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In this paper we analyse the global dynamical behaviour of some classical models in
the plane. Informally speaking we prove that the folkloric criteria based on the
relative positions of the nullclines for Lotka–Volterra systems are also valid in a wide
class of discrete systems. The method of proof consists of dividing the plane into
suitable positively invariant regions and applying the theory of translation arcs in a
subtle manner. Our approach allows us to extend several results of the theory of
monotone systems to nonmonotone systems. Applications in models with weak Allee
effect, population models for pioneer-climax species, and predator–prey systems are
given.

Keywords: Trivial dynamics; Geometric Criteria of global attraction; Nonmonotone
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1. Introduction

The discrete equation

xn+1 = xng(xn), n ∈ Z+={0, 1, 2, . . .}, (1.1)

is a popular modeling framework for analysing the dynamical behaviour of a sin-
gle species. In (1.1), xn � 0 is the population density in the n-th generation and
g(xn) � 0 represents the density-dependent growth rate (or fitness function) from
generation to generation. A common assumption in population dynamics is that g
is decreasing. This means that the growth rate is mainly determined by negative
density-dependent mechanisms such as intra-specific competition [5] or cannibalism.
However, cooperative predation, resource defense, increased availability of mates
and conspecific enhancement of reproduction are other biological mechanisms pro-
ducing non-monotone growth rates, see [20]. For example, alders, big leaf maples,
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poplars and some pine trees thrive at low densities and decrease at high ones due
to overcrowding effects and other ecosystem constraints [6, 8, 10, 33].

In describing the interactions of k species, a natural extension of equation (1.1)
is

xi(n + 1) = xi(n)Hi(x1(n), . . . , xk(n)), i = 1, . . . , k. (1.2)

The growth rate Hi is typically of the form

Hi(x1(n), . . . , xk(n)) = gi

⎛
⎝ k∑

j=1

aijxj(n)

⎞
⎠ (1.3)

with gi : [0, +∞) −→ [0, +∞) a continuous function. In particular, if aij > 0 and
gi is decreasing for all i, j = 1, . . . , n, system (1.2) describes the evolution of k
competing species. See [7, 9, 10, 13, 23] and the references therein for a detailed
discussion on these models.

Understading the dynamical behaviour of (1.2) is of critical importance from
an applied point of view. There are several approaches for analysing this issue for
competitive systems. For example, the convexity arguments given by Kon [22], the
split Liapunov function method given by Baigent and Hou [2, 18] or the theory
of carrying simplex [31]. Recently, Hou [16, 17] has provided a criterion of global
attraction based on the relative position of the nullclines reminiscent to the classical
results for the Lotka–Volterra system

dxi

dt
= xi

⎛
⎝ri −

k∑
j=1

aijxj

⎞
⎠ , i = 1, . . . , k, (1.4)

see [1] and the references therein. In contrast with the monotone case, the literature
on non-monotone systems is relatively scarce. It is worth noting that system (1.2)
can exhibit chaotic dynamics.

In this paper we describe the global dynamical picture of model (1.2) when
the functions gi are not necessarily decreasing. In particular, our criteria could be
perceived as an extension of Hou’s results to non-monotone systems. The method of
proof is completely different from those papers mentioned above. First, we divide
the phase space in suitable positively invariant regions and then we apply the
theory of translation arcs [3, 12, 27] in a subtle manner. As emphasized in § 3, our
conclusions are rather sharp.

The organization of the paper is as follows. In § 2, we introduce some notation and
definitions. In § 3, we give the main results of the paper. Applications to population
models for pioneer-climax species [7, 9, 10] and species with weak Allee effects
[20] are discussed. To show the versatility of our results with different interactions,
we discuss the dynamical behaviour of several classical predator–prey systems. We
conclude the paper with a discussion on our findings.

