
1

Origins

1.1 Phase Retrieval

Like many new lines of research, the subject of this book was not the prod-
uct of a systematic, well-argued plan of investigation. It came about as a
complete accident.

In May 2001, a workshop on “New approaches to the phase problem for
nonperiodic objects” [103] was held at the Lawrence Berkeley National Lab-
oratory. I was invited for the flimsiest of reasons, in that I had some back-
ground in very famous nonperiodic objects called quasicrystals, discovered
by Dan Shechtman in 1982.

For some background, we first turn to a 1986 meeting of the American
Crystallographic Association (ACA), held at McMaster University. A repre-
sentative sample of the quasicrystal data [97] that was hotly debated at the
meeting is shown in Figure 1.1. The bright spots are a record of electrons
(produced by an electron microscope) reflected into special directions by
planes of atoms in the quasicrystal. Many scientists, including Linus Paul-
ing, were bothered by the fact that the angles of the planes could not be
reconciled, mathematically, with a material that was periodic [93]. My ACA
presentation, where I argued that the spots could be explained by a gen-
eralization of periodicity that has six axes instead of the usual three (but
still in three dimensions) [34], was overshadowed by Pauling’s, in which he
claimed the precision of the spot measurements was insufficient to rule out
a periodic arrangement, albeit with a very large repeat distance [88]. In any
case, the six-axis generalization of periodicity had nothing to do with the
“nonperiodic objects” of the Berkeley workshop 15 years later. The objects
of interest there had no periodicity whatsoever.

There was a recognition event at the 1986 ACA meeting that proved to
be remarkably prescient. In the previous year, the crystallographers Herbert

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

2 Origins

Figure 1.1 An early electron diffraction image of the AlMn quasicrystal
[97]. The 10-fold arrangement of the spots challenged the orthodox model of
crystalline order. Reprinted from Shechtman et al. (1984) with permission
from © 1984 American Physical Society.

Hauptman and Jerome Karle had been awarded the Nobel Prize in Chemistry
for having solved “the phase problem.” The substance of this accomplishment
can be explained even for the data shown in Figure 1.1, which after all only
represents a break from orthodox periodicity.

From the physics of the electron reflection process, called diffraction, one
can show that the spot intensities are directly interpretable as the coefficients
of a Fourier series. By summing the series, called Fourier synthesis, one can
reconstruct the microscopic “sources” of the electron reflection, a function
in three dimensions commonly referred to as contrast. Hauptman and Karle
were working with X-ray data where the contrast is the electron density in the
material, while it is the electrostatic potential produced by those electrons
(and nuclei as well) that the electron microscope data reveals. In either case,
by doing the Fourier synthesis, one can recover not only the geometry of the
reflecting planes, but the makeup of those planes by atoms.

But the Fourier synthesis dream runs up against a major obstacle. The
Fourier coefficients are complex numbers, and the spot intensities only pro-
vide the magnitudes of those numbers. Fourier synthesis cannot be attempted
without the phase angles of those coefficients, which go unmeasured. This is
the phase problem.

Early (pre-1950) crystallographers were undeterred by the phase problem.
Progress was made through modeling the contrast (arrangement of atoms),
as in the iconic photo of Crick and Watson posing with their model of the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.1 Phase Retrieval 3

double helix. Using strong constraints coming from chemistry, only a limited
number of atomic arrangements had to be considered, and getting just the
magnitudes of the Fourier coefficients to work out was usually enough to
nail down the structure. At the time of the 1986 ACA meeting, the modeling
approach was the leading method being applied to determine the atomic
structures of quasicrystals.

Hauptman and Karle [60] are credited with solving the phase problem be-
cause they found a method that avoids modeling, making atomic structure
discovery available to even chemically challenged crystallographers. Their
method comprises both a principle and an algorithm. The principle is sur-
prisingly simple. Consider a thought experiment where random phases are
applied to the Fourier coefficients. In all except a fantastically lucky combi-
nation of phases, the resulting contrast (by Fourier synthesis) is a complete
mess. Chemistry does not come up because the contrast does not even re-
semble atoms!

The simplicity of the principle behind the phase problem solution – con-
juring up phases to get something that at least resembles atoms – is in
sharp contrast with the complexity of exploiting that principle. The un-
known phases of the Fourier coefficients are like the dials of an enormous
combination lock. Only one combination produces a sensible contrast and
unlocks the atomic structure. But finding that combination is hard when
there are many dials/phases. The phase problem cannot be declared solved
unless there is also a practical algorithm that can unlock the phases encoded
in the Fourier magnitudes.

In 1986, I did not think of the phase problem in these terms. The code-
breaking angle might have inspired me to dive deeper into the subject, but
at the time my interests were still aligned with physics. The secret of qua-
sicrystals, like the secret of life, had to be simple and elegant and not involve
difficult computations! Still, I recall being in awe walking through the poster
gallery at the ACA meeting, each one chronicling a phase problem success
on a complex biomolecule. Unlike the simplicity I was counting on to make
the quasicrystal phases amenable to modeling, the giant virus structures on
display all owed their existence to an algorithm.

