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ON THE RADIUS OF CURVATURE FOR CONVEX 
ANALYTIC FUNCTIONS 

PAUL EENIGENBURG 

1. Introduction. 

Definition 1.1. Let f(z) = z + X ^ = 2 a / be analytic for \z\ < 1. If / is 
univalent, we say that / belongs to the class S. 

Definition 1.2. L e t / G 5, 0 ^ a < 1. T h e n / belongs to the class of convex 
functions of order a, denoted by Ka, provided 

(1) Re [ l + 2 ^ & ] > a for |*| < 1, 

and if e > 0 is given, there exists ZQ, \ZQ\ < 1, such that 

Let / G Ka and consider the Jordan curve yT = f(\z\ = r), 0 < r < 1. 
Let s(r, 6) measure the arc length along yr; and let <j>(r, 6) measure the angle 
(in the anti-clockwise sense) that the tangent line to yr atf(reie) makes with 
the positive real axis. Then the radius of curvature of yr at f(reie) is 
p(r, 6) = (difi/ds)-1. It is known [3, p. 359] that 

w ^««-RiF^b^' z = reie-
Keogh has shown [4] that if / is convex, then 

(3) max p(r,^) ^ — ^ — 2 , 
6 1 i 

with equality holding for the function/(s) = z/(1 — z). 
Our aim in this paper is to determine all functions in K0 for which equality 

holds in (3), and also to give a corresponding result for the class Ka. 

2. Main results. In order to determine which functions of K0 yield equality 
in (3), I include the proof of Keogh's result, which I state as a lemma. 

LEMMA 2.1. If f is convex, then 

maxp(r, 6) g 2 . 
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Proof. Since/ is convex, 

Re 1 + C ^ l > 0 in \z\ < 1. 

Thus, there exists a monotone increasing function u(t) defined on [0, 2ir] 
such that jl" du(t) = 1, 

(4) 1 + /^y = J0 r ^ ^ ^ o . 
Hence, 

(5) log/'CO = f * log(l - ze-ur2 du(t). 

Therefore, log | / ' ( s ) | = J"S'log|l - a r " | - 2 d « ( 0 . Thus, 

C2T I 
|/'(s)| = exp J log -2du(t), 

where A2 = A2(V, / - 6) = 1 - 2r cos(* - 6) + r2, z = re*». From (2) and (4) 
it follows that 

P O , 6») = f|^exp J l o g ^ 2 d w ( 0 j [ J A 2 f <fo(0j • 

By the arithmetic geometric mean inequality [1, p. 156] we have 

J
, 2T i r ^ i 

log~72du(t) S I -72 du (t). 
o A */o A 

Thus, p(r,0) ^ r / ( l - r2). 

THEOREM 2.2. Equality holds in Lemma 2.1 only for the following functions 
{and rotations)]: 

(A) /(*) = S 

1 - z ' 

<B> ^ " ^ k i ^ t i ^ ] ' sin^°-

sin* ^ 0, 0 < X < 1, X s* | . 

Proof. By the proof of the lemma, we have equality if and only if equality 
holds in (6) for some 6 = 6(r). Now, this occurs only if log(l/A2) is constant, 
except possibly on a set of ^-measure zero [1, p. 156]. By the nature of 

flf g is a rotation of/, then g(z) = e~^f(ze^) for some /3, 0 < j8 < 2x. 

https://doi.org/10.4153/CJM-1970-056-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-056-5


488 PAUL EENIGENBURG 

log(l/A2), this is the case only if either (a) nil) has a single jump, or (b) u(t) 
has exactly two jumps located at points h, t2 such that cos(/i — 6(r)) = 
cos(/2 — 0(r)). It follows from (a) and (b) that equality in (6) for 6 = 6(r) 
is independent of r\ i.e. we have that 6(r) is a constant, say 6{r) = 6. Note 
that if case (b) occurs, then we also have equality in (6) for 6 = 6 + T, but 
not for any other values of 6 (6 ^ 6 < Ô + 2TT). NOW, if f(\z\ = r) has its 
maximum radius of curvature atf(reid) (i.e., equality in (6) for 0 = 0), then 
the function g(z) = e~fef{zefe) will have the property that g(\z\ = r) has its 
maximum radius of curvature at g(r). Thus, we need only assume that equality 
holds in (6) for 0 = 0. Then for each function which yields a sharp result in 
this case, we must also include its rotations. Let us now examine cases (a) 
and (b). 

Case (a). u{t) has a single jump, say at t. From (5) we have 

log/ ' (z ) = log(l -ze-")~\ 

Hence, f(z) = z/(1 — ze~u), and so f(z) is a rotation of 2/(1 — z). This 
yields part (A) in the statement of the theorem. 

Case (b). u{t) has two jumps, located at points h, t2, where cos h = cos t2. 
Let X and 1 — X denote the lengths of the jumps at h and t2, respectively. 
From (5) we have 

log/ ' («) = Xlog(l - se -" i ) - 2 + (1 - X) log(l - zeru*)~2. 

Since cos t\ = cos t2, e~it2 — eUl. Letting h = t, we have 

m 
kiIo4r^H 

(1 - 2 X ) 2 i s i n / L \ l - zeu ) J 

2 i s i n * l u * L l - * e " J if X ~ *' 
1 

This yields parts (B) and (C) in the statement of the theorem. 