2. Mathematical framework

The Euclidean disk with centre at p = (p1, p2) ∈ R
2 and radius R > 0 is denoted

by

D(p,R) = {(x, y) ∈ R
2 : ‖(x, y) − (p1, p2)‖ � R}
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with ‖(x, y)‖ =
√

x2 + y2. A subset of the plane homeomorphic to a (closed)
Euclidean disk is called a topological disk. A map h : V ⊂ R

2 −→ V which is con-
tinuous and injective is called an embedding. Notice that if h(V ) = V , then h is a
homeomorphism. In this section, we work, without further mention, with embed-
dings defined on topological disks. We recall that h : D −→ D is an orientation
preserving embedding if it has degree one, that is,

deg(h − q0, U) = 1

where h(p0) = q0 with p0 ∈ IntD and U ⊂ D is any open neighbourhood of p0.
The reader can consult the appendix in [27] for a detailed discussion on topological
degree and index. When h : D −→ D is an embedding of class C1, the sign of the
determinant of the Jacobian matrix of h can determine whether h preserves the
orientation. Specifically, if

det Dh(x) > 0 (2.1)

for all x ∈ D, then h is an orientation preserving embedding. Now we give a practical
criterion to deduce when a map is an orientation preserving embedding. We have
employed the notation ∂D to refer to the boundary of D in R

2.

Proposition 2.1. Let h : D −→ D be a map of class C1 with D ⊂ R
2 a topological

disk. Assume the following conditions:

(i) h(∂D) ⊂ D.

(ii) detDh(x) > 0 for all x ∈ D.

(iii) There is a point q ∈ D with a unique pre-image, that is, h−1({q}) = {p}.
Then, h(D) ⊂ D and

h : D −→ D

is an orientation preserving embedding.

Proof. Using that h−1({q}) = {p} and that h is locally injective (by (ii)), we deduce
that

h : D −→ h(D)

is a homeomorphism (see lemma 2.3.4 in [4]). We know that h(D) is a topological
disk with boundary contained in the topological disk D. This implies that h(D) ⊂ D
(see lemma 6 in [27, p. 39]). Hence,

h : D −→ D

is an embedding. Notice that h is an orientation preserving embedding because

detDh(x) > 0

for all x ∈ D. �
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Given h : D −→ D an embedding, the ω-limit set of a point p ∈ D is defined as

ω(h, p) = {q ∈ D : hσ(n)(p) −→ q for some sequence σ(n) −→ +∞}.

We say that h has trivial dynamics if for all x ∈ D,

ω(h, x) ⊂ Fix(h)

where Fix(h) denotes the fixed point set of h. It is worth noting that if h is dis-
sipative and ω(h, x) ⊂ Fix(h) for all x ∈ D, then ω(h, x) is a connected set (see
proposition 2 in [27, p. 42]). In particular, if h has a finite number of fixed points,
then for all x ∈ D, there is q ∈ Fix(h) so that ω(h, x) = {q}. We stress that an
embedding h : D −→ D defined on a topological disk is always dissipative.

Next we recall two results based on the theory of translation arcs.

Theorem 2.2 (Corollary 2.1 in [30], [3]). Let h : D −→ D be an orientation pre-
serving embedding defined on the topological disk D. If Fix(h) ⊂ ∂D, then h has
trivial dynamics.

Theorem 2.3 (Theorem 2.1 in [26], [27]). Let h : D −→ D be an orientation pre-
serving embedding defined on the topological disk D. If Fix(h) ∩ IntD = {q} with
index(h, q) = −1 then h has trivial dynamics.

In the previous theorem, index(h, q) denotes the usual topological index of h at
q. We mention that theorem 2.1 in [26] deals with homeomorphisms. However, the
same proof works for embeddings.

3. Geometric criteria of trivial dynamics

In this section we consider the system{
xn+1 = xng1(xn + αyn)
yn+1 = yng2(yn + βxn) (3.1)

with α, β > 0 and gi : [0, +∞) −→ (0, +∞) a function of class C1 for i = 1, 2.
Denote by

G(x, y) = (G1(x, y), G2(x, y)) = (xg1(x + αy), yg2(y + βx)).

Notice that G([0, +∞)2) ⊂ [0, +∞)2. A common assumption for the single-species
model (1.1), already stated by Ricker [28] and by Moran [25], is that there is a
positive equilibrium p (the carrying capacity) so that

(C) g(x) > 1 for all x ∈ (0, p) and g(x) < 1 for all x > p.