The 2001 Berkeley workshop was organized by the electron microscopist
John Spence and was meant to launch a revolution in microscopy. Spence
had invited a diverse group of X-ray scientists, electron microscopists, en-
gineers, mathematicians, and physicists, some of whom (myself included)
knew almost nothing about the phase problem or any form of cutting-edge
microscopy. Those in the latter group were quickly brought up to speed, most
notably with regard to the “abcdef” experiment [76].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

4 Origins

Figure 1.2 First demonstration of lensless microscopy with X-rays, by Miao
et al. [76]. The diffraction intensities on the left were given to an algorithm
that reconstructed the contrast shown on the right. Reprinted from Miao
et al. (2000), with permission from Copyright © 2000, AIP Publishing.

In 1999, a group at SUNY Stony Brook published a proof-of-concept paper
[76] demonstrating the algorithmic reconstruction of a nonperiodic contrast
from just the magnitudes of its Fourier transform. The data, shown on the
left in Figure 1.2, were obtained by shining a coherent (laser-like) beam of
X-rays on a fabricated specimen of gold dots deposited on a thin membrane.
The image on the right is their reconstruction but is practically indistinguish-
able from the ground truth, which was obtained using the higher resolving
power of an electron microscope. In any case, no conventional, lens-based
microscope using light (even X-ray light) was capable of doing what these
researchers had managed to do with the help of an algorithm.

The intensity of the diffracted X-rays in the “abcdef” experiment was not
concentrated in spots, as in the quasicrystal data. Instead of a Fourier series
with unknown phases for the coefficients, in this data the measured and
continuously distributed Fourier magnitude is accompanied by an unknown
and similarly continuous phase function. Later I learned that this feature
made the phase problem much easier than it was for periodic contrasts.
At the workshop I also learned to think more optimistically about the phase
problem, because the participants never used the word “problem” and instead
chose to call the algorithmic task “phase retrieval.”

Probably the most far-reaching implication of algorithmic phase retrieval
of nonperiodic objects I learned about at the workshop was the possibility of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.1 Phase Retrieval 5

reconstructing the shapes of complex biomolecules (proteins, viruses,
etc.) without having to coax them into forming crystals first [81]. Most
biomolecules are terrible at forming crystals, but structural biologists per-
sist because only a crystalline specimen, comprising 1016 identical copies of
the same object, can produce measurable diffraction data. A star-wars cal-
iber X-ray source, with the power to form a diffraction image of a single
biomolecule, would eliminate the need to grow crystals. That was in part
the rationale behind the Linac Coherent Light Source, an X-ray laser under
construction at SLAC. If this feat of engineering succeeded, determining the
shapes of the molecules of life might become as easy as “abcdef.”

My engagement at the workshop ratcheted up by several levels when the
talks turned to the algorithms for phase retrieval. One algorithm stood out:
Jim Fienup’s hybrid input-output (HIO) algorithm [42]. HIO was wildly suc-
cessful but also mysterious. It belonged to the class of algorithms that acted
iteratively and deterministically on estimates of the contrast. Starting with
an initial guess, which typically was random, a sequence of transformations
was applied until the contrast stopped changing, hopefully after it had settled
on the true contrast. My general impression was that the transformations
would alternate between modifying the contrast and modifying its Fourier
transform, of which only the phase function was free to change because the
magnitude was fixed by the data. As far as I could tell, the transformations
were doing reasonable things: Fixing what was obviously wrong in the con-
trast or restoring the known magnitude to the Fourier transform. In this
respect HIO was not exceptional. The secret of its success seemed to lie in
the precise way the transformations were combined.

A more complete theoretical understanding of HIO was clearly a worth-
while goal. Only HIO had been able to reconstruct “abcdef” in the final and
computational stage of the new microscopy. If anyone understood HIO at
the time of the workshop, it could only have been Jim Fienup. For the rest
of us, and here I mostly refer to myself and three mathematicians [10] at the
workshop, his “hybrid” construction looked ad hoc. It was a puzzle why the
algorithm worked at all.

When I returned to Ithaca, I set myself the challenge of understanding
HIO. This book, written 22 years later, is the outcome of that investigation.
However, already within months of the workshop, the three mathematicians
Bauschke, Combettes, and Luke [10], came up with a formal and more general
statement of what HIO was doing that matched what I had come up with
[35]. And as often happens in mathematics, Bauschke and coworkers realized
the HIO “formula” had been written down nearly half a century earlier, by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

6 Origins

mathematicians Douglas and Rachford [30], in a completely different context:
numerical methods for solving partial differential equations.

