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On Series for calculating Buler's Constant and the
Constant in Stirling’s Theorem.

By Professor K. J. Sanjana.
(Received September 1909. Read 14th January 1910.)

1. Let v, denote the value of
(1) 1+3+3%..+1/n—logn
where n is a definite integer; and let y denote the limit of
(2)  1+3+i.+1/n+1/(n+1)...+1/(n+k)-log(n+k),
when the integer % is indefinitely increased. It is known* that
the expansion of y, -y in ascending powers of 1/n is

1 Bl B, B

®) i P A R =
where B,, B,, B;... are the numbers of Bernoulli. The series (3) is,
however, divergent, as B,,,, not only increases indefinitely with 7,
but bearst an infinite ratio to B,,_, in this case. It is proposed to
find by elementary methods the expansion of v, -+ up to the term
in n” and to estimate the error (of order 1/n"*') made in omitting
further terms of series (3). I shall take the case of =9, but the

process is quite general.

2. From (2) we obtain 1 —vurs
=log(n+k)-%-%..-1/n...-1/(n+k)
= (log2 - 1001 - l)+(log3 ~log2 -1 +...
+ (logn —logn — 1 - 1/n) + (logn + 1 — logn — ljn+1)+
..+log(n+k)-log(n+k-1)—1/(n+k).
The first n — 1 brackets amount to 1 -y, ; hence

log—— ;) 10n+1 1
Tn T Ynde= 7 (gn+l+n+l <gn+2+m>—

) 0n+k -1 1 )
.._(o,, )
* Boole, Finite Dif. Ch. V. (Euler-Maoclaurin Formula); Todhunter,

Integral Calc. Ch. XII.
t Chrystal, Algebra, Ch. XXX.
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The logarithms on the right side can all be expanded in con-
vergent series, as 1/(n+1), 1/(n +2), ...1/(n + k) are each less than
unity; so that

B o1 1 1 +
LA T sl ey S Ty

1 1 1
Yomr ot 3ma o Y imeay T

................................................

1 1 1
t sk T 3mr kA kT

This doubly infinite series is convergent either way; the
columns, therefore, can be written as rows. Hence, making %

infinite,
4) Yu =y = bla+ 2t + I, ad inf,

where ¢,=Zg(n+p)~". We proceed to expand &, &, ...in powers
of 1/n. .

3. Let ¢ (m, d, &) denote the reciprocal of
m{m+d}{m+2d}...{m+(k-1)d};
then pm—-r, 1,2r+1)-p(m-r+1, 1, 2r-1). $(m, 0, 2)
=t . p(m-r 1, 2r+1).¢(m, 0, 2).

Change m to n+ 1 and transpose; we get
5) ¢(n-r+2,1,2r-1).¢(n+1,0, 2)

=¢p(n-r+1,,2r+1)-r’p(n-r+1,1, 2r+1). $(rn+1,0, 2).
Putting r=1,2, 3, ..., we have

P(r+1,0,3)=¢(n, 1, 3) - 1. ¢(n, 1, 3), p(n +1, 0, 2),
H(n,1,3)p(n+1,0,2)=¢p(n-1,1,5) - 2. ¢(n-1,1,5).(n+1,0, 2),
Hn-1,1,5)(n+1,0,2) =p(n~2,1,7) ~ 3% ¢(n - 2,1,7). (n + 1,0,2),
and so on. Hence, by continued substitution,
(6) $n+1,0,3)=9(n, 1,3)-1%¢(n-1,1,5)+(1.20°¢(n-2,1,7)

-(1.2.30%(n-3,1,9+....

5 Vol. 28
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We can stop at any point; the last term contains ¢(n +1, 0, 2) as
factor, and is positive or negative according as its number is odd
or even. Thus we obtain closer and closer relations of inequality,
of which for the present we take the following :

¢(n+1,0,3)is >p(n, 1, 3)-Pp(n-1,1, 5)+4¢p(n-2,1, 7)
—36¢(n -3, 1, 9), but < this expression +576¢(n -4, 1, 11).
Changing n+1 ton+2, n+3, ..., and adding up, we get the sum
of $(n+1, 0, 3), ¢(n+2, 0, 3), ¢(n+3, 0, 3), ... to infinity,

i.e, t; to be*
>id(n, 1, 2)—3d(n -1, 1, £) +Ep(n -2, 1, 6) - 3p(n - 3, 1, 8)
and < this expression increased by £38¢(n - 4, 1, 10).