The previous condition can be adapted in model (3.1) as follows:

(P) For i = 1, 2, there exists ri > 0 so that gi(x) > 1 if x ∈ (0, ri) and gi(x) < 1
if x > ri.
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Biologically, condition (P) means that the density of population of species i
increases (resp. decreases) in the next generation when the weighted total biomass
of both species is below (resp. above) a threshold.

In this section, we will make the assumption

(S) det DG(x, y) > 0 for all (x, y) ∈ R, where R = [0, A1] × [0, A2] with

A1 = max
{

r1,
r2

β

}
, A2 = max

{
r2,

r1

α

}
.

Condition (S) implies that G is one-to-one on R. The biological meaning of
this is simple. If we take two different initial data, the densities of population are
different each other in any future generation. To avoid technical problems, we also
suppose:

(H) g′i(ri) �= 0 for i = 1, 2.

Define

L1 = {(x, y) ∈ [0,+∞)2 : x + αy = r1},
L2 = {(x, y) ∈ [0,+∞)2 : βx + y = r2},
L−

1 = {(x, y) ∈ [0,+∞)2 : x + αy � r1}

and

L−
2 = {(x, y) ∈ [0,+∞)2 : βx + y � r2}.

The system has, at most, four equilibria namely (0, 0), (r1, 0), (0, r2) and

(x∗, y∗) =
(

r1 − αr2

1 − αβ
,
r2 − βr1

1 − αβ

)
. (3.2)

Obviously, the last equilibrium is located at the intersection of L1 and L2. In our
analysis, we exclude the case L1 = L2 (α = β = 1 and r1 = r2).

We prove that the relative position of L1 and L2 completely determines the
dynamical behaviour of (3.1). This is a well-known result when the system is mono-
tone. Our contribution will be to show that it is also true for non-monotone systems.
We stress that if (x, y) ∈ (0, +∞)2\R, then{

x > G1(x, y)
y > G2(x, y). (3.3)

Proposition 3.1. Assume that (P) and (S) are satisfied. Then, G(R) ⊂ R and

G|R : R −→ R

is an orientation preserving embedding.
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Proof. First we notice that G−1({0}) = {0}. Next we prove that G(∂R) ⊂ R. Take
a point of the form (A1, y) with y ∈ [0, A2]. We observe that A1 + αy � r1 and
y + βA1 � r2. Then, by condition (P),

G1(A1, y) = A1g1(A1 + αy) � A1

G2(A1, y) = yg2(βA1 + y) � y � A2.

Now, it is clear that

{G(A1, y) : y ∈ [0, A2]} ⊂ R.

Analogously, we can prove that

{G(x,A2) : x ∈ [0, A1]} ⊂ R.

We also observe that condition (S) ensures that G1(x, 0) = xg1(x) and G2(0, y) =
yg2(y) are strictly increasing (they are locally injective and have two fixed points).
Thus, G([0, A1] × {0}) ⊂ [0, A1] × {0} and G({0} × [0, A2]) ⊂ {0} × [0, A2]. Col-
lecting the above information, we deduce that

G(∂R) ⊂ R.

The conclusion now follows from proposition 2.1 immediately. �

Lemma 3.2. Let {(xn, yn)} be a sequence of (3.1) with initial condition (x0, y0) �∈
R. Assume that (P) and (S) hold. Then, one of the following properties is
satisfied:

(i) {(xn, yn)} −→ q with q an equilibrium of (3.1).

(ii) There exists n0 ∈ N so that (xn, yn) ∈ R for all n � n0.

Proof. Assume that (x0, y0) ∈ (0, +∞)2. If (xn, yn) �∈ R for all n ∈ N, condition
(P) ensures that {xn} and {yn} are strictly decreasing, see (3.3). Then, (i) holds. If
there is n0 ∈ N so that (xn0 , yn0) ∈ R, we deduce that (xn, yn) ∈ R for all n � n0.
Notice that G(R) ⊂ R by the previous proposition. The case x0 = 0 (resp. y0 = 0)
is treated in an analogous manner. Observe that in such a case xn = 0 (resp. yn = 0)
for all n ∈ N and yn (resp. xn) is decreasing provided yn > A2 (resp. xn > A1). �

Remark 3.3. Lemma 3.2 says that it is enough for analysing the dynamical
behaviour of (3.1) in R. We repeatedly use this fact in the subsequent results.