1.2 Nonconvexity

The context of the Douglas–Rachford formula plays a fundamental role in
the nature of the algorithm. In symbols the formula reads

x 7→ x+ PB(RA(x))− PA(x) . (1.1)

Here x is the thing being reconstructed, like the “abcdef” contrast or the so-
lution of a partial differential equation. The building blocks of the algorithm
are called projections, and PA “projects to set A,” while PB “projects to set
B.” The third operation is called a reflection, and

RA(x) = 2PA(x)− x

“reflects in set A.” We do not need to get into the motivation and roles for
these operations here – that is the purpose of this book – to make a point
about the Douglas–Rachford formula. This is that the formula makes sense
for arbitrary sets A and B even though the context of the formula is normally
limited to the case of convex sets. A set is convex if all the points between
any pair of points in the set are also in the set. We will see that the “convexity
context” of formula (1.1) plays an oversized role in the history of the subject.

When the Douglas–Rachford formula is used with convex sets, it is as
though the algorithm never has to make decisions. This comes about because
PA(x), a point in A that is closest to x, is always unique when A is convex.
A simple example shows how this changes when A is nonconvex. Suppose
x is just a single unknown (an image of one pixel) and A is the set of two
elements {−1,+1}. Now if x < 0 then PA(x) = −1, while x > 0 implies
PA(x) = +1. In both cases, the result of the projection is unique. However,
when x = 0, the algorithm has to make a decision because both −1 and +1

have the same distance to x = 0. If x = 0 never comes up in the course of the
Douglas–Rachford iterations, then one might argue that the algorithm is still
not having to make decisions. But this is a very naive view if it turns out that
the x values the algorithm encounters have a nonzero density near x = 0. In
that scenario, some fraction of the PA(x) values will depend very sensitively
on x. Though still formally deterministic (no actual decisions), the algorithm
is better characterized as sometimes making random decisions. Thinking of
the Douglas–Rachford formula as defining a dynamical system, nonconvexity
of the sets A and B is a potential source of chaos.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.3 Chaos and Ergodicity 7

1.3 Chaos and Ergodicity

The analysis of algorithms that have the potential of behaving chaotically is
hopeless. That is the reason the Douglas–Rachford formula has traditionally
been used only when the sets A and B are convex. With this restriction, and
when a solution exists, one can prove the iterations converge to a fixed point
and a solution to the problem is at hand [4]. But a simpler and more obvious
algorithm, studied by John von Neumann and called alternating projections
[8],

x 7→ PB(PA(x)),

also has these good properties when the sets are convex. Fienup tried this in
his phase retrieval experiments and rejected it because it always got stuck on
nonsolutions. One of the sets in phase retrieval, the constraint on the Fourier
magnitudes, is nonconvex.

After I had managed to express HIO as the general formula (1.1) and was
in a position to analyze the algorithm geometrically, it seemed to me what
was special about this algorithm was its ability to extricate itself from the
traps that plagued alternating projections. Because there are many traps in
a hard problem, the resulting dynamics will be very chaotic. Biased by my
physics background, I liked the idea of exploiting chaos. Understandably,
this perspective was not shared by the mathematics community. Already at
the Berkeley workshop, a proposal was made to move HIO into safe territory
by “convexifying” the Fourier magnitude constraint. Fienup obliged, changed
one line in his code, and probably had already anticipated the result: HIO
no longer worked.

In physics, it is fair to study things phenomenologically: make observa-
tions, form hypotheses, perform experiments, and so on. This applies even
when the subject has been reduced to mathematical formulas. Some for-
mulas are just too hard to yield to mathematical analysis! Over the past
two decades, I have taken the phenomenological approach in studies of
HIO/Douglas–Rachford. An example of this kind of study, singled out for its
kinship to phase retrieval, is the problem of bit retrieval [37]. My first exper-
iments were performed at Simon Fraser University, in a sabbatical hosted by
Jon Borwein, an early champion of experimental mathematics.

In bit retrieval, one tries to reconstruct the contrast of a one-dimensional
crystal from the magnitudes of its Fourier series coefficients (diffraction
data). As the name suggests, “retrieval” is possible because the contrast is
known to have only two values, say −1 and +1, at each pixel. In the same
spirit as phase retrieval for physical crystals, where Fourier synthesis with the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

8 Origins

Figure 1.3 Chaotic dynamics in bit retrieval [37], the reconstruction of
a two-valued sequence from its Fourier magnitudes. Each row shows the
time evolution of one bit in the sequence. After about 34 000 time steps
(Douglas–Rachford iterations), the random initial pattern on the left arrives
at the solution fixed point on the right.

wrong phases produces a nonatomic mess, the wrong phases in bit retrieval
produce a contrast where the pixels deviate from the two special values.

The time evolution of the contrast in bit retrieval, by the Douglas–Rachford
algorithm, can be rendered in the same way that is popular for one-dimensional
cellular automata. Figure 1.3 shows the retrieval, left to right, of a sequence
of 35 bits starting from a random contrast. The juxtaposition of chaos with
stability, at the fixed point on the right, is striking.

It is important that formula (1.1) is able to recognize and converge on
solutions when it finds them. The local convergence of Douglas–Rachford,
near solutions where the sets A and B may be approximated as convex, is
responsible for that. But just as important is the behavior prior to arrival
at the fixed point, where the dynamics can only be characterized as chaotic.
The two contrast values (±1) are being sampled much like we think of the
positions of molecules in a fluid. All configurations in the fluid, subject only
to the conservation of energy, arise eventually if one is patient and waits long
enough. Thanks to chaos introduced by the projections (when a contrast
value is close to zero), the sampling of candidate contrasts in bit retrieval is
similarly exhaustive.