To get ¢, we multiply both sides of (6) by ¢(rn+1, 0, 2) and
apply equation (5) to the terms on the right side in succession ; we
thus obtain an equationt like (6), whence similar relations of
inequality can be inferred. Thus ¢(n+1, 0, 5) is found to be
>¢p(n—-1,1,5)-5¢p(n-2,1,7) + 494(n — 3,1,9) — 820¢(n - 4, 1,11),
but < the first three terms of this expression. Hence, as before,
changing n+1 to n+2, n+3, ... ad. inf, and adding up, we get
t; to be
>ip(n-1,1,4)-5d(n -2, 1, 6) + 22h(n - 3, 1, 8) - 82¢(n - 4, 1,10)
but < the first three terms of this expression.

We shall similarly obtain £>23¢(n-2, 1, 6) -i¢(n-3, 1, 8),
but < this expression +Z73¢(n-4, 1, 10); f,>3H(n-3, 1, 8)
- 3¢p(n—4,1,10), but <id(n-3,1,8); and 4, < Hd(n -4, 1, 10).
We will not consider £ #,,..., as these when expanded do not
affect the term in 1/«° and the previous terms.

To obtain ¢, put r =1 in equation (5); thus
d(n+32,1,0).¢(n+1,0,2), ie, $(n+1,0, 2)=¢p(n+13, 1, 2)
-3p(n+4,1,2).6(n+1,0,2). Soalsop(n+3,1,2).4(n+1,0,2)
=¢d(n-% 1, 4)—3p(n-4, 1, 4).4(n+1, 0, 2); the last function
=¢(n-31,6)—23Ep(n~-31,6).4(n+1, 0, 2); and so on. Hence

* Chrystal, 4/gebra Ch. XXXI.

+ The coefficients on the right side may be thus calculated : write down
those of the right side of (6) ; multiply the first by 2* and subtract from the
second ; multiply the result by 3% and subtract from the third ; and so on.
Thus from 1, — 1, 4, —36, 576 we obtain successively 1, —3, 49, —820, 21076.
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we have ¢(n+1, 0, 2)=d(n+4, 1, 2)-3é(n-4, 1, 4)+}.2
$(n-3,1,6)-1.3.%d(n-4§ 1,8 +.... Reasoning exactly as
before, we shall therefore have

bh>dn+d 1 1)~ fpd(n -1, 1, 3) + rd(n -, 1, 5) -

%%—g"ib(n - %: 1, 7) + J22F2’65‘¢(n - %’ L, 9) - —1%'42%}??‘#("' ” '97’ 1 11)’
but < the first five terms of this expression. Multiply both sides
of the equality given above by ¢(n+1, 0, 2) and apply equation
(); we thus obtain* ¢,>3é(r-14, 1, 3)-1d(=n-3, 1, 5)
+33d(n-5,1, 7) - 3E22(n -1, 1, 9), but less than this value
increased by 23111¢(n -3, 1, 11).

We can similarly obtain in succession ¢4>1¢(rn-3, 1, 5) -
$(n-5,1,T)+322¢p(n -1, 1,9) - 18584(n — 3, 1, 11), but < the first
three terms; f,>3}¢(n-5, 1, T)-ip(n-3, 1, 9), but < this
expression + 282¢(n - 5,1,11); t,,>3p(n -1, 1,9) - L34(n - 4, 1,11),
but <id(n-1, 1, 9). We need not consider ¢, £,,...

4. Adding up the results up to that for ¢,, inclusive, we see that
Y. — 7Y is certainly greater than

M id(n+4, L, 1)+3d(n, 1, 2)+Hpd(n -4, 1, 3)

-gob(n -1, 1, 4) - &ob(n -3, 1, 5) +5b(n -2, 1, 6)

+eaepn -5 L 1) -1id(n -3, 1, 8) - 55454(n -5 1, 9)

~38g(n -4, 1, 10) - £489310¢(n - 2, 1, 11).
The functions may now be expanded by the Binomial Theorem ;
all the series will be absolutely convergent for n=35. But as in
the expansions of the last three, only terms up to n' or »!" have to
be retained, the ratio of convergency for the inequality will be
much greater than 5 ; it will, however, be found in any case not to
be greater than 10. With this restriction we see that the expression
(7) is greater than

1 1 1 1 1 1387 1012575
2n " 12w T T20n*  252n° T 2400°  60n"  5632n"

* The co-efficients can again be calculated by a simple rule : write down
those of the first equality - 1, -}, +.%, —3%38, +1388%,...; multiply the
first by § and subtract from thesecond ; multiply the result by %2 and subtract
from the third ; and so on, Thus we get 1, —§, +352, —333%, +1egzsar |
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If n>10, the last two terms are numerically less than 42/n"; but

for » =100, they are less than 25/n'.