The following result describes the behaviour of (3.1) on the axes.

Lemma 3.4. Assume that (P) and (S) hold. Then, r1 and r2 are globally
asymptotically stable for

xn+1 = xng1(xn)

and

yn+1 = yng2(yn)

respectively in (0, +∞).
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Proof. We study the equilibrium r1. The other case is analogous and we omit the
details. By remark 3.3, we can restrict our attention on [0, A1]. As mentioned in
the proof of proposition 3.1, ϕ(x) = xg1(x) is strictly increasing in [0, A1]. We
remark that the unique fixed points of ϕ are 0 and r1, and the fact ϕ(A1) � A1.
By condition (P), g1(x) > 1 for all x ∈ (0, r1). Hence, ϕ(x) > x for all x ∈ (0, r1).
Now it is clear that 0 is unstable. Thus, r1 is a global attractor for ϕ in (0, A1]. �

Now we are in a position to give the main result of this section.

Theorem 3.5. Assume (P), (H) and (S) hold. Then the dynamical behaviour of
(3.1) is as follows:

(i) (r1, 0) is a global attractor in (0, +∞)2 provided r2
β � r1 and r1

α > r2.

(ii) (0, r2) is a global attractor in (0, +∞)2 provided r2
β > r1 and r1

α � r2.

(iii) (x∗, y∗) is a global attractor in (0, +∞)2 provided r2
β > r1 and r1

α > r2.

(iv) There is trivial dynamics in (3.1) with (r1, 0) and (0, r2) as local attractors
in (0, +∞)2 provided r2

β < r1 and r1
α < r2.

Proof. First we realize that the origin is always a local repeller in (0, +∞)2. Indeed,
by condition (P), there is a neighbourhood U of the origin in R so that g1(x +
αy) > 1 and g2(βx + y) > 1 for all (x, y) ∈ U with x �= 0 and y �= 0. This implies
that G1(x, y) > x and G2(x, y) > y for all (x, y) ∈ U with x �= 0 and y �= 0. Since
G((0, +∞)2) ⊂ (0, +∞)2, it is clear that the origin is a local repeller in (0, +∞)2.
We also stress that by remark 3.3, it is enough to study the dynamical behaviour
in R. Now we are ready to prove the theorem.

(i) In this case, L1 and L2 do not intersect in (0, +∞)2. Then, G|R has three
fixed points, namely, (0, 0), (r1, 0) and (0, r2). Since Fix(G|R) ⊂ ∂R, theorem 2.2
and proposition 3.1 imply that for each (x0, y0) ∈ IntR, there exists q ∈ Fix(G|R)
so that

ω(G|R, (x0, y0)) = {q}.
Next we prove that q �= (0, 0) and q �= (0, r2). To see this, we check that both fixed
points are local repellers in (0, +∞)2. At the beginning, we have already mentioned
this fact for the origin. On the other hand, the eigenvalues of the linearized system
at (0, r2) are

{1 + r2g
′
2(r2), g1(αr2)} (3.4)

where the associated eigenvectors are (0, 1) and (w1, w2) with w1 �= 0 respectively.
Since r1 > αr2 and (P), we conclude that g1(αr2) > 1. On the other hand, we have
already seen in the proof of proposition 3.1 that φ(y) = yg2(y) is an increasing
function. Moreover, r2 > 0 is a global attractor of φ by lemma 3.4. Using these two
facts together with (H), we conclude that φ′(r2) = 1 + r2g

′
2(r2) ∈ [0, 1). Observe

that by (S), φ′(r2) �= 0. Now, it is clear that (0, r2) is a hyperbolic saddle point.
In particular, it is a local repeller in (0, +∞)2.