The bit retrieval experiments also showed that the dynamics of formula
(1.1) was very good at doing something else. Though there is no analog

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.3 Chaos and Ergodicity 9

of energy, the stream of contrasts being generated were all near -solutions:
Their Fourier magnitudes were close to the known values, and the contrast
values themselves were close to either −1 or +1. Empirically I knew a very
targeted search was taking place because solutions were being found with
far, far fewer iterations than the 235 ≈ 3× 1010 possible bit sequences!

Might chaotic search be a competitive alternative to the systematic ap-
proach to search we are taught in computer science? The time spent in a
successful chaotic search has an analog in physics called the Poincaré recur-
rence time. Technically this is the time needed by a finite system of particles
to return to its initial configuration within some specified precision. Because
water molecule configurations are not special in any obvious way, we expect
all of them to be visited over the course of one recurrence time. If Kurt
Vonnegut’s ice-nine [111] did in fact exist as a (catastrophically) stable solid
configuration of water molecules, it would be found within about one recur-
rence time! Fortunately, the recurrence time for even microscopic physical
systems is astronomical, and the possibility of an ice-nine fixed point – should
one exist – poses no danger to humankind!

The recurrence time of chaotic Douglas–Rachford dynamics is often com-
parable and sometimes much shorter than the time taken by a systematic
branching search. Ice-nines are found routinely. The most detailed study is
on the bit retrieval problem and includes estimates of the run/recurrence
time and how this depends on a quantifiable hardness measure. The 35-bit
instance shown in Figure 1.3 is the hardest for that size because all of its
Fourier magnitudes are equal [37].1 In 2002, an easier, average-case instance
with 160 bits was solved in one week. This may still be the record for con-
summated Poincaré recurrence times.

There is really just one obstacle for chaotic search to be more widely
adopted, and it is not the inherent randomness in the run time. Some initial
points are luckier than others because the dynamics stumbles on a solution
fixed point earlier. The distribution of run times is accurately described by
the curve for radioactive decay, consistent with a loss of memory of the
past (due to chaos) and there being a time-independent exposure to fixed
points. But systematic branching searches are just as unpredictable, with
some decision orderings luckier than others.

The unpredictability of the time required to arrive at a fixed point is
not so much a concern as is the possibility that the dynamics simply fails
to explore a significant fraction of the solution candidates. In physics, the
property of visiting all configurations (subject to energy conservation) is
called ergodicity. It is easy to see how sensitivity to initial conditions, as a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

10 Origins

result of chaotic dynamics, helps ergodicity. But that still falls short of a
guarantee.

Fortunately, there is an important use-case that makes me optimistic:
thermodynamics. Boltzmann faced a very similar challenge when he tried
to derive the macroscopic equilibrium properties of gases from the complex
dynamics of the constituent particles. The assumption that all configura-
tions consistent with energy conservation were visited with exactly the same
frequency gave the correct answers but seemed impossible to prove. Because
the phenomenological model – thermodynamics – worked so well, Boltzmann
formalized his assumption as the ergodic hypothesis. Today no one doubts
the truth of the ergodic hypothesis for systems such as gases and fluids, even
though the only established results are for simple “billiard” models [101].

The ergodic hypothesis is false for some physical systems, a fact we should
be thankful for when contemplating our place in the solar system (and its
repetitive and predictable dynamics). By analogy, we should not expect all
applications of formula (1.1) to be as ergodic as bit retrieval. Over the years,
I’ve encountered applications where instead of arriving at fixed points, whose
existence is not in doubt, the dynamics often gets trapped in the analog of
a solar system. Sometimes this can be resolved by defining the sets A and B
differently or modifying the metric used to define the distance. In any case,
the existence of bad actors is not relevant for the many applications in which
ergodicity appears to be upheld.

1.4 Convergence and Logic

When I first started giving talks about (scandalously) applying Douglas–
Rachford (DR) to nonconvex problems, I would invariably be asked, “... but
does it converge?” I was completely comfortable knowing that DR was doing
a very good job at something just as important – a thorough search – and
that the mathematically provable convergence that happened in the last few
iterations was simply what terminated the search. Though I could point
to my experiments on bit retrieval, as a demonstration of the new kind of
convergence, I got the sense that the people asking about convergence were
looking for something more. Around 2005 a way to satisfy even these skeptics
came from an unexpected source: sudoku.

