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A NOTE ON STOCHASTIC SEARCH METHODS FOR GLOBAL
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Abstract

Let [An, Bn] be random subintervals of [0, 1] defined recursively as
follows. Let A l = 0, B, = 1 and take Cn, D; to be the minimum and
maximum of k, i.i.d. random points uniformly distributed on [An, Bn].
Choose [An+ b Bn+ l ] to be [Cn, Bn], [An, Dn] or [Cn, Dn] with probabilities
p, q, r respectively, p + q + r = 1. It is shown that the limiting distribution
of [An, Bn] has the beta distribution on [0,1] with parameters k(p + r) and
k(q + r). The result is used to consider a randomized version of Golden
Section search.

RANDOM BINARY SEARCH; RANDOM GOLDEN SECfION SEARCH;

INTERVAL-REDUCfION TECHNIQUES; RANDOMIZED GLOBAL OPTIMIZATION

1. Introduction

For a real-valued, differentiable, unimodal function, f(x), defined on an interval, say [0, 1],
the method of binary search locates the value x * maximizing f by successively reducing the
interval in which x * is known to lie; at the nth stage of the search if x * is known to be in the
subinterval [an, bn], and if c; is the midpoint of [an, bn], the interval at the (n + l)th stage is
taken to be [an, cn] or [cn, bn] according as f'(cn)<°or f'(cn)> 0. For functions f which are
not necessarily unimodal, a randomized version of this algorithm for locating the local
maxima (and hence the global maximum) of f had been investigated by Zemel [5]. Each
application (or pass) of the algorithm locates a (random) point in X*, the set of local maxima
of f; successive passes sample points independently from X*. Within each pass, at the nth
stage, the search is reduced to a random subinterval [An, Bn] (A o= 0, Bo= 1), Cn is
(independently) uniformly distributed on [An, Bn] and the interval at the (n + l)th stage is
taken to be [An, Cn] or [Cn, Bn] according asf'(Cn)<O or f'(Cn) >0. As n~oo the interval
[An, Bn] converges to a local maximum of f.

It is observed in [5] that for functions j'for which the set X* is evenly spread over [0, 1], this
randomized algorithm has a tendency to oversample those points in X* which lie towards the
edges of the interval [0, 1]. The reason for this may be seen by considering the situation
where Cn is uniformly distributed over [An, Bn] and the interval [An+ l , Bn+ 1] is taken to be
[An, Cn] or [Cn, Bn] with equal probabilities ~. Then, as has been noted by Chen et al. [2],
[An, Bn] converges (almost surely) to a point which has the arcsine distribution with
probability density function l/(Jlyx(l- x)) on [0, 1]; this density is maximized at the edges
of [0, 1], since it is unbounded as X~O or 1.

It might be asked whether randomized versions of other interval reduction techniques such
as Golden Section search (or Fibonacci search), cf. [1], might sample points from X* more
uniformly. In Golden Section search, if f is unimodal (but not necessarily differentiable), at
the nth stage the maximum is confined to the subinterval [an, bn] and f is evaluated at two
points c., d; from this interval with c; < d.; The interval at the next stage is taken to be
[an, dn] or [cn, bn] according to whether f(cn) > f(dn) or f(cn)<f(dn). In the next section we
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consider a natural randomized version of this algorithm to locate local maxima for an
arbitrary function f and derive a result which suggests how this algorithm might sample points
from X*.

2. The algorithm

Suppose that at the nth stage the search is reduced to the random subinterval [An, Bn].
Take k points U~, ... , U~, independently and uniformly distributed over [An, Bn] and let
Cn = U'(1), D; = U'(k)' where U'(1) ~ · .. ~ U'(k) are the order statistics of U~, ... , U~. Then the
interval [An+1 , Bn+ 1] is taken to be [An, Dn] or [Cn, Bn] according as f( Cn)> f(Dn) or
f(Cn ) <f(Dn ) . It may be noted that, after the initial stage, to implement this algorithm only
one additional point uniformly distributed over the remaining interval need be added at each
stage. This is because conditional on Cn, B; the points U'(2) , ... , U'(k) are distributed as the
order statistics of k -1 uniformly distributed points on [Cn, Bn] (and similarly for
U(1)' ... , U'(k-1) conditional on An, Dn). Furthermore, as n~ 00 the algorithm will converge
(almost surely) to a local maximum of f.

