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GENERALIZED FERMAT'S PROBLEM 

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday 

R. NODA, T. SAKAI AND M. MORIMOTO 

ABSTRACT. The following problem is studied. Generalized Fermat's 
problem: in an «-dimensional Hadamard manifold M, locate a point whose 
distances from the given k vertices of M have the smallest possible sum. 

1. Introduction. Let us recall an old problem in Euclidean plane geometry known 
as Fermat's problem (or also as Steiner's problem). 

FERMÂT' S PROBLEM. In a given triangle ABC, locate a point P whose distances from 
A, B, C have the smallest possible sum. 

The answer to this problem is well-known and we refer the reader to H. S. M. Coxeter 
[4, p. 21] for example. The desired point uniquely exists and is given by 

(1) the point P with LAPB = LBPC = LCPA = 2-nl?>\f any angle of the triangle is 
smaller than 2ix j 3, or 

(2) the vertex with angle >2TT/3 otherwise. 
It may be interesting to ask the problem in a more general situation. Here we take the 

viewpoint of Riemannian geometry. 
We mean by an Hadamard manifold a complete, simply connected, smooth Rieman­

nian manifold with everywhere non-positive sectional curvature. Flat Euclidean spaces 
(which will be called simply Euclidean spaces), hyperbolic spaces of constant nega­
tive curvature and Riemannian symmetric spaces of non-compact type are examples of 
Hadamard manifolds. Let M be an n-dimensional Hadamard manifold and let/?i,... ,/?* 
be k mutually distinct points in M, where k is an integer > 3. We call these points 
p i , . . . ,pk vertices. We say the vertices to be in general position if all the vertices to­
gether do not lie on any geodesic in M. 

Our problem is: 

GENERALIZED FERMAT'S PROBLEM. Locate a point in M whose distances from the 
given vertices pi, . . .pk have the smallest possible sum. 

We call the desired points the Fermat's points (for the vertices p\,...,/?£), and call the 
set of the Fermât points the Fermât set. We will see in Proposition 2.4 that the Fermât 
set is a non-empty convex subset of the convex hull spanned by p\,... ,pk- For points p 
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and q in M with/? ^ q, we denote by X(p, q) the unit tangent vector at/? along the unique 

geodesic from p to q. We call a vertex ph singular if we have 

(1.1) ||Xi + --- + XA_i+XA+i + -.- + Xik|| < 1 , 

where X, = X(ph,pt) for / ^ /*, and || — || denotes the norm of a tangent vector. 

We can now state our main theorem. 

THEOREM 1. Let M be an n-dimensional Hadamard manifold andp\,... ,/?£, k > 3, 

vertices on M. Then the following (I)-(IV) hold. 

(I) If the vertices p\,... ,pk are in general position, then the Fermât set consists of 

exactly one point 

(II) In general a point p in M — {p\,... ,Pk\ is the Fermât point if and only if 

(1.2) X i + X 2 + - - -+X* = 0, 

where X[ = X(p,pt)for i = l,...,L 

(III) A vertex p h is the Fermât point if and only if it is singular. 

(IV) If all the vertices lie on a geodesic ^:K —> M in such a way that pt = 7 (U) 

with t\ < t2 < • • • < tic, then the Fermât set is {p(k+\)/2} or ^(ih/2^h/2+i\) 

according as k is odd or even. 

The statement (IV) is obvious. 

In Section 4 the Fermât point for four vertices of the 3-dimensional Euclidean space 

will be characterized in terms of solid angle. 

We give another description of a singular vertex. 

PROPOSITION 2. The condition (1.1) is equivalent to the condition 

(1 .1 / J2(XhXj) <-(k-2)/2, 

where i and] range over the integers with 1 < / < j < k, i ^ h and] ^ h, and we put 

Xt = X(ph,pi)fori^ h. 

Thus Theorem 1(1) and (III) imply 

COROLLARY 3. Let A\,..., A& be vertices in general position of the n-dimensional 

Euclidean space. Then the vertex Ah satisfying the following condition (1.3) is unique, if 

such a vertex exists: 

(1.3) £ cos(lAiAhAj) < -(k - 2)/ 2, 
ij 

where i and] range as in Proposition 2. 