Solving a problem by logic is usually construed as the process of increasing
knowledge by the application of inference. Knowledge about the problem can
only grow, culminating when the culprit is confidently unmasked (Colonel
Mustard). Sudoku is a minimalist exercise in inference, something that surely
is part of its appeal. Players learn (or discover on their own) a set of inference

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.4 Convergence and Logic 11

rules whose application increases the set of filled-in numbers. A popular rule
is to look for two instances of the same number, say 5, in two 3 × 3 blocks
that fall on a shared set of three rows or columns. The unknown location of a
third 5 is now constrained not just by a block, but also by the row or column
not already used by the two other 5’s. Beginners and experts differ mostly
in the number of inference rules they have amassed and the complexity of
applying them. The size and complexity of the rule toolbox needed to solve
a puzzle may also be the basis of the mysterious difficulty ratings.

Computer programs for solving sudoku fall into two groups. Either the
program goes through a list of human-engineered inference rules (naked-
quad, X-wing, ...), or more laboriously, systematically tries out all ways of
completing the puzzle that are not in direct violation of the rules (with the
promise that one of the many hypotheses is bound to work out). But these
are really just extremes on a spectrum, the elaborate inference rules being
just a highly creative alternative to “brute” search. The DR algorithm, if it
could be applied to sudoku, would be doing something else entirely.

The first challenge in solving sudoku with DR was formulating the puzzle
in terms of two easy constraints, A and B. This turned out to be not very
hard at all2:

A : In each of the 3× 3 blocks, numbers and cells are paired one-to-one.

B : Each number appears nine times, pairing rows with columns, one-to-one.

Filling in numbers consistent with just A or just B is easy, and provided the
projections (nearest patterns) PA and PB are also easy to compute, the DR
algorithm will do the rest. Though projections aren’t covered until Chapter
4, the information in Figures 1.4 and 1.5 will help you understand what DR
is doing. Both show the algorithm solving, in six iterations, a New York
Times puzzle with difficulty rating “easy.”

Figure 1.4 shows just the progress of the projection pA = PA(x), so not
the actual point x being updated. All the 3×3 blocks in each iteration are in
compliance with rule A. The “given” numbers or “clues” are marked by the
gray cells and never change. Figure 1.5 shows the progress of the projection
pB = PB(RA(x)). Think of these as nine overlapping number patterns, all
having the same kind of one-to-one pairing of rows with columns as shown
highlighted for the number 5. After six iterations (bottom-right panel) the
two number patterns, pA and pB, are the same and the puzzle is solved.

The constraints A and B, as geometrical sets, are as nonconvex as possible:
sets of isolated points. In spite of this, there is a kind of convergence not so
different from the mathematically rigorous convergence when both sets are

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

12 Origins

Figure 1.4 A sudoku puzzle being solved in six Douglas–Rachford iterations
(top-left to bottom-right). These do not show the updating of the point x,
just consistency of the projection PA(x) with sudoku rule A. The gray cells
hold the given numbers (and never change).

Figure 1.5 Same as Figure 1.4 but for rule B. All numbers have the rela-
tionship displayed by the nine highlighted 5’s, a one-to-one pairing of rows
with columns.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.4 Convergence and Logic 13

Figure 1.6 Typical behavior of the gap (distance between constraints A
and B) when solving the three difficulty levels of New York Times sudoku
puzzle.

convex. To convey this, we consider the gap, or the current distance between
the points pA and pB. When the gap is zero, the two points are the same
point, and this point is a solution to the puzzle (because both constraints
are satisfied). The generalization of convergence in this very nonconvex ap-
plication of DR is the behavior of the gap.

Figure 1.6 shows plots of the gap for three New York Times sudoku puzzles.
In these runs, the clue data were implemented differently,3 with the result
that “easy” puzzles are always solved in just two iterations. In “medium”
puzzles, it’s harder to argue something analogous to inference is going on,
because the gap is not always decreasing. A mostly decreasing gap for “hard”
puzzles does not begin until after the algorithm has done some exploring
(here about 20 iterations). This progression aligns with our expectations,
but is also necessary if a widely believed technical property of sudoku is
true.

In the study of computational complexity, sudoku belongs to a class of
problems where (it’s believed) long exhaustive searches can never be com-
pletely avoided. To realize the extremes of hardness, puzzles must be “dia-
bolically” designed or generalized to 16 × 16 grids and higher. Puzzles for
human consumption are neither so large nor diabolical to obviate a logical
route to the solution. Interestingly, these puzzles also have the property that
the Douglas–Rachford gap is mostly decreasing.

The sudoku episode of the nonconvex Douglas–Rachford story was im-
portant in three respects. First, it attracted far more interest than any ac-
complishment in phase retrieval could have achieved! Second, and strictly as

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

14 Origins

sudoku difficulty gentle moderate tough diabolical extreme
average DR solution-time 3.8 6.8 9.3 12.9 15.6

Table 1.1 Growth in solution time with a logic-based difficulty scale [105].

empirical evidence, I could now point to the behavior of the gap as a gener-
alization of convergence for even highly nonconvex problems. Third, and for
me the most inspiring, was the discovery that DR seemed to be capable of
generating its own brand of logic. Though my sudoku solver was built using
just the elementary rules of the puzzle, upon execution, its progress toward
the solution was apparently as systematic (a shrinking gap) as a solution by
standard logic. And if the solution process for easy puzzles/problems had the
hallmarks of logic, then DR was likely also doing something clever on the
harder counterparts. A model to explain the cleverness is proposed in Section
5.5.6 where we study the “flow” of the algorithm and define the solution time,
closely related to the number of iterations. Table 1.1 lists solution times for
five classes of puzzles graded by the depth of logic required to solve them.
These results were obtained by sampling Andrew Stuart’s puzzle collection
[105]. All puzzles require some amount of logic, but the number and com-
plexity of inference rules needed to solve them grows substantially between
“gentle” and “extreme.”

