

(MapEnv)

(M . t) ◦ s
C

−→M ′ . (t ◦ s)

M
C

−→M ′

(ConsLeft)

M . s
C

−→M ′ . s

M is a C-value s
C

−→ s′

(ConsRight)

M . s
C

−→M . s′

Fig. 7. The C-strategy.

Remember that the starting terms of the C-strategy are particular: they are

terms M [id] such that the predicate P0(M) holds. Thus, the terms produced by the

C-strategy are also particular. They satisfy a predicate Qk:

Qk(n) = (n ≤ k)
Qk(M1 M2) = Qk(M1) ∧ Qk(M2)

Qk(λM) = Qk+1(M)

Qk(M [s]) = Qls (M) ∧ Qk(s), where ls = length(s)

Qk(M . s) = Qk(M) ∧ Qk(s)
Qk(s ◦ t) = Qlt (s) ∧ Qk(t), where lt = length(t)

Qk(s) = false otherwise

length(↑n) = 0

length(M . s) = 1 + length(s)

length(s ◦ t) = length(s), when Qlt (s) where lt = length(t)

length(s) is undefined otherwise

One easily checks that the new predicate Qk generalizes Pk . That is, the implication

Pk(M)⇒ Qk(M) holds. Thus, given any closed λDB-term N, let M be C(∅ , N). Then,

the predicate Q0(M [id]) holds, since we have P0(M).
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Intuitively, given a term M, the predicate Qk(M) holds when M is being evaluated

in an environment of size k. As expected, this condition is preserved by the C-

strategy:

Lemma 25

Let M and M ′ be two λσ-terms, such that M
C

−→ M ′ and Qk(M). Then, we have

Qk(M ′).

Proof

Tedious. A key point is that, given two substitutions s and s′ such that s
C

−→ s′, we

have length(s) = length(s′).

Lemma 26 (Final state condition)

Le N be a closed λDB-term and let M be C(∅ , N). Let D be a terminal state computed

by the FAM from L(M). Then, D is a C-normal form.

Proof

First observe that, by Lemma 24, D exists and that we have M [id]
C

−→∗ D. Let us

state D = 〈ASn • en • Cn〉 :: · · · :: 〈AS1 • e1 • C1〉. There are three kinds of states from

which no transition is enabled. The first two cases are the same as for the SECD

(cf. Lemma 11), as concerns both statement and proof:

1. n = 1 and C1 = (). then, the stack AS1 holds exactly one closure f (otherwise it

cannot be decompiled) and we get D = 〈f • () • ()〉 = f, which is a C-value and a

C-normal form.

2. If the head instruction of Cn is Fun(n0, C0) or Apply and if there are not enough

arguments on the state ASn for it to execute, then it can be shown that D cannot

be decompiled either. Therefore, this case cannot occur.

3. If an environment access fails, that is, if D = 〈AS • ( ) • Local;C〉, D = 〈() • e •

Local;C〉 :: D0 or D = 〈AS •
−→
f1,m • Global(k);C〉 :: D′ with k > n. Then, D is a

C-failure term W , defined as follows:

W ::= m [f1 · · · fk . id] with k < m

M W

W M where M is a C-value

(λM0) [M1 · · ·Mi−1
.W . s] where M1, . . .Mi−1 are C-values

A C-failure term is a C-normal form, since a C-normal form which is not a value

stands in C-redex position.

In fact, such a case cannot occur. Any C-failure term W has a subterm W ′ =

n [f1 · · · fk . id] with k < n, such that Q0(W ′) does not hold. As a result, Q0(W )

cannot hold, which contradicts the initial condition Q0(M [id]), by Lemmas 24

and 25.

The transition return is the only silent transition of the FAM. Obviously, it cannot

be performed infinitely many times in a row. We conclude:

Theorem 3

The FAM implements the C-strategy.
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6 The Categorical Abstract Machine

In this section, we prove that the categorical abstract machine (CAM) (Cousineau

et al., 1985) implements a strategy in λσw . For brevity, some proofs, which are very

similar to previous ones, are only sketched.