This determines an inferior limit of y, ~ y: a superior limit can
be similarly found. The first ten terms of the right side of (4) are
found to be less than }é(n+4, 1, 1) + 3¢(n, 1, 2)
+9pb(n -1, 1,3) - glpp(n — L1, 4) - Idgb(n - 5,1,5) + Jsb(n - 2,1,6)
+gssb(n—35 L, 1) - i3é(n -3, 1, 8) - $50i09(n -5 1, 9)
+1212¢(n ~ 4, 1, 10) + 1024954(n -3, 1, 11). Expanding till we
get positive terms in or n“ we see that this sum is less than

s 1 1 + 1 1 + 1 11039 325111
®) 20 1202 120m* 252nf 240n8T660n‘°+1536n“'

‘We have still to assign a superior limit to the terms omitted.
Now Lot + thtis + 15t -
< 5ty + t,s +y..), tee.

1 1
< 12z (n+1)12 (n+ 1)13 (n+ 1)74'“

, 1 1,
mr2 T mr R oy

1 1 1

Tarsp T @i T @i

1 1 1
1 .
<1 "’{n(n + 1) +(n+ 1)(n+2)" + (n+2)(n+ 3)"“'} ’
and, therefore, a fortiori, the terms omitted are
1 [ 1 + 1 1
< 12(n+1)* Ln(n+1) " (n+1)(n+2) + (n+2)(n+ 3)"'}’

t.€., @ or, finally, < The sum of this quantity

1
< 12n(n+1 12a™
and the last two, terms of (8) is found to be less than 38/n!® for
n=10, and less than 19/n for n= 100. In the latter case, we
conclude that y, — y lies between

11 +1)§’and(l-l 1\.19
(2_71- 1202777 7 24008/ = 3 1wt agoes ) toe
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the expression within brackets coinciding with the first five terms
of series (3). The difference between the two values is less than
50/n", i.e., $(10)™, and the value of y thus obtained will be true
to seventeen * places of decimals.

5. The constant in Stirling’s Theorem, or rather its logarithm,
can be dealt with in the same way. If 8, denote |ﬁ .e"-n"tY and

8 be the limit of |n+%k.e™* = (n +k)"t** when the integer % is
indefinitely increased, it is known that log8, — logd can be expanded
in the following series : —

9) e W, P, N

Deunoting the logarithms by A,, A, we have

Apr=(n+k)+log2 +logd + ... +log(n +4 - 1)

+log(n + k) - (n+ &+ 3)log(n + k)

=(n+k)-(n+k-Hlog(n+ k) +(n+k-4log(n+k-1)
~(n+k—3)log(n+k—-1)+(n+k-3)log(n+k-2)
—(n+k-5logn+k-2)+(n+k-5log(n+k-3)
+ Zlog3 — £log3 + 5log2 — Zlog2

=1-{(n+k-Plog(n+k)/(n+k-1)~-1}
—{(r+k-3)ogn+k-1)/(n+k-2)-1}
- {3log} -1} - {flog} - 1}.

Soalso A,=1-{(n-3%)lognf(n-1)-1}

- {$logg ~ 1} - {3logi -1} ;

* As a matter of fact the series up to »? gives in this case a value correct
to 18 places ; we are, however, able as shown above to prove that the remain-
ing terms of the series can at most affect the 18th place. For the use of the
convergent portion only of series (3), see Boole, Finite Diff. Ch. VIIL, and
Bromwich, Infinite Series Ch. XI. The latter has proved the approximation
to three terms of the series by definite integration in Mess. of Math.,
Vol. XXXVIL, 6,
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so that
n+l n+2
(10) M= Aniz= (n+ Plog™— — 1+ (n+log = - 1...
n+k
+(n+k—%)logm - 1.

Now it can be proved that
(p+log(p+1)/p= - (p+$og{1 - 1/(p+1)}

. (1 1) 1 1 1> r,
= 3 22 (p+1)=+(4'2~3 (p+1p "7
b, by :
=1+—2_ 1 —2 4. adinf,
Tor it et ” -

where br=1/(r+1) - 1/(2r). Hence from (10), making k infinitely
large, we get
b B b,
A e e
b b by
+(n+2),+(ﬂ+2),+(n+2)‘+
by b,
+(n—+T)”+(_nT37+ ...............

which may be written thus :—
(11) A= A=byt 4+ bty + bty + ...ad inf.