1.5 Deconstruction

So far this narrative has betrayed my background as a physicist. Though a
computer scientist may not view search as a dynamical system, when subject
to chaos and limited by ergodicity, this perspective is certainly one that
most physicists are comfortable with. On the other hand, one of the main
objectives of this book would not be met if physicists were not also taken
into unfamiliar territory.

Search algorithms are often characterized as “physical” if they mimic the
dynamics of a physical system. I will give two examples: disk packing and
neural network training.

Figure 1.7 shows a set of 14 disks being packed by an algorithm that
simulates the process of compression. The enclosure, a circle, starts out large
and shrinks opportunistically whenever allowed by the positions of the disks.
In between compressions the disks make small random steps called Brownian
motion. The idea is that through Brownian motion the disks can rearrange
into configurations with more wiggle room and a more efficient use of space.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.5 Deconstruction 15

Figure 1.7 The compression of a system of 14 disks by a shrinking circular
enclosure comes to a halt (frame on the right) when the disks become
jammed.

Eventually there is no wiggle room left. When this happens, one says the
configuration of disks is “jammed”; no further compression is possible.

The second example concerns the application that is pervasive in nearly
all of modern technology: artificial neural networks. The core algorithm for
the training of networks was set forth in “Learning internal representations
by error propagation” by Rumelhart, Hinton, and Williams4 (RHW) [91, 92]
whose citation count increased even as you were reading this sentence. This
algorithm is physics based in the sense that the discrepancy between the
network’s target output and its actual output is quantified by an energy
function (“loss”), and the network’s parameters (“weights”) are adjusted to
decrease the discrepancy/loss in much the same way a ball rolls down a hilly
landscape so as to reduce its gravitational energy.

Though most of the RHW citations are for the back-propagation formula,5

this paper also features several simple and revealing applications. The net-
work for one of these, shown in Figure 1.8, is called an autoencoder. Here the
network is tasked with exactly reproducing n input patterns in its outputs,
both expressed on n nodes. What makes this challenging is a bottleneck of
only log2 n nodes that the information is forced to pass through. By choice
of the nonlinear functions that generate the values on the bottleneck nodes,
which smoothly interpolate between 0 and 1, the autoencoder is biased to-
ward transmitting the information through the bottleneck as a binary code.
Though the authors were thrilled that their error-propagation-trained auto-
encoder worked (outputs exactly matched inputs), they had to concede that
often the codes appearing in the bottleneck were not strictly binary, because
they included “intermediate values.” It was a victory for self-taught data

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

16 Origins

Figure 1.8 Autoencoder network from “Learning internal representations
by error propagation” [91] used in the study of the binary encoding problem.

compression, but a mixed result for interpretability of the data representa-
tion.

Figure 1.9 shows the distribution of code values for the n = 16 autoen-
coder, using the same “sigmoid” activation functions used by RHW, but with
a state-of-the-art training algorithm [62] that uses “momentum” in addition
to energy to guide its course through the loss/energy landscape. Though the
endpoint of training, a point with zero loss, is found faster than the method
used by RHW, the results are no better: Most of the codes are nonbinary
because of an admixture of intermediate values.

Were I to remain true to my physics training, I would view the jammed,
nonoptimally packed disk configuration, and the not-quite-binary autoen-
coder as inevitable outcomes when systems cross some threshold of com-
plexity. There is even a subdiscipline of physics, for disordered and glassy

Figure 1.9 Distribution of the 16 × 4 code values found by the gradient-
descent-trained autoencoder.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.5 Deconstruction 17

systems, where both of these applications have been welcomed with open
arms [1, 59]. The point of this book, however, is to offer you an alternative.

The alternative is not a more powerful, physics-inspired algorithm. It goes
deeper than that. A good name for the main idea is deconstruction. Before
taking on a new problem, the first step is to deconstruct it into sets A and B.
Phase retrieval was important in the development of the subject simply be-
cause A and B were fairly obvious. For most other problems, deconstruction
into A and B is a new skill.

Let’s deconstruct the disk packing problem. My former student Simon
Gravel came up with a great name for this style of deconstruction: divide and
concur [48]. Each of the 14 disks to be packed is “divided” into 13 versions,
called “replicas.” For example, disk 3-7 is the replica of disk 3 that “watches
out for disk 7,” while disk 7-3 is the replica of disk 7 that “watches out for
disk 3.” Set A corresponds to all such replica pairs satisfying the packing con-
straint (not intersecting). This is a very easy constraint to satisfy because
the constraint on each replica pair is independent of the constraints on all
the other replica pairs. If replicas 3-7 and 7-3 do not intersect, nothing needs
to be done. Otherwise, to project to set A, the replicas are moved the min-
imum distance, which amounts to making them tangent. Set B implements
“concur,” or the constraint that replicas 3-1, 3-2, 3-4, ... , 3-14 are actually
the same disk! The projection here is to replace their centers by the mean of
their centers.