6.1 Basics

The CAM has seven instructions.

instruction ::= Fst Snd < , > App Λ(code)

CAM environments belong to two different sorts: they are either closures (written

f) or trees (written e).

environment ::= ( ) closure (environment, environment)

The states of the CAM (written D = 〈S • C〉) are just pairs of a stack with a code.

stack ::= ( ) environment : stack

frame ::= 〈stack • code〉

state ::= frame

The transitions of the CAM are as follows:

〈(e, f) : S • Fst;C〉 car−→ 〈e : S • C〉

〈(e, f) : S • Snd;C〉 cdr−→ 〈f : S • C〉
〈e : S • Λ(C);C ′〉 cur−→ 〈

(
C/e

)
: S • C ′〉

〈e : S • < ;C〉
push
−→ 〈e : e : S • C〉

〈f : e : S • , ;C〉
swap
−→ 〈e : f : S • C〉

〈f : g : S • > ;C〉 cons−→ 〈(g, f) : S • C〉
〈(
(
C/e

)
, f) : S • App;C ′〉

app
−→ 〈(e, f) : S • C;C ′〉

We have adopted a slightly unusual presentation of CAM transitions: for an in-

struction to execute, not only must the proper number of arguments stand on top

of the stack, but these arguments must also be of the proper sort, either closure

or tree node. Consider for instance the instruction , , i.e. the transition swap. This

instruction swaps the two topmost elements of the stack, provided the topmost one

is a closure and the other one is a tree node. Doing so, we make explicit the sort

discipline that is usually left implicit in standard categorical code.

Compilation of λDB-terms in CAM code follows the usual translation from λ-terms

to terms of Categorical Cartesian Logic (CCL).

[[ 1 ]] = Snd

[[ n + 1 ]] = Fst[[ n ]]

[[ (N1 N2) ]] = < [[N1 ]] , [[N2 ]]>App

[[ λN ]] = Λ([[N ]])
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In the rules above we omit the separator ‘;’ in code segments.

Finally, a code C = [[N ]] is loaded into the CAM as L(N) = 〈( ) • C〉.

6.2 Decompilation

First, we inverse the compilation procedure [[ ]]. We do so by proving judgments

C ⇓ N, which read “the code segment C stands for the λDB-term N”.

Fstn; Snd ⇓ n+1
C1 ⇓ N1 C2 ⇓ N2

<C1
,C2 >App ⇓ (N1 N2)

C ⇓ N
Λ(C) ⇓ λN

For any λDB-term N and categorical code C , the equivalence [[N ]] = C ⇔ C ⇓ N is

easily shown.

The decompilation procedure extends naturally to environments and closures,(
C/e

)
= (λN) [e], where C ⇓ N

(e, f) = f . e

( ) = id

A X-value is the decompilation of a closure. Thus, X-values are written f.

State decompilation is performed by proving a judgment D ⇓ D, using the following

axioms and inference rules:

〈f • ()〉 ⇓ f (Res)

C ⇓ N
(Code)

〈e • C〉 ⇓ N [e]

〈S • C〉 ⇓M C ′ ⇓ N
(AppLeft)

〈S : e • C ,C ′>App〉 ⇓ (M N [e])

〈S • C〉 ⇓M
(AppRight)

〈S : f • C >App〉 ⇓ (f M)

〈(f1, f2) • App〉 ⇓ (f1 f2) (AppCons)

Decompilation rules follow a sort discipline, just as transition rules do. For instance,

the rule (Res) applies only when the stack S holds a single closure. Besides, decom-

pilation rules are analog to other machines rules and bear the same names. The

only slight novelty is the rule (AppCons), which derives from the transition cons, a

transition that could easily be merged with the transition app.

The non-ambiguity of state decompilation follows quite easily from the rich

structure of categorical code. Basically, proof trees are unique because the ‘< ’ and

‘> ’ instructions act as well-balanced parenthesis in code segments.

6.3 Strategy

As we did for the FAM, we introduce gradually the strategy implemented by the

CAM. We call this strategy the X-strategy (written
X−→).

In the absence of multi-frame CAM states, the proof that the CAM implements

the X-strategy differs slightly from the corresponding proofs for the SECD and the
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FAM. Specifically, induction is now performed differently, by directly considering

‘sub-states’, instead of plugging a λσ-term on top of the current active frame as we

did for the previous two machines.

More specifically the two inductive decompilation rules (AppLeft) and (AppRight)

both extract a sub-state 〈S ′ • C ′〉 from a state 〈S • C〉 by removing some elements

from the bottom of the stack S and some instructions from the end of code C . In

other words, 〈S • C〉 is decomposed as 〈S ′ : S ′′ • C ′;C ′′〉, where 〈S ′ • C ′〉 is a valid

CAM state. The following lemma exposes such a state decomposition, designed for

identifying strategy axioms.