Next we give another description of the Fermât point in M — {/?i,... ,pk}. 
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PROPOSITION 4. The condition (1.2) is equivalent to the condition 

(1.2/ for every h = \,...,k, ]£ (xi>xj) = ~(k ~ 2 V 2 ' 

where i and] run over the integers with 1 < / < j < k, i ^ h and j ^ h, and we put 
Xi = X(p,Pi)fori= \,...,k. 

Theorem 1(1) and (II) imply 

COROLLARY 5. Let Ai,...,A* be vertices in general position of the n-dimensional 
Euclidean space Kn. Suppose that there is no singular vertex. Then there exists 
(uniquely) a point P inKn such that for every h— 1 , . . . , k, one has 

(1.4) Y, cos(lAiPAj) = ~-(k-2)/2, 

where i and] run as in Proposition 4. 

In the following sections some of Lemmas and Propositions may be obvious to spe­
cialists, but we give them proofs for the convenience of readers not specialized in the 
Riemannian geometry. 

2. Proof of Theorem 1. We say a continuous function/ on a Riemannian manifold 
N to be convex, if for every non-trivial geodesic 7 : [0,1] —-> N and for every t G (0, 1), 
we have the inequality/(7(0) < /(7(0)) + t(f(l(l)) - / ( 7 ( 0 ) ) Y We say the / to be 
strictly convex, if the inequality is strict. A subset C of N is defined to be convex, if for 
p,q G C there is (up to parametrization) a unique shortest geodesic from/? to q in N and 
this geodesic is contained in C (see [2, p. 3]). 

Let M be an «-dimensional Hadamard manifold. We denote by d(—, —) the distance 
function of M. For an arbitrarily fixed point p of M, we obtain a continuous function 
d(—,p): M —• R ; x ^ d(x,p). This function is smooth except at the point p. Let q be 
a point in M — {p} . By the first variation formula, the gradient vector of d(—,p) at q 
is equal to —X(q,p). Let 7: R - ^ M b e a geodesic with 7(0) = q. Then by the second 
variation formula, we have 

(2. 1) ( ^ j d(l(t),p)\t=0 = Jo
l {-K(Y,X)\\Y A X\\2 + \\VXY A X\\2} dt > 0, 

where K(-, - ) is the sectional curvature and || Y A X||2 = ( Y, Y) ( X, X) - ( Y, X)2 > 0, 
(see [3, p. 158], [1, p. 85] or [1, p. 209]). Perhaps a word about X and Y is in order. 
Let V: [0,1] x (—e, e) —> M, £ = d(q,p), be the variation of the geodesic //: [0, £ ] —• 
M from g to p with arc-length parameter, such that V(s, 0) = \i (s) for s G [0,1 ] and 
V(0,f) = 7(0 and V(£,t) = p for t G ( -e ,e) . Then X = V#35 and Y = V*dt. By the 
inequality in (2.1), d(—,p)\M_{pj is convex. Since d(p,p) = 0 is the (absolute) minimum 
of d(—,p), the continuous function d(—,p) is convex on M (cf. Theorem 1.3 in p. 4 of 
[2]). 
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Let W be an open subset of M and/: W —» R be a smooth function. For each tangent 
vector YQ G TqM, q G W, there exists a unique geodesic 7 : R —• M with 7 (0) = q and 
7(0) = F0. The correspondence: F0 •—» ( | ) /(l(0)|r=o gives a well-defined function 
//(/*): 7^M —> R. We call this H(f) the Hessian off at #, since H(f) can be regarded as 
the quadratic form on TqM associated with the bilinear form usually called the Hessian 
(cf. [1, p. 42]). 

LEMMA 2.2. The function d(—,p) is proper and convex. Atq G M—{/?}, the Hessian 

H\d(—,p)j ofd(—,p) is positive semi-definite and its null space //(d(—,/?)) (0) is the 

1-dimensional subspace ofTqM spanned by X(q,p). 

PROOF. It is sufficient to show that the null space N = //(d(—,/?)) (0) is the sub-
space spanned by X(q,p). 

Suppose that F0 is in N. Then from (2.1) we have V*F A X — 0 at all points \i(s), s G 
[0,1 ]. Since X is the vector field given by the geodesic /x, we have VxX — 0 and hence 

VX(YA X) = VXYA X + 7 A VXX = VX^A X. 

This implies VX(YA X) = 0 at all points /x(j), j G [0, £]. The vector Y A X at <? = /x(0), 
i.e., Yo A X(q,p), can be regarded as the parallel translation along the path /x of the vector 
Y A X at/7 = //(£ ). The latter vector vanishes, since Y = 0 at p. Thus, the former vector 
Fo A X(q,p) — 0. This shows that Fo lies in the subspace spanned by X(q,p). 