THEOREM 2.3. / / / 6 Ka (0 < a < 1), then 

max P(r, 6) ^ T ~27Ï=Ï 

e U — r ) 
with equality holding only for the function {and rotations): 

!

- l o g ( l - z) ifa=\i 

Proof. Let / <= Ka. Then g(z) = Jo[ / ' (0 ] 1 / ( 1 _ a ) dt G K0. By Lemma 2.1 
we have 

(7) P,(r, e) s If'(2) I < r 
R e [ l + * g " ( * ) / g ' ( s ) ] = 1 - r 
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One easily checks the following relations: 

TOI = if (2)i
1/(1-a\ 

R e [ 1 + 1 ^ ] = 1 + T i _ R e [ ^ ] . 
Thus, from (7) it follows that 

W 1 + (1 - a)-1Re[Z/7 ' (S)// '(2)] = 1 - r2 ' Z ~ re ' 

Note that s ince/ 6 Ka, Re[z /" (z) / / ' (z ) ] > a - 1. Fix z and let 

t = Re[s /" (*) / / ' (*)] . 

For I > a - 1 we have 

(io) 1 + -^— ^ (i + o1/(1-a), 
1 — a 

with equality holding only when t = 0. Applying (10) to (9) we have 

P / ( f ' ^ = Re[l + zf7'(z)/f(z)] ~ (1 - ry- ' S = " ' 
Hence, 

(11) max p,(r,0) ^ 
( l - ^ ) 1 - " ' 

To determine when equality occurs in (11), we need only, by (7), examine 
those functions / G Ka such that g(z) = jllf ' (t)]1/(1~a) dt is a function 
given in (A), (B), or (C) of Theorem 2.2. Suppose first that g has the form (A) ; 
i.e., g is a rotation of s / ( l — z). Without loss of generality we can assume 
that g(z) = 2/(1 — z). It follows that 

- l o g ( l - s ) ila=h 
(12) /(*) = < 1 - ( 1 - s ) 2 - 1 

I 2 a - 1 
if a ^ i 

Since g (s) = 2/(1 — z) maps the circle \z\ = r onto a circle of radius r / ( l —- r2), 
we have equality in (7) for all 0. Hence, f(z) yields equality in (9) for all 0. 
By (10) it follows that equality holds in (11), provided for each r, 0 < r < 1, 
there exists 0 = d(r), such that 

(13) R e[/^zf] = 0 for Z = reiHT)-
Using (12), one sees that (13) holds if 6(r) = arc cos r. 

Secondly, suppose that g has the form (B) or (C) of Theorem 2.2. We 
intend to show tha t / , defined implicitly by 

«oo = r if(t)}ini-a) dt, 
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does not yield equality in (11). Without loss of generality we can assume that 
g(z) is not a rotated form of (B) or (C). Then, equality in (7) can occur only 
for real values of z. Hence, for equality to hold in (11), by (10) we must have 
for each r, 0 < r < 1, 

(14) *M- for z = r or for z = —r. 

We must show that (14) is impossible. Now, 

zg"(z) _ 2\ze~ 
g'(z) 1 - zé 

From (8) it follows that 

^ï + 
2(1 - X)zei 

1 ze 

2(1 - a) 
\ze~" (1 - \)ze* 

LI - ze-" + ~ 1 - ze" J 
sT(z) 

From this expression we see that (14) cannot occur for each r, 0 < r < 1. The 
proof of the theorem is complete. 

We now give an arc-length result for the class Ka. Keogh [4] has proved 
this result, with a = 0, for functions which are convex. 

THEOREM 2.4. Let f € Kai 0 ^ a < 1, and let Lr be the length of 

yr = {f(reid): 0 ^ 6 g 2TT}. 

with equality only for the function {and rotations): 

l - l o g ( l - z) ifa=i, 
f(z) = < 1 - (1 - zY 

2a - 1 if «* h 

Proof. Since/ £ Kai we have 

Re (l-a)+-Ç}^-\ >0 in |*| < 1. 

Thus, there exists a monotone increasing function ^(/) , defined on [0, 2TT], 
JlT du(t) = 1, 

(1 - a) + -7-^f = (1 - a) -=ndu(t). 
j \z) Jo 1 — ze 

Thus, log / ' ( * ) = j T log(l - ze-uy2il-a) du(t). Hence, log | / ' ( s ) | = 
jT log\l — ze~u\~2il~a) du(t). It follows by the arithmetic geometric mean 
inequality that 

(15) J
»2TT 

0 

-it\~1{l-a) du(t). 
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Since LT = fl*r\f '(z)\ dd, z = reid, we have 

(16) LrSr f'dO f * |1 - ze-u\-2il~a) du(t) 

By the same method used in the proof of Theorem 2.2, we examine (15) for 
equality. We then find that equality holds in (16) only for the function 
f £ Ka which is listed in the statement of the theorem. The proof is complete. 

Remark. From a result of Hayman [2, p. 280], we have the following growth 
estimates: 

f0(( l - r)1"-1) i f 0 £ « < i , 

lO(l) i f i < a < 1. 
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