The packing problem can be deconstructed even further in a way that
takes advantage of the nonuniform disk sizes. Replica 3-7 not only has a
center (to be determined), but is given a variable radius. To keep replicas 3-
7 and 7-3 from intersecting, the projection may shrink their radii in addition
to moving their centers. Whichever combination of those actions involves the
smallest sum-of-squares change is the one taken by PA. The variable radii
are addressed in concur, or PB. After all the replicas of disk 1, disk 2, and
so on are given a shared radius by averaging, the resulting set of 14 radii are
minimally modified to match the radii of the original packing problem.

This is quite an elaborate deconstruction, but very much worth the effort.
Three configurations encountered in the Douglas–Rachford (DR) dynamics
are shown in Figure 1.10. An animation would show disks moving according
to some strange laws of physics that allowed intersections and penetration
of the enclosure. Even stranger, disks of different sizes occasionally appear
to swap positions by teleportation (when they swap radii). But the exotic
dynamics are not at all exotic in the deconstructed world. The figure shows
only the dynamics of the 14 concurred centers and radii and cannot convey
what all the replicas are doing!

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

18 Origins

Figure 1.10 Douglas–Rachford iterations acting on the constraints A and
B of the deconstructed packing problem (with a fixed circular enclosure)
terminate when a true packing is found (right frame).

The 14 disk-radii in this packing puzzle were designed so there is a unique
solution for the given enclosure.6 The DR algorithm finds this solution in
about the same time taken by the compression algorithm to find one of
the many jammed nonsolutions (enclosures larger than optimal by several
percent).

Let’s now turn to the deconstruction of the neural network training prob-
lem. In constraint A each neuron is treated in isolation, independent of
all the other neurons in the network. Every neuron has a vector of in-
puts, x, a single output, y, and a vector of weight parameters w. In the
binary encoding/decoding network, or any other network where we want
the neurons to learn dichotomies, the outputs may have only two values,
say y = 1 or y = −1. The choice of output is determined from the value
of the dot product w · x. Projecting to the “neuron constraint” is actu-
ally quite easy and involves no transcendental functions (as in the sigmoid
step-like activation function). At the end of projection PA, all the neuron
outputs are either 1 or −1, exactly. PA also minimally modifies the in-
puts and weights for each neuron. Interestingly, x and w experience the
same degree of change because they appear symmetrically in the constraint
through their dot product. If you are impatient, the details of the neu-
ron projection are spelled out in Section 7.7. Finally, the network’s input
nodes are special and for them PA simply sets the y variables to the data
values.

The connectivity of the network and the constraint coming from the output-
side of the data is addressed in constraint B. Each neuron’s output y should
concur with the inputs x of the receiving neurons. A key part of the de-
construction is to realize that the input variables live on the edges of the
network, not the nodes. That’s because one neuron’s output y gets sent to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

1.5 Deconstruction 19

multiple neurons, and the replicas of that y, called x, align with the edges
that connect the output node with the various input nodes. The complete
concur projection therefore involves, at each neuron’s output, a single y and
the x values on all the edges from that output. Like the neuron constraint
projection, PB is very simple (replacing numbers by their average) and a
local computation because independent sets of variables are involved. At the
output nodes, where there are no outgoing x variables, PB simply sets the y
variables to the data values.

Neural networks are trained on batches of data and this continues to be
the case in the deconstructed problem. In the n = 16 autoencoder, there
are only 16 data and it is feasible to have the batches be the entire data.
This is how the gradient-descent results shown in Figure 1.9 were obtained.
In the deconstructed problem, the entire network of x, y, and w variables is
replicated 16 times. For the most part, the variables in the different network
replicas are independent, and each receives a different set of data that con-
strain the input and output nodes. But PB now has an additional task: The
weights w should concur across all the network replicas.

If this deconstruction also strikes you as elaborate, it just means you can
use some training in the craft of deconstruction. Chapter 2 is a warm-up
with simple examples; the more elaborate examples in Chapter 7 convey the
scope of deconstruction. But already now you can see that the deconstructed
neural-network-training problem is quite nice: many simple and local con-
straints that are easily satisfied (projected to). Most of the programming
work is in the implementation of the two projections, and is comparable in
complexity to back-propagation code. A single DR iteration, comprising one
PA and one PB and little else, involves about as much computation as a
single gradient step.