Next we show that TV includes the subspace spanned by X(q,p). It may suffice to prove 
X(q,p) G N. The geodesic 7 for Fo = X(q,p) coincides with the geodesic /x,and hence 
d(l(t),p) = £ - t for all t G [0,1]. Immediately, we have 

^ J 47(0,/>)Uo = 0. 

This completes the proof of Lemma 2.2. 

DEFINITION 2.3. Let/?i,... ,/?* be vertices in M. Hereafter we reserve the letter/ for 
the continuous function M —•> R defined by/(jc) = £f=1 d(x,pi) for JC G M. 

The Fermât points are the points at which / takes the (absolute) minimum. Lemma 
2.2 implies that/ is proper and convex. Obviously/ is non-negative. 

PROPOSITION 2.4. The Fermât set is non-empty, compact and convex. Furthermore 
it is included in the convex hull spanned by the vertices p\,... ,/?&• 

Here the convex hull spanned by p\,... ,pk is the smallest closed convex subset of M 
containing/?!,... ,/?&. 

PROOF. It suffices to show the last statement. Let C be the convex hull spanned by 
pi,...,/?*. Obviously, C is a closed convex set. For any point p ^ C, we have the unique 
point q G C of minimal distance top ([2, p. 8, 1.6]). We show that 

dip, p{) > d(q,pi) 
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for all / = 1, . . . , k. Let \i be the geodesic from q to p with arc-length parameter, and let 
7 = 7/ be the geodesic from q to pt. We denote by a = a, the angle at q formed by the 
initial tangent vectors to /i and 7. The first variation formula 

jfWM^o = (Y,X)|0
£ -Jo

l(y,v xx) du 

where £ = d(g,/?)and V,Xand 7 are as in (2.1) (cf. [3, p. 5, (1.3)]), implies— cos a > 0, 
and hence a >TT/2 (cf. [2, p. 9, Exercise (i)]). Now we consider a triangle QPPi in the 
Euclidean plane such that d(Q, P) = d(q,p), d(Q, Pi) = d(q,pj) and the angle iPQPt = 
a. Since a > 7r/2, we have d(Q,Pi) < d(P,P(). Then by Toponogov comparison 
theorem ([2, pp. 5-6, 1.4]) we get d(p,pt) > d(P, Pi). Putting all this together, we obtain 
d{p,pi) > d(q,pi). Summing up these inequalities for / = 1, . . . , k, we have/(/?) > f(q), 
which implies the last statement in Proposition 2.4. 

If the vertices p\,... ,/?& are in general position, then the null space of the Hessian 
H(f) off at q e M - {pu... ,pk} is {0} because of H(f) = Ef=1 H(d(-,pS) and 
Lemma 2.2. In this case, the restriction/|M_|/?1 ^} of/ to M — {p\,... ,pk} is strictly 
convex. 

LEMMA 2.5 (THEOREM 1 (I)). If the vertices p\,... ,pk are in general position, then 
the Fermât set consists of exactly one point. 

PROOF. Suppose that the vertices are in general position. If the Fermât set has two 
distinct points, then the minimal geodesic segment joining these points is contained in 
the Fermât set. This, however contradicts the strict convexity of/|M—{Pl,..,iPk) • 

LEMMA 2.6. 

(1) A point p of M at which f takes a (locally) minimal value, must be the Fermât 
point. 

(2) A critical point of the smooth function f\M-{pu...,Pk} must be the Fermât point. 

PROOF. This can be easily shown from the convexity of/. We omit the details. 

At p G M — {/?!,... ,pk\, the gradient vector of/ coincides with — £f=i X(p,pi). 
By Lemma 2.6 (2), p is the Fermât point if and only if Y%=\X(p,pù = 0. This proves 
Theorem 1(11). 

LEMMA 2.7. For a vertex Ph,f(ph) is a minimal value off if and only ifph is singular. 