The proof of (ii) is analogous and we omit the details.
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(iii) In this case, G|R has four fixed points, namely, (0, 0), (r1, 0), (0, r2) and
(x∗, y∗). Define A = L−

1 ∪ L−
2 . The boundary of A is made of four segments: {0} ×

[0, r1
α ], [0, r2

β ] × {0}, l1 and l2 where l1 is the segment on L1 with ends at (0, r1
α )

and (x∗, y∗) and l2 is the segment on L2 with ends at ( r2
β , 0) and (x∗, y∗). Since

r2
β > r1 and r1

α > r2, we have that

l1\{(x∗, y∗)} ⊂ [0,+∞)2\L−
2 (3.5)

and

l2\{(x∗, y∗)} ⊂ [0,+∞)2\L−
1 . (3.6)

Then, given (x, y) ∈ l1 different from the ends (x∗, y∗) and (0, r1
α ), we have that

G1(x, y) = x because (x, y) ∈ l1 ⊂ L1 and G2(x, y) < y by (3.5). Analogously,

G1(x, y) < x

G2(x, y) = y

for all (x, y) ∈ l2\{(x∗, y∗), ( r2
β , 0)}. These expressions guarantee that

G|R(∂A) ⊂ A.

Recall that the intervals [0, A1] × {0} and {0} × [0, A2] are positively invariant
under G. Now, arguing as in the proof of proposition 2.1, we have that G(A) ⊂ A
and

G|A : A −→ A
is an orientation preserving embedding. A critical fact is that

Fix(G|A) ⊂ ∂A.

Thus, if we apply theorem 2.2 to G|A, we conclude that for each p ∈ A, there exists
q ∈ Fix(G|A) so that

ω(G|A, p) = {q}.
On the other hand, we notice that r2

β > r1,
r1
α > r2 and (P) imply that

g2(βr1) > 1 and g1(αr2) > 1.

Repeating the argument of the proof of (i), we can prove (r1, 0) and (0, r2) are
local saddle points. Recall that the origin is always a local repeller in (0, +∞)2.
Consequently, for all p ∈ A ∩ (0, +∞)2,

ω(G|A, p) = {(x∗, y∗)}.
Finally, we consider a sequence {(xn, yn)} obtained from (3.1) so that (x0, y0) ∈
R\A with x0 > 0 and y0 > 0. By the same argument as that in lemma 3.2, one of
the following facts holds:

h1 (xn, yn) tends to a fixed point of G.

h2 (xn, yn) ∈ A for all n � n0 with n0 large enough.
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Figure 1. Representation of the function g in system (3.7) with r = 0.5, a = 0.45 and
b = 3.

If h1 holds, then the fixed point has to be (x∗, y∗) because the other fixed points
are local repellers in (0, +∞)2. If h2 holds, then we apply the above argument.
The proof of (iii) is now completed.

(iv) In this case, G|R has four fixed points, namely, (0, 0), (r1, 0), (0, r2) and
(x∗, y∗). By theorem 5.1 in [32], we deduce that

index(G, (x∗, y∗)) = −1.

Obviously, index(G|R, (x∗, y∗)) = index(G, (x∗, y∗)). Then, applying theorem 2.3
to G|R, we conclude that G|R has trivial dynamics. Finally, linearizing the system
and arguing as in (i), we conclude that (r1, 0) and (0, r2) are local attractors. �

Example 3.6. Models with weak Allee effect.
The predation by a generalist predator with a saturating functional response is

a common mechanism associated with the presence of weak Allee effects [20]. A
natural extension in the plane of the single species models with this Allee effect is{

xn+1 = xng(xn + αyn)
yn+1 = yng(yn + βxn), (3.7)

where α, β > 0,

g(x) = exp
(

r(1 − x) − a

1 + bx

)

with r > a > 0 and b > 0, see lemma 1.1 in [20].
Although g is not always monotone (see Fig. 1), we can apply theorem 3.5.

Some particular choices of parameters are r = 0.5, a = 0.45 and b = 3 together
with α = 0.5 and β = 0.6 (i); α = 1.1 and β = 0.6 (iii); α = 1.1 and β = 1.4 (iv).
In general, condition (S) is difficult to verify in (3.7) because det DG(x, y) has a
very complex expression. Notice that detDG(x, y) can be negative for some points
(x, y) ∈ R and for some choice of the parameters. Actually, system (3.7) can exhibit
chaotic dynamics.