How can the progress of training be monitored when there is no loss func-
tion? In this and any application of DR, we can do exactly what we did for
sudoku: Measure progress by the behavior of the gap, the currently achieved
distance between a pair of points in sets A and B. Points pA ∈ A and pB ∈ B

now correspond to an assignment of values to all the replicated x, y, and w
variables. If you take a moment to review the deconstruction and what it
means when pA = pB, you will realize that the problem has been solved: A
concurring set of replicated variables that satisfy all the constraints at the
neurons and the input/output nodes.

Figure 1.11 shows the progress of the gap for the n = 32 binary autoen-
coder problem. Unlike the loss in gradient descent, the gap does not decrease
in every iteration. When it plummets toward zero, the training is complete.
There is no point in plotting a distribution analogous to Figure 1.9 because

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

20 Origins

Figure 1.11 Progress of the gap in the training of the deconstructed auto-
encoder by DR iterations.

zero-gap means all the concur projections (PB) of the neuron outputs match
the binary values dictated by the neuron constraints (PA). Finally, if you
review the DR formula (1.1), you will see that a gap of size zero means the
dynamics has arrived at a fixed point.

I could also mention that training the deconstructed network using DR
is significantly faster than gradient descent training, but that misses the
more important point that even after reaching zero loss the gradient-descent
trained autoencoder has not learned to encode all the data into binary codes.
This is a serious shortcoming when the top decoder-half of the trained auto-
encoder is to be used as a generative model. A generative model is supposed
to generate the data when a simple code is sampled at the decoder’s inputs.
This fails when the codes generated in the autoencoder training have the dis-
tribution of Figure 1.9. Another benefit of the interpretability of the codes
generated in the deconstructed problem is that the learned weights are inter-
pretable as well, thereby eliminating, in this instance at least, the black-box
nature of the data representation. To achieve this to the fullest extent, a
norm constraint on the weights and a margin separating the neuron outputs
must be imposed as well. These are minor tweaks in the definitions of A and
B and covered in Section 7.7.

There is no evidence that either training method – by gradient descent on

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

Exercises 21

loss or DR iterations on the deconstructed problem – is relevant for natural
neural networks. The method used by biology is probably none-of-the-above.
On the other hand, the method that makes the most sense from an engi-
neering perspective can and should be debated. But the gradient method is
embedded so deeply in our technology, it is unrealistic to imagine it being
supplanted any time soon. We can draw a parallel with the long reign of
the Roman Empire. Similar to the many amenities provided by the main
purveyors of machine learning, the Romans kept the roads paved and water
in the viaducts flowing. However, they also imposed – and here my anal-
ogy is inspired by the binary encoding exercise – a rather poor system for
representing numbers! Though 2023 may prove to be a pivotal year in the
deployment of artificial intelligence, the core technology may in introspect
be remembered as vintage MMXXIII.

The Roman system of representing numbers held sway for hundreds of
years. If this depresses you, then you might find comfort in a story where
“One small village of indomitable Gauls still holds out against the [Roman]
invaders” [47]. The villagers owed their ability to resist assimilation, in part,
to a magic potion that conferred superhuman powers. While I cannot promise
you superhuman powers, and there is nothing magical about the skills you
will learn, the new method of solving problems will at times seem miraculous.

Exercises

1.1 Though a whole chapter is devoted to the Douglas–Rachford formula
(1.1) and an important generalization, now7 is a good time for you to
establish the very direct relationship between fixed points and solutions.
If x∗ is a fixed point, then

x∗ = x∗ + PB(RA(x
∗))− PA(x

∗) .

(a) Use this equation to write down an explicit expression for a solution
xsol ∈ A∩B. Your expression will involve x∗ but will not be as simple
as xsol = x∗.

(b) As a first example of the relationship between fixed points and solu-
tions, consider a problem in the plane (two variables). For A take an
infinite line and for B a single point on that line. The solution xsol is
obvious, but what about the fixed points x∗?

1.2 In the deconstruction of the disk packing problem, the radii were allowed
to vary, and the projection PB was tasked with restoring their true
values (those of the original puzzle). Suppose the puzzle has three disks

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

22 Origins

whose radii comprise the set R = {1, 2, 3}. Let (r1, r2, r3) be the vector
of radii that PB will act on. In the complete problem PB does a lot
more, but in this exercise we just focus on the restoration of the disks’
radii. For example, it might turn out that

PB(r1, r2, r3) = (2, 1, 3) ,

or some other permutation of the numbers in R. You don’t know which
is the correct one until you are given the numbers r1, r2, and r3. The
projection (2, 1, 3) is correct if the Euclidean distance, or its square,

(r1 − 2)2 + (r2 − 1)2 + (r3 − 3)2 ,

is the smallest possible for the particular (r1, r2, r3).
(a) Work out the projection

PB(0.5 , 2.1 , −0.5) .

While it’s true that a negative radius makes no sense, it’s important
that projections can handle arbitrary inputs. Notice that the reflec-
tion RA in the Douglas–Rachford formula can turn positive numbers
negative.

(b) With three disks, there are only 3! = 6 cases to consider. Can you
find an efficient algorithm that avoids trying all n! cases (!) when the
packing has n disks?

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009475518.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:36:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009475518.003
https://www.cambridge.org/core