PROOF OF THE IF PART. Suppose the contrary. Then there is a point p in M with 
f(p) < f(Ph) and d(p,ph) < d(ph,pi) for all / ^ h. Take a geodesic 7 : [0,1 ] —> M with 
7(0) = ph and 1(1) = p. Define a function F: [0, t ] —> R to be the composite/ • 7. By 
d(p,ph) < d(ph,pd, F is smooth on [0, t ]. Since/(/?/0 > /(p), there exists a real number 
ô with 0 < to < I and F'fo) < 0. On the other hand, we have 

(2.8) f ( 0 ) = || 7(0) | | - J2 (7(0),*), 
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where Xt — X(ph,pi). Sincepn is singular, || Ef=1 ,y/,^|| *s n o t g r e a t e r m a n 1- By the 
Cauchy-Schwarz inequality, we get F(0) > 0. From the convexity of/, we obtain Ff(t) > 
0 for all t G (0, £). This contradicts Ff(to) < 0. Hence f(ph) is minimal. 

PROOF OF THE ONLY IF PART. It suffices to prove that/ does not take a minimal value 
at/^if || £?=ljIyA*i|| > 1,X/ = X(ph, pi). Letl: R —• M be the geodesic with 7 (0) = ph 

and 7(0) = Y%=l#hXh and suppose ||7(0)|| > 1. Define a function F: R —• R to be 
the composite/ • 7. Then f (0) is given by (2.8), and i^(0) = ||7(0)|| - ||7(0)||2 < 0. 
Thus f(ph) — F(0) is not minimal. 

Putting Lemmas 2.6 and 2.7 together, we see that a vertex pn is the Fermât point if 
and only if it is singular. This completes the proof of Theorem 1 (III). 

3. Proof of Propositions 2 and 4. 

PROOF OF PROPOSITION 2. We put Xt = X(ph,pt) for i ^ h and X = £*= j . , A Xt. We 

recall thatX, are unit vectors. Suppose that the inequality (1.1) holds, namely ||Z|| < 1. 
Then the inequality (1.1)' is obtained from the equalities 

(X,X) = £ (Xi.Xt) +2 £ <*i>X/>> and 

The converse is also obtained from these equalities. 

PROOF OF PROPOSITION 4. We put Xt = X(p,pt) for / = 1, . . . , k and F = Xi + X2 + 
• • • +Xk. Then we get 

<y,y> = £<**>**>+2 E (*.̂ ->.and 

(Xh,Y) =(Xh,Xh)+ J2 (Xh,Xi). 

These give the equality 

(3.1) (Y9Y) -2(Xh,Y) =(k-2) + 2 £ (X/,Xy>. 
\<i<j<K#htfh 

Suppose that the equality (1.2) holds, namely Y = 0. Then the left-hand side of (3.1) is 
equal to 0, and we obtain the equality (1.2/. The converse is obtained from (3.1) and 

£ « y , y ) - 2 ( x A , y » = - ( y , y ) . 
h=\ 
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4. Another characterization of the Fermât point in the 3-dimensional Euclidean 

space. We begin with 

DEFINITION4.1. LetAi ,A2, . . . ,An+\ ben+l vertices in the ^-dimensional Euclidean 

space R n which are not contained in any (n — l)-dimensional subspace, where n is an 

integer > 2. A point P of Kn is said to be an equiangular point for A\, A2 , . . . ,An+\ if 

the n + 1 (^-dimensional) solid angles at P spanned by n vertices of A\, A2, . . . ,An+\ are 

well-defined and partition equally the total solid angle around P. 

In R 2 an equiangular point for three given vertices Ai,A2 and A3 exists if and only 

if there is no singular vertex. In this case, the equiangular point is precisely the Fermât 

point for them and a vertex, say A], is singular if and only if ZA2A1A3 > 27r/ 3. The 

following theorem asserts that similar results hold in R 3 . 

THEOREM 4.2. Let A\, A2, A3 and A4 be vertices in R 3 which are not contained in a 

plane. Then the following (I) and (II) hold. 

(I) There exists an equiangular point for Ai, A2, A3 and A4 (in the sense of Definition 

4.1) if and only if there is no singular vertex. Furthermore in this case a point P 

is an equiangular point for A1, A2, A3 and A4 if and only if it is the Fermât point 

for them. In particular an equiangular point, if it exists, is unique. 

(II) A vertex, say A\, is singular if and only if the solid angle at A\ of the tetrahedron 

A1A2A3A4 is greater than or equal to ir(= 4TT / 4). 