Example 3.7. A nonmonotone version of May–Oster model [24].
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Consider the system {
xn+1 = xng(xn + αyn)
yn+1 = yng(yn + βxn), (3.8)

with g(x) = exp(x(r − x)). After tedious computation, we can check that

det DG(x, y) > 0

for all (x, y) ∈ R in the following range of parameters:

Case 1: r = 0.1, α ∈ (0.5, 1) and β ∈ (3, 4.2).

Case 2: r = 0.1, α ∈ (0.5, 1) and β ∈ (0.2, 0.5).

Case 3: r = 0.1, α ∈ (1, 6) and β ∈ (1, 6).

As a direct application of theorem 3.5, we obtain that (0.1, 0) is a global attractor
in case 1, there is an interior fixed point (x∗, y∗) that is a global attractor in case
2 and there is trivial dynamics with (0.1, 0) and (0, 0.1) as local attractors in case
3. As mentioned in the title of the example, (3.8) is a variant of the classical model
discussed in [24]. We mention that this type of growth rates also appear in the
evolution of climax species, see [7, 9, 10].

Example 3.8. The conclusions in theorem 3.5 might not be true when the condition
(S) does not hold.

Consider {
xn+1 = xng1(xn + αyn)
yn+1 = yng2(yn + βxn) (3.9)

with g1(x) = r
x+a and g2(x) = exp(p − qx), where α = β = a = 1, r = 21, p = 2.5,

q = 0.1. In this case, we have R = [0, 25] × [0, 25]. One can check that

det DG(0, 20) = −√
e < 0,

so condition (S) does not hold for model (3.9) because (0, 20) ∈ R. As shown in
[7], there is an asymptotically stable 2-cycle for this model so that the two species
can coexist. This indicates that the conclusions in theorem 3.5 is not true for the
model (3.9) by noticing that r2

β > r1 and r1
α � r2.

4. Extinction in planar systems beyond (3.1)

Predator–prey models are prototypes of Kolmogorov systems in which the results of
§ 3 are not directly applicable. However, some ideas developed in theorem 3.5 also
work in these models. This shows the versatility of the mathematical framework
given in § 2.
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Consider the system {
xn+1 = xnf1(xn, yn)
yn+1 = ynf2(xn, yn) (4.1)

with f1, f2 : [0, +∞)2 −→ (0, +∞) functions of class C1. We denote by

F (x, y) = (F1(x, y), F2(x, y)) = (xf1(x, y), yf2(x, y))

the map associated with (4.1). To model the predator–prey iteraction, we assume
the following conditions (x predator and y prey):

(PP1) ∂F1
∂x (x, y) > 0 and ∂F2

∂y (x, y) > 0 for all (x, y) ∈ [0, +∞)2.

(PP2) ∂f1(x, y)
∂y > 0 and ∂f1(x, y)

∂x < 0 for all (x, y) ∈ [0, +∞)2.

(PP3) ∂f2(x, y)
∂x < 0 and ∂f2(x, y)

∂y < 0 for all (x, y) ∈ [0, +∞)2.

(LG) There are two fixed points (p∗, 0) and (0, q∗) with p∗, q∗ > 0 which are
globally asymptotically stable on the x-axis and y-axis respectively.

(PP4) There is a constant K̃ > 0 so that xf1(x, q∗ + 1) < x for all x > K̃.

Condition (PP1) means that the intra-specific competition is contest (see [15]).
(PP2) indicates that the growth rate of the predator is the result of the conjunction
of two biological facts: the intra-specific competition and the consumption of the
prey. (PP3) has an analogous meaning for the prey. (LG) says that each species in
isolation has logistic growth rate with carrying capacities p∗ and q∗ respectively.
(PP4) says that the predator density decreases in the next generation when it is
above a suitable threshold.