Lemma 27

Let D be a CAM state such that the execution of any instruction is enabled, yielding

a new state D′. If D exists, then D can be written 〈SI : S • CI ;C〉 and there exists a

λσ-term MI such that 〈SI • CI〉 ⇓MI . Additionally, D′ can be written 〈S ′I : S • C ′I ;C〉
and there exists a λσ-term M ′I such that 〈S ′I • C ′I〉 ⇓M ′I .

Proof

A very constructive one:

I Snd Fst < App

CI Snd Fstn; Snd < [[N1 ]] , [[N2 ]]>App App

SI (e, f) (e, f) e (
(
[[N1 ]]/e1

)
, f2)

MI 1 [f . e] n+1 [f . e] (N1 N2) [e] ((λN1) [e1] f2)

C ′I () Fstn−1; Snd [[N1 ]] , [[N2 ]]>App [[N1 ]]

S ′I f e e : e (e1, f2)

M ′I f n [e] (N1 [e] N2 [e]) N1 [f2
. e1]

I Λ([[N0 ]]) , >

CI Λ([[N0 ]]) , [[N2 ]]>App >App

SI e f : e f2 : f1

MI (λN0) [e] (f N2 [e]) (f1 f2)

C ′I () [[N2 ]]>App App

S ′I
(
[[N0 ]]/e

)
e : f (f1, f2)

M ′I (λN0) [e] (f N2 [e]) (f1 f2)

https://doi.org/10.1017/S0956796898002986 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898002986


Functional runtime systems within the lambda-sigma calculus 171

The axioms of the X-strategy derive from the lemma above. These axioms are the

four rules MI
X−→M ′I , where I is any of the instructions Fst, Snd, < or App.

In the case of the transitions cur, swap and cons, we have MI = M ′I . Thus, these

transitions are good candidates for being silent.

Now, thanks to our induction technique on sub-states, we make explicit the

inductive rules of the X-strategy:

Lemma 28

Let D = 〈SI : S • CI ;C〉 be a CAM state such that both judgments D ⇓ M and

〈SI • CI〉 ⇓ MI hold. Let 〈S ′I • C ′I〉 be any CAM state such that the judgment

〈S ′I • C ′I〉 ⇓M ′I holds. Let D′ be the state 〈S ′I : S • C ′I ;C〉. Then, there exists a λσ-term

M ′ such that D′ ⇓ M ′. Furthermore, given any relation ∼, such that MI ∼ M ′I , we

have M ∼M ′, provided ∼ obeys the following structural rules:

M1 ∼M ′1
(M1 M2) ∼ (M ′1 M2)

M1 is a X-value M2 ∼M ′2
(M1 M2) ∼ (M1 M

′
2)

Proof

By induction on the length of C . Let us consider, for instance, the base case and

assume that C is empty. Then, one shows by induction on the length of CI that S

must be empty and thus M = MI .

First, notice that, when the instruction I is Λ, , or > (and thus when MI = M ′I ),

we just proved that the corresponding transitions cur, swap and cons are silent.

Then, we get the X-strategy, by combining the four axioms MI
X−→M ′I (where I is

Fst, Snd, < or App) with the inductive rules of lemma 28:

1 [M . s]
X−→M (FVar) n+1 [M . s]

X−→n [s] (RVar)

(N1 N2) [s]
X−→(N1 [s] N2 [s]) (App)

(λN) [s] is a X-value M is a X-value
(Beta)

((λN) [s] M)
X−→N [M . s]

M1
X−→M ′1

(AppLeft)

(M1 M2)
X−→(M ′1 M2)

M1 is a X-value M2
X−→M ′2

(AppRight)

(M1 M2)
X−→(M1 M2)

Finally, the X-strategy is simple left-to-right call-by-value.

Lemma 29 (Final state condition)

Let N be a closed λDB-term and let D be a terminal state computed by the CAM

starting from L(N). Then, D is a X-normal form.

Proof

First observe that D exists and is computed by iterating the X-strategy starting from

N [id]. Let us then state D = 〈S • C〉. The CAM may stop for many reasons, which

fall into three classes:
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1. The code C is empty. Then, D must be computed by the decompilation rule (Res).

Thus, S holds a single element which must be a closure f. Hence D is the X-value

f. This is the normal case.