We now expand the ¢'s as in §§ 3 and 4, and give to the &'s their
arithmetical values. XKeeping only terms which affect 1/n® and

previous powers, we get for the inferior limit the following
expression :—

Trb(n+d 1, 1) +55b(n, 1, 2) + A%d(n - 4, 1, 3)
—ztop(n -1, 1, 4) - JA%d(n -3, 1, B) + 11z -2, 1, 6)
+ 2ot -5 1, 1) - 1iisP(n-3, 1, 8) - 1 3325¢(n -4, 1, 9)
~-284(n -4, 1, 10. On expanding as before, this gives

1 1 1 1 168437 77785
197~ 360, T 1260n° ~ 168077 ~ 138240n® _ 6144n™

The last two terms are numerically less than 25/10n® when
n=10,
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The first eight terms of the series in (11) are similarly found to
be less than
Teb(n+d L 1)+ d5d(n, 1,2) + 545d(n - §,1,3) - —i' ( -1, 1 4)
—dr2eb(n~ 51, 5) +11zb(n - 2, 1, 6) + S pb(n -5 1, 7)
Tmr‘#(" 3 L 8)+ e -5 1, 9)+ 55 d(n -4, 1, 10),
which gives
1 1 1 1 10319 121897
1277 3607 * 1260n° ~ 1680n" ' 5760n° ' 15360n™
A superior limit of the terms omitted will be found to be b,/
t.e.,, 9/220n%. This term and the last two terms above are seen to
be less than 27/10x° for » = 10. Thus, for instance, when = is 10,
the value of A, - A derived from the first four terms of series (9)
will differ from the true value by a quantity less than 52/104° or
by about $(10)%
6. I conclude by obtaining algebraically other series for y and
establishing analogous series for A.
From (2) we have

Yorr = (1 —1og2) + (4 — log3/2) + (§ ~ log4/3) + ...
+{l/(n+k-1)-log(rn+k)/(n+k-1)} +1/(n+k).

1 1 1 1 .
Now 5 gl +p)p =g - gt ead inf
hence y+k=l—i+i—
T M
1 1 1
T N AT
1 1 1 1

POk 1f 3mak-1p dmek-1p T ik
Making % infinite we get

1 1 . 1 1 .
y=%(l+?+?+...ad mf) -1+ A TR ad inf.)
1 1 . .
+}(1+?+?...ad T oo e ad inf.
=48~ 284+ 38, - 185 i, (A),
where s,=1+%+—;;+ ......................... ad inf.
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In (4) make n=1; then, as y; =1,

loy=3a-1)+3(s-1)+3E = 1) (B).
1 1 1 .
It can be shown that T._2-+ Gt g g ad inf.
e, unity = (8, - 1)+ (65— 1)+ (8= 1)+ .ccovriviriiirniinnninnnen (a);
hence from (B),
v=38-1)+3(E-1)+3(8 1) i, (C).

Supposing n to be very large and taking terms up to s., in (A) and
(B), we find on addition that unity is the limit of

11 g, 1.1 1.1 1
-y -gtlu-p-gt ot -g

hence s, -1+3(8,~1)+3(s~1)...4+5(8,n~1) is the limit of

1 1 1

m+ m+ R , when = ‘becomes infinitely large.

1
tomtl

This limit can be shown to be log?2, so that

log2=3(8,— 1)+ 3@, - 1)+ 33— 1)eeeeieiieniniiin (%)
Hence by help of (B) we obtain
2-2y-log2=%s-1)+2(5, - 1)+ (s~ V)errerenrinnnnn. (D).

Again log2 v
=log(2n+2k)-(1+%4+3...4+1+n+k)

-1 2n+2k 1 ( 2n+2k-1 1
=8 to%-1 ntk \®2m+9%-3 ntk-1)"

ook (logh - 3) + (logd - 1).
But log{l+1/(2p)} -log{1-1/(2p)} -1/p

2 2 2 . .
= 5GPy + 5(2p)"+ Ty F o ad /. (c);

and the limit of the first terms on the right side is really
zero when & is infinite. Therefore, we deduce
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2 2 .
log2 -y = TR T g T ad inf.
2 2 2
F T TR T T e »w
2 2 2
+3.6’+5.6“+7.67+ .......................... AR,
et N
8 3 s,
= 3.22'*'5.244'7_25*' ............................. (E).
Also, from (c), log3 -1=1/3.2°+1/6.20+1/7.2°+ .. ........... ;
so that log2 —y ~log3 + 1, or, 1 —log3 - ¥
8-1 8-1 -1
=3"'22+5ﬁ.2‘+77.26+ .............. Mssessaarseresaranaa (F).