We say that system (4.1) is permanent if there are two constants ε, M > 0 so
that

ε � lim inf xn � lim sup xn � M

ε � lim inf yn � lim sup yn � M

for all sequence {(xn, yn)} of (4.1) with initial condition (x0, y0) ∈ (0, +∞)2. Infor-
mally speaking, the notion of permanence excludes the extinction of some species
in the system. To apply the classical theory of permanent systems we need to recall
the notion of absorbing set. We say that a positively invariant set R ⊂ [0, +∞)2

is an absorbing set for (4.1) if for all (x0, y0) ∈ [0, +∞)2, there is n0 ∈ N so that
Fn(x0, y0) ∈ R for all n � n0.

The following lemma is an immediate consequence of lemma 2.1 in [19] by con-
sidering the average Liapunov function V (x, y) = xμ1yμ2 . See also theorem 3.1 in
[29].

Lemma 4.1. Assume that the map F associated with (4.1) has an absorbing set
R := [0, K1] × [0, K2] with K1, K2 > 0. If there are real numbers μ1, μ2 > 0 such
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that

μ1 ln f1(q) + μ2 ln f2(q) > 0 (4.2)

for each q in Ω(∂R) :=
⋃

p∈∂R
ω(F, p), then (4.1) is permanent.

Next we give the main result of this section.

Theorem 4.2. Suppose that (PP1)–(PP4) and (LG) hold. Then every sequence
of (4.1) is bounded. Moreover, we have the following conclusion:

(i) If f2(p∗, 0) > 1, (4.1) is permanent.

(ii) If f2(p∗, 0) � 1, (p∗, 0) is a global attractor in (0, +∞)2.

Proof. First, let us prove that R = [0, K̃] × [0, q∗ + 1] is an absorbing set for (4.1).
Take {(xn, yn)} a sequence of (4.1). Define φ(y) = F2(0, y). It follows from (PP1)
and (PP3) that φ(y) is strictly increasing and φ(y) � F2(x, y) for all (x, y) ∈
[0, +∞)2. From these properties we can deduce that

yn � φn(y0) (4.3)

for all n ∈ N. Indeed,

y1 = F2(x0, y0) � φ(y0).

Repeating this argument, we obtain that

y2 � φ(y1).

Using that φ is increasing and the previous step,

y2 � φ2(y0).

We complete the argument after a simple induction. Since q∗ > 0 is a global
attractor of

zn+1 = φ(zn)

in (0, +∞) by (LG) it is clear that there exists n1 ∈ N so that yn ∈ [0, q∗ + 1] for
all n � n1 by (4.3). Next we define ϕ(x) = F1(x, q∗ + 1). By (PP1), this function
is strictly increasing. Using (PP4), we have that for all z0 ∈ [0, +∞), the sequence
{zn} obtained from

zn+1 = F1(zn, q∗ + 1)

satisfies that zn −→ q with q < K̃. We also know by (PP2) that F1(xn, yn) �
F1(xn, q∗ + 1) = ϕ(xn) for all n � n1. Arguing as above, we can find n2 � n1 so
that

xn ∈ [0, K̃]

for all n � n2. Now, it is clear that [0, K̃] × [0, q∗ + 1] is an absorbing set for (4.1).
Next we properly prove the theorem.
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(i) It follows from (LG) that

Ω(∂R) = {(0, 0), (p∗, 0), (0, q∗)}.
Note that f1(p∗, 0) = 1 and f2(0, q∗) = 1 because (p∗, 0) and (0, q∗) are fixed
points. Then, (PP2) and (PP3) imply that fi(0, 0) > 1, i = 1, 2, and f1(0, q∗) >
1. We know by assumptions that f2(p∗, 0) > 1. At this moment, it is clear there are
μ1, μ2 > 0 such that (4.2) holds for each q ∈ {(0, 0), (p∗, 0), (0, q∗)}. Hence (4.1)
is permanent by lemma 4.1. (ii) It suffices to prove that every sequence of (4.1)
with initial condition in R converges to (p∗, 0). First we prove that (4.1) does not
admit fixed points in (0, +∞)2. Assume, by contradiction, that (p, q) ∈ (0, +∞)2

is a fixed point of F . Then, {
1 = f1(p, q),
1 = f2(p, q). (4.4)

By (PP2), we obtain that

f1(p∗, 0) = f1(p, q) = 1 > f1(p, 0).