2. A variable access fails. That is, D = 〈() • Fst;C0〉 or D = 〈() • Snd;C0〉 Then, D is

a X-failure term W :

W ::= n [id] with n ≥ 1

W M

M W where M is a X-value

One easily sees that X-failure terms are X-normal forms. Furthermore, they are

not closed λσ-terms. Hence, by Lemma 1 and since N [id] is closed, this case

cannot occur.

3. The code C is not empty (i.e. C = I;C0), but the execution of the instruction I

is not enabled, because S holds too few arguments or because the sort discipline

on transitions is violated. In fact, such cases cannot occur here, precisely because

D exists. The proof tree of 〈S • C〉 ⇓ M must include the proof of a judgment

〈SI • CI〉 ⇓ MI that ‘consumes’ the instruction I , i.e. a proof whose premises do

not include I anymore. Moreover, by the inductive structure of proofs, we have

S = SI : S ′. When, for instance, I is ‘ , ’, we have CI = ,C ′I >App and

〈f • ()〉 ⇓ f (Res) C ′I ⇓ N ′I
(AppLeft)

〈f : e • ,C ′I >App〉 ⇓ (f N ′I [e])

Thus, we get SI = f : e. Hence, since S = SI : S ′, the transition swap is enabled.

Finally, all CAM transitions but the transition app consume one instruction.

Therefore, any computation of the CAM that does not include the transition app

is finite. Thus, since the transition app is not silent, there cannot be infinitely many

silent CAM transitions successively. We conclude:

Theorem 4

The CAM implements the X-strategy.

7 Other execution models

In the previous sections, we have exhibited the λσw-calculus strategies hidden inside

four machines. By a simple improvement on (Leroy, 1990), we also made explicit the

strategy of the ZAM. Briefly, the ZAM implements the L-strategy, i.e. right-to-left

call-by-value.

The G-machine and the TIM (Fairbairn and Wray, 1987) can also be understood

in the λσ-calculus, although these machines look quite different from environment

machines. In order to simplify the management of variables at run-time, compilers

for these machines translate input λ-terms into supercombinators, by the so-called λ-

lifting operation (Peyton-Jones, 1987). Supercombinators are n-ary functions without

free variables, that is, in terms of λσw , closures (λλ. . .λM) [id], where M is a λσ-term

whose variables are all λ-bound. We call such closures λσ-supercombinators. In the
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λσ-framework, λ-lifting is actually quite similar to the first phase C of the FAM

compilation. Where, from a function, the transformation C produces a closure,

the λ-lifting will produce the partial application of a λσ-supercombinator. For

instance, the abstraction, λ(1 (5 7)) is translated by the scheme C into the λσ-closure

(λ(1 (2 3))) [4 . 6 . id], whereas it lambdalifts to the λσ-term ((λλλ(1 (2 3))) [id]) 6 4.

Any λσw-strategy that accounts for supercombinator reduction must include a

n-ary (Beta) rule, which expresses the application of a λσ-supercombinator to all its

arguments in one step:

(Betan) ((λ. . . λM) [id]) N1 . . . Nn →M [Nn · · ·N1
. id]

The G-machine and the TIM implement a very similar strategy that basically

amounts to contracting the leftmost-outermost (Betan) redex and then propagating

the generated substitution. This simplified term-based presentation is sufficient for

establishing the correctness of both machines.

The SML/NJ compiler departs from the abstract machine approach (Appel,

1992). Roughly speaking, a schematic SML/NJ compiler would first translate a

source λ-term into a λ-term in continuation-passing style (CPS). Then, this λ-term in

CPS would be further transformed by the so-called closure conversion. The original

SML/NJ closure conversion transforms functions into record data structures, which

encode closures. In our our closure calculus, such records are of course not needed

and our closure conversion would output λσ-terms in continuation-passing style.

Note that the above schematic description of the SML/NJ compiler is ours and

only intends to show that λσ can also account for a schematic CPS-based compiler.

By no way, do we attempt to render the complexity of a full-fledged compiler as

Appel (1992) does, using enriched λ-calculus (in CPS) as a formal language.

8 Related work and conclusion

The main contribution of this paper resides in the introduction the λσw-calculus as

‘the’ weak λ-calculus, that is, as the adequate framework for the formal study of

the execution of compiled functional programs. Additionally, the full λσ-calculus

appears as an adequate formalism for proving the correctness of skeleton compilers.

Presently, the most salient illustration of this claim is our complete description and

proof of a schematic FAM based compiler.