Euler employed the formule (B), (E), (F) in calculating* y and
Legendre the formula (D). They can be obtained * from the well-
known series for logI'(1 + z),

xmw

- - 1 1
%lo"sinxn- (yx+ 280 + L8’ + ...)
xm l4a
and él%sinanr ~ %logl—;—ac + oz — e - et® — ...

7. In (10) make n=1; then, as A, =1,

T-A=by(s = 1)+ byfss~ D)+ b(a— 1)+, (B).

In §5 expand (p + ){log(p +1)/p} in the form
- L TRSI— @)

and proceed as before; we thus obtain

1 —A=by8, ~ b8+ b8 — OBt oveveenrinnnennnnn. rerrreeans (A).
From (B,) and (a) -

A=(1-by) (g, - 1)+ (1 = bg)(s5— 1) + (1 = b)(8,— 1) ......... (Cy).
From (d) we get

3log2 -1 =by = by+ by byt oeenniniiiiiiiiiii ad inf. ;

* See Ency. Brit. ed. IX., s.v. Infinitesimal Calculus (B. Williamson) ;
also Mess. of Math., Vol. L. (G. W. L. Glaisher).
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and from (A,;) and (B,)
25,8+ 2b85+ ... = by + by + b, + by ..
Thus  2by(s; ~ 1) + 2by(85 — 1) + 2b,(s; - 1)...
=by—by+b,~bs+...=3log2 - 1.

Combining with (B,), we obtain 2 - 2A — 3log2 + 1,
e, 3-3log2 — 2A =2b,(8,— 1) + 2b,(8, — 1) + 2b4(8 — 1)...... (Dy).

Substituting here the numerical values of the &'s, we find the
right side

=2{3(n- D+~ D+Hr-1)..} - {3~ 1)+ - 1)...}.
Hence and from (),

3-log2 —2A=2(ss— 1)+ 2(8,— 1)+ 2(8— 1) cvevvrernnne (D,).
From (B) 1-A

_32—1 -1 s-1 -1 8~1 3-1 )
—3+4+5...—§(2+3+4.,
therefore

3-y-22=%H-D)+2(E~-1)+46 -+ cveiiinnn.. (D).

By Wallig's Theorem (r/2)! is the limit* where m is made
infinitely large of

2.4..2m ,/2m+1) . N ) . 10
3'5”.(2m+1) , .., of 2 (Iﬂ) J(am+1)7|~m+ 1.

Now in this case ¢" is the limit of |m.e™+m™+. Thus (r/2)} is

2m )”" me™+!

) 2m o 2m4l Al . 2m-+1 oy T
the limit of 2°". m™*, "+ + (2m + 1) ’°r°f(2m+1 “Im+1

Now the limit of m/(2m+1) is }; that of {2m=(2m+1)}*™is

e’. Thus ,/(x/2)=€"2, or A=}log2+ }logn.

* Chrystal, dlgebra, Ch. XXX,
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Therefore A —log2=log ,/(r/2)

=log{lt. of 2. 4...2m J(2m +1)+3.5...(2m + 1)}

= }1t. of {(2log?2 - log1l - log3) + (2log4 — log3 - log5)

+ (2log6 - log5 ~ log7)... + 2log2m - log(2m — 1) - log(2m + 1)}

{ 1 1 1 1
“Ha+ts sty o ‘w+ tEty gty et

1 1 ,
6’ TR TG g T e ad mf.}.
Hence we get A - log2 = 5 22 +T 8‘0 Tty s,,‘” o (Ey).

Also log2 - 4log3, or 3(2log2 - logl —log3)
1 1 1
s atrgter’

so that

-1 g-1 s-1
Tt Ete et
The equalities (D)), (E,), (F,), (B,) are closely analogous to
(D), (E), (F), (B), and may be employed in calculating A or in
fact logr. They can be obtained from the well-known * results—

logl'(1 - = =Cz+§sgx’+§s,x"+

logl'(1 +2) = $log " glog%ﬁ +(1-C)z - Lgg - 1)z =

A - 2log?2 + }og3 = 0

* Ency. Brit., loc. cit.
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