To analyse how the algorithm might sample points from X*, we establish a limit result for
the following scheme. Suppose that at the nth stage Cn, D; are chosen in [An, Bn] as
described above, but now the interval [An+ 1 , Bn+ 1] is taken to be [Cn, Bn], [An, Dn] or
[Cn, Dn] independently at each stage with probabilities p, q, r, respectively, with p + q + r =
1. Then it is trivial to show that the interval [An, Bn] converges (almost surely) to a point Z in
[0,1]. Denote by Beta (a, (3) the beta distribution on [0,11 with parameters a', f3 having
probability density function (I'(« + (3)/(r(a)r(f3))xa--1(1- x) -t, 0 ~x ~ 1.

Proposition. The point Z has the Beta (k(p + r), k(q + r)) distribution.

Proof. Let g(t) = E exp (tZ) be the moment generating function of Z. By considering
which of the three intervals is chosen at the first stage we obtain the following integral
equation for g(t):

g(t) =pk f (1- X)k-l exp (tx)g(t(1 - x)) dx + qk f xk-1g(t - x) dx

+rk(k-1) II (y-x)k-Zexp(tx)g(t(y-x)dxdy.
O~x~y~1

By making the change of variable u = t(y - x), v = t(1 - x) in the double integral it may be
seen that

f<g(t)/k =petLe-Uuk-1g(u) du + qLuk-1g(U) du

+r(k-1) I uk-Zexp(t-v)g(u)dudv
O~u~v~t

= L(p exp (t - u) + q)Uk-1g(U) du + r(k -1)

x L(exp (t - u) -1)uk-Zg(u) duo

Differentiating twice with respect to t, it follows that

(2.1) tg"(t) + {(r + 1)k - t}g'(t) - (r + p )kg(t) = O.

But, since k ~ 1, from ([3], p. 1059) the solution of (2.1) satisfying g(t)~ 1 as t~ 0 is
g(t) = ~(k(r + q), k(1 + r), t) where ~ is a degenerate hypergeometric function, and this
solution in turn is the moment generating function of the Beta (k(q + r), k(1 - p» distribu­
tion, giving the result.
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The proposition now suggests that the version of the randomized search algorithm with
k = 2 will tend to sample the local maxima of fin X* uniformly; for with k = 2 and p = q = ~,

(r = 0), the limiting distribution in the proposition will be Beta (1, 1) which is the uniform
distribution on [0, 1]. Likewise, for k > 2 the algorithm will tend to oversample points
towards the centre of the interval. Notice that, as described above, the case k = 1, p = q = ~

gives as the limit the Beta (~, ~) distribution which is the arcsine distribution.
It might also be pointed out that the proposition gives an example of an explicit limiting

distribution for products of i.i.d. 2 x 2 stochastic matrices. Suppose that {Au Ili},
i = 1, 2, ... } are i.i.d. random 2-vectors taking values in the unit square [0, 1] x [0, 1], with
joint distribution F(x, y) = P{A I ~x, III<y}. If we define (An, Bn) by

with Al =0, B, = 1, then (A n
+

l

Bn + l

1 - A n + l
) . h d f h 2 2 hasti .1- B IS t e pro uct 0 t e x stoc astic matnces

n+l

i = 1, ... , n.(
1 - At At),
1- u; u;

It is known that (cf. [4]) provided F is not concentrated on {(O, 1), (1, O)} then the pair
(An, Bn) converges in distribution to a point (Z, Z), 0 ~ Z ~ 1. However, the distribution of
Z is known only for a limited number of distributions F (cf. [4] and references therein). The
proposition gives the distribution of Z in the case where F(x, y) = (r + q)yk - r(y - X)k,
O~x~y<l, F(x, 1)-F(x, 1-)=p(I-(I-x)k), O~x~1 andF(x,y)=F(y,y)forx~y.
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