Rather than providing an ‘automatic’ procedure for proving abstract machines,

we introduced a method to do such proofs. This method consists in extracting

strategy axioms from machine transitions and strategy structural rules from the

machine structure. Doing so, we abstract on implementation issues, such as stack

management or closure format, focusing on semantics.

Our work is to be compared first with similar attempts to prove, formalize or

derive several functional back-ends in an unified formalism. In Curien (1991), the

Krivine machine and the CAM, two shared environment abstract machines, are

‘derived’ from deterministic strategies of λρ, a calculus of closures. The system

λρ is a conditional term rewriting system (see also Maranget (1991)), and can

be seen as a predecessor of our standard term rewriting system λσw . A recent
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publication (Douence and Fradet, 1995) resembles our work, since it models many

compilers and abstract machines, using the λ-calculus extended with appropriate

combinators as a formal language. We differ from this work on an important point:

we insist on what all functional runtime systems have in common, to the point

of proposing a definition for compiled functionality in a relatively well established

formalism, whereas (Douence and Fradet, 1995) focuses more on modelling the exact

structure of abstract machines, to establish their ‘taxonomy’ of functional languages

implementation.

Then, our work is to be compared also with others that formally prove one or a

few abstract machines. Here, a first benefit of our approach of describing abstract

machines in terms of a λσ-calculus rewriting strategy is that their correctness is

a direct consequence of the correctness of the λσ-calculus with respect to the λ-

calculus. As a consequence, our correctness proofs appear to be quite simple. By

contrast, the correctness proofs of the CAM in Asperti (1992) and of the SECD

machine in Rittri (1988) are complicated. This is no surprise from the λσ point of

view, since these proofs basically include a correctness proof of λσw with respect to

the λ-calculus. Our bisimulation technique is a simplification of Rittri’s work. Our

main simplification lies in adopting a term language for closures, where Rittri used

ordinary λ-calculus. In the end, this yields simpler proofs, as well as more numerous

and detailed machine descriptions. Moreover, our simple technique enabled us to

prove the correctness of the FAM, which has never been done before. We believe

that this simplicity owes much to the fact that our overall framework (i.e. the λσ⇑
calculus) includes both our archetypal source and target languages as consistent (i.e.

closed by reduction and Church–Rosser) subcalculi.

The second benefit of our approach lies in the generality and precision of our

correctness results: all machines are described in the same framework and we

describe every step of their execution. Here, we differ from Hannan and Miller

(1992), which relied upon natural or ‘big-step’ semantics and from Crégut (1990)

and Leroy (1990), which proved the Krivine machine and the ZAM in λσ but do

not specify their λσ-strategies. Our ‘small-step’ approach to semantics enables us to

compare the termination properties of different machines naturally. For instance, we

can say that the Krivine machine terminates more often than the CAM or the SECD,

since it follows the leftmost-outermost strategy, which terminates more often than

any other strategy of the orthogonal weak λ-calculus (Maranget, 1991). As a second

example, given the same λ-term as input, the SECD and the CAM compute exactly

the same closure, whereas the FAM computes a different, λσ⇑-equivalent, closure.

A first direction for future work is to study graph-based implementations. Con-

sidering that the call-by-need strategy is the natural implementation of call-by-name

in graph rewriting systems, such a strategy can be modelled in a simple extension

to term-graphs of the weak λ-calculus with explicit substitutions. To render sharing

while preserving the desirable simplicity of terms, several techniques already exist,

such as subterms labelling (Maranget, 1991), explicit recursive equations (Ariola et

al., 1995), or specialized bindings (Lauchbury, 1993).

A second direction is to examine how the full λσ-calculus can be used to assert

the correctness of some phases of realistic compilers. Various optimizations at the
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closure level are a first natural target for such a study. Moreover, our approach

should be relevant and easy to consider when compilation is modelled by type-

preserving transformations of a typed language, since there exist typed λ-calculi

with explicit substitutions (Abadi et al., 1996). For instance, in Abadi et al. (1996),

closures are typed using existential polymorphism, and type-safe closure conversions

are presented. However, closures are naturally typed in any typed λσ-calculus, using

standard type systems. It would be interesting to compare the two approaches.

Considering skeleton compilers that are closer to real compilers would require first

to extend λσ to handle common programming constructs, such as data structures,

recursive bindings, exceptions, etc. A first step we are taking is to extend λσ with

arbitrary term rewriting systems.
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