Consequently, p > p∗. On the other hand, by (PP3), we deduce that

1 = f2(p, q) < f2(p, 0) < f2(p∗, 0) � 1,

a contradiction. After simple computations, we can prove that

det DF (x, y) > 0

for all (x, y) ∈ [0, +∞)2. Moreover, it is clear that F−1({0}) = {0}. Then, by
proposition 2.1, we have that

F |R : R −→ R
is an orientation preserving embedding. We notice that

Fix(F |R) ⊂ ∂R.

Moreover, f1(0, 0) > 1, f2(0, 0) > 1 and f1(0, q∗) > 1, (see the proof of (i)). Lin-
earizing the system, we easily obtain that (0, 0) is a local repeller. Regarding (0, q∗),
we have that {f1(0, q∗), 1 + q∗ ∂f2

∂y (0, q∗)} are the eigenvalues of the linearized sys-
tem. By (PP1) and (PP3), 0 < ∂F2

∂y (0, q∗) = 1 + q∗ ∂f2
∂y (0, q∗) < 1. In other words,

(0, q∗) is a saddle point so that the repelling direction is (w1, w2) with w1 > 0. The
conclusion follows from theorem 2.2. �

There are many classical models that satisfy conditions (PP1)–(PP4) and
(LG). For example, ⎧⎪⎪⎨

⎪⎪⎩
xn+1 =

rxn

1 + xn + h1(yn)

yn+1 =
syn

1 + yn + h2(xn)

(4.5)

where r > 1 + h1(0), s > 1 + h2(0) and the functions h1, h2 : [0, +∞) −→ (0, +∞)
are of class C1 with h′

1(x) < 0 and h′
2(x) > 0 for all x ∈ (0, +∞).
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5. Discussion

It is well known that the relative position of the nullclines determines the dynamical
behaviour of the classical Lotka–Volterra model{

x′ = x(r1 − x − αy)
y′ = y(r2 − y − βx). (5.1)

In this paper we have proved that the same results remain true in a broad family
of discrete systems, namely {

xn+1 = xng1(xn + αyn)
yn+1 = yng2(yn + βxn). (5.2)

In our analysis, we have imposed mainly the following:

(P) For i = 1, 2, there exists ri > 0 so that gi(x) > 1 if x ∈ (0, ri) and gi(x) < 1
if x > ri.

(S) det DG(x, y) > 0 for all (x, y) ∈ R with R = [0, A1] × [0, A2] with

A1 = max
{

r1,
r2

β

}
, A2 = max

{
r2,

r1

α

}
and G(x, y) = (xg1(x + αy), yg2(y + βx)).

The role of these conditions is critical. Notice that (P) is a necessary condition to
maintain the dynamical behaviour of (5.1) in (5.2). On the other hand, if we drop
(S), as discussed in § 3, new phenomena emerge in (5.2) in comparison with (5.1).
For example, the presence of 2-cycles or chaotic dynamics. It is worth stressing that
condition (P) encompasses functions that are not monotone. Particularly, we can
describe the dynamical behaviour of species subject to Allee effects. Other marked
examples are the population models for pioneer-climax species that appears when
g1 is decreasing and g2 is one-humped, see [14, 21, 33, 34]. For a long time, the
dominant topic in these models was mainly the exclusion of the pioneer species,
ignoring other dynamical patterns. In contrast with this point of view, theorem 3.5
describes all the possible dynamical patterns. In particular, we study the exclusion
for the climax species, which has also been analysed recently by Gilbertson and
Kot [11].

There are many models in population dynamics that are not of the form (5.2),
i.e., the growth rates are not a scalar function composed by a linear combination
of the densities of the species. Nevertheless, many results are valid when the map
associated with the model satisfies condition (S). This is the case of most preda-
tor–prey systems with a generalist predator. For these models, we have proved that
the absence of coexistence states leads to the exclusion of the prey. A direct conse-
quence of this is that the presence of any oscillatory behaviour in (0, +∞)2 implies
the existence of a coexistence state.
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