In order to prove this theorem, we prepare 

PROPOSITION 4.3. Let vl (1 < i < 3) be unit vectors in R3 , and T the spherical 

triangle on the 2-dimensional sphere S2 spanned by V; (1 < / < 3). Then the area Area(7) 

ofT is given by the formula 

(4.4) Area(D = 2cos - 1 H* + "> + * H 2 " ! 

2 ^ 2 1 1 ^ ( 1 + (v I-,v /))' 

where i and] range over the integers with 1 < / < j < 3. 

PROOF. We assume the reader to be familiar with elementary formulae on spherical 

trigonometry. Denote lengths of sides of a spherical triangle ABC by a, b and c. Then 

Euler's formula (see [5, pp. 176-177] or [6, p. 761 for example) gives 

Area(7) 1 + cos a + cos b + cos c 
cos = 7 

2 4 cos I cos I cos I 
1 + cos a + cos b + cos c 

y/2( 1 + cos a)( 1 + cos b)( 1 + cos c) 

Since 0 < Area(7)/ 2 < 7r, we obtain the formula (4.4). 

PROOF OF THEOREM 4.2. The assertion (II) is an immediate consequence of Propo­

sition 4.3. 
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We prove the assertion (I). Suppose that P is an equiangular point for Ai,A2,A3 and 
A4. Choose arbitrarily three vectors from the four vectors Xt = X(P,A,), i = 1,... ,4, 
and regard them as vi, v2 and V3 in Proposition 4.3. Then in the formula (4.4), Area(7) = 
47r/ 4 and hence || v\ + v2 + V31|2 = 1 for any choice. Thus, for any h with 1 < h < 4, 

(4.5) Y, (xi>xj)=-1-

By Proposition 4 (where k = 4), we get X\ + X2 + X3 + X4 = 0. By Theorem 1(11), P 
must be the Fermât point for the vertices A\,... ,A4. Since the Fermât point is unique 
(see Theorem 1(1)), any of the vertices A\,..., A4 is not the Fermât point. By Theorem 
l(III), there is no singular vertex among A\,..., A4. 

Next suppose that the vertices A\,..., A4 are not singular. Then there exists uniquely 
the Fermât point P for the vertices A1, . . . , A4. The point P is distinct from A1, . . . , A4 and 
X\ + X2 + X3 + X4 = 0. By Proposition 4, we obtain the equality (4.5). Proposition 4.3 
implies that all solid angles at P spanned by three vertices of A\,... ,A4 are equal to TT, 
if they are well-defined. On this occasion, P is an equiangular point for A\,..., A4. For 
the well-definedness of the solid angles, we have to show that lA(PAj ^ TT for all / and 
j with 1 <i<j<4. For example suppose LA\PA2 = n. Since X\ + X2 + X3 + X4 = 0, 
we have 

(*! +X2,XX +Z2) = (X3 +X4,X3 +Z 4) . 

This yields (X\,X2) = {X3,X4), hence LA3PA4 — n. Thus, A\,... ,A4 must be in a 
plane. This contradicts our assumption in Theorem 4.2. Similarly we can prove LAiPAj ̂  
7T for general / and j . We omit the details. 

There may naturally arise a question whether the above theorem can be generalized to 
higher dimensional Euclidean spaces. But the answer is "no". We conclude this section 
with such a counterexample in R4. 

EXAMPLE 4.6. Let Ai = (1,0,0,0), A2 = (0,1,0,0), A3 = (0,0,1,0), A4 = 
( - 1 / 2 , - 1 / 2 , - 1 / 2 , - 1 / 2 ) and A5 = ( - 1 / 2 , - 1 / 2 , - 1 / 2 , 1 / 2 ) be vertices in R4. 
These At can be regarded as unit vectors in R 4. Since A1 +A2 + • • • +A5 = 0, by Theorem 
1 the origin 0 is the Fermât point for A/, 1 < / < 5. But the origin is not an equiangular 
point for them as is seen in the following. 

The 4-dimensional total solid angle around the origin is 27r2, and the solid angle UJ 
at the origin spanned by the four vertices A\, A2,A3 and B4 = (0,0,0,1) is 7r2/ 8. The 
complementary solid angle of a; is divided equally into four parts, namely the solid angles 
at the origin spanned by the vertex A4 and three of A1, A2, A3 and B4. Hence the solid angle 
at the origin spanned by Ai,A2,A3 and A4 is equal to (27r2 — 7r2/8)/4 (= 157r2/32) 
which is not equal toln2/ 5. 
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