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Introduction

In this paper we shall study hyperbolicity of Hadamard manifolds.

In Section 1 we shall define and solve the Dirichlet problem at in-

finity for Laplacian J, which gives a partial extension of the result of

Anderson [1] and Sullivan [15] in Theorem 1 (cf. [4]). In Section 2 we

apply the solution of the Dirichlet problem at infinity to a complex an-

alysis on a Kahler Hadamard manifold whose metric restricted to every

geodesic sphere is conformal to that of the standard sphere. It seems

that the sphere at infinity of such a manifold admits a CR-structure. In

fact we can define a CR-function at infinity on the sphere at infinity.

We shall show in Theorem 2 that there exists a holomorphic extension

from the sphere at infinity and it coincides with the solution of the Diri-

chlet problem at infinity, if the Dirichlet problem at infinity is solvable.

So we see that such a manifold admits many bounded holomorphic func-

tions. By the similar method we shall show in Theorem 3 that such a

manifold is biholomorphic to a strictly pseudoconvex domain in Cn, if

the holomorphic sectional curvature Kh(x) is less than —1/(1 + r(x)2),

where r(x) is a distance function from a pole. Theorem 3 is a partial

answer to a conjecture raised by Green and Wu [8].

§ 1. Dirichlet problem at infinity

Let M be a Riemannian manifold of dimension n with metric gi5. We

denote by TPM the tangent space at p e M. For a C2 function u, we

define the Hessian D2u of u at p by

D2u(X, Y) = X(Yu) - (DxY)u

for X, Ye TPM, where Dx is the covariant derivative. The Laplacian Δu

of u is the trace of D2u, which is expressed by
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in a local coordinates (xu , xp), where g = άet(gίj) and (gij) = (g^)"1.

By the definition, for an orthonormal basis Xu , Xn of T^M we see that

Aup = Σ* (&u)(Xi9 Xt).

A C2 function w on M is said to be harmonic if Jw = 0. w is subhar-

monίc if Zfw ̂ > 0, and u is superharmonίc if JM <1 0. A continuous func-

tion u is subharmonic if it is everywhere a subsolution of the Dirichlet

problem [7], The maximum principle and the Harnack's principle are

valid for harmonic functions globally on M [2, 3].

Let M be a simply connected complete Riemannian manifold of non-

positive sectional curvature, M is called a Hadamard manifold. By the

well known theorem of Cartan-Hadamard, for any p e M exp: TPM —> M is

a diffeomorphism. We can construct the boundary of M following Everlein

and O'Neil [5].

DEFINITION. TWO normal geodesic rays 7Ί(ί), Ϊ2(t) (t > 0) in M are said

to be asymptotic if there is a constant c > 0 such that dist (ϊx{t), T2(t)) < c

for all t > 0.

We see that the asymptotic relation is an equivalence relation.

DEFINITION. Sphere at infinity S(oo) is the set of asymptotic classes

of geodesic rays in M.

Let M=M{jS(oo) and fix a point oeM. For υ e T0M we define

the cone around v of angle δ by

C(ι;, ̂ { x e M: ^0 (υ, I'M) < δ],

where ϊx(t) is the normal geodesic rays through x starting from o, and

<£0 denotes angle in TPM. Let T(v, δ, r) = C(v, δ)\B0(r) be the truncated

cone of rudious r, where B0{r) is the geodesic r-ball around o. The set

of all T(υ, δ, r), for all v e T0M, and r > 0, and £,(r), for all qeM and

r > 0, defines a local basis of topology on M [5]. It is called the coλie

topology. The cone topology is independent of the choice of the origin

o e M. In this topology M is homeomorphic to a closed ball B in i?n,

and S(oo) is homeomorphic to the boundary ΘB.

Dirichlet problem at infinity. Given a continuous function / on

S(oo), find u e C°(M) satisfying Δu = 0 on M and u = f on S(oo).

The maximum principle implies that if the Dirichlet problem at infinity

is solvable, then there are many bounded harmonic functions on such a
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manifold. Anderson [1] and Sullivan [15] showed that the Dirichlet pro-

blem at infinity is solvable if the sectional curvature K(x) satisfies — a2

<1 K(x) <̂  — b2, where a and b are positive constants. Theorem 1 is a

partial extension of the result of [1, 15], and the proof is based on [2].

The second inequality of (1) in Theorem 1 is a little similar to the inequ-

ality: curvature (x) < r(x)~2, in fact the condition: curvature (x) < r'2

implies several properties relating to hyperbolicity (cf. [9]).

THEOREM 1. Let M be a Hadamard manifold and K(x) be the sectional

curvature at x e M. Suppose relative to some o e M,

(1) -a2 < K(x) ^ -1/(1 + r(x)2-ε) for xeM

for two constants a > 0 and 2 > ε > 0, then the Dirichlet problem at infinity

is uniquely solvable, where r(x) = dist (o, x).

In the following of this section M always denotes a Hadamard mani-

fold with metric g = (gtJ), and o e i l ί i s fixed.

LEMMA 1. If the sectional curvature K(x) satisfies

( 2 ) K(x) < - ( 1 + r(x)2-')-1 for xeM

for a constant 2 > ε > 0, then for any two normal geodesic rays 7ι(t), Ϊ2{ί)

starting from o e M with angle θ = <£0 (7Ί(0), 7 (̂0)) < π/4, we have

( 3) dist (γ,{t\ Πt)) >2t + 2(2 + t)1'^2 (log 0 - 1 )

Proof. For every integer m, we see that K(x) < —1/(1 + nif~ε on

B0(m). Comparing with the space of constant curvature —1/(1 + m)2'ε,

by the Rauch's comparison theorem we obtain

dist 0Ί(*), T2((t)) > 2t + 2(1 + m)1 ' ε / 2 (log θ - 1) for 0 < t < in.

Define the function f(t) on t e [0, oo) by

fit) = 2t + 2(1 + mγ-ε/2 (log θ - 1), if t e [m - 1, m).

Clearly dist (r,(ί), Ut)) > f(t) on t e [0, oo). On the other hand f(i) ^ 2t +

2(2 + ty-ε/2(logβ - 1) on te [0, oo) since θ < π/4. Then we have (3) for

all t > 0.

LEMMA 2. If K(x) satisfies (2) on M, then for any positive constant δ

with 1 > δ > 1 — ε/2 there exist positive constants rx and G such that

( 4 ) Jexp(-r(x)1-°) < -C 1 r(x)- 2 exp(-r 1 "0
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on M\B0/r1).

Proof. If K(x) <1 — C2, then the Hessian comparison theorem of Greene

and Wu [9] implies D2r(x) ^ C coth(Cr(x))-G, where G = g-dr®dr.

By the same reason of the proof of Lemma 1, we have

if m — 1 <I r < m. All of the above inequalities on each interval [m,

m + 1) implies

( 5 ) D2r(x)^ 1/(2 + ry-fi G

on M. Direct computations give

Δ exp (-r(x)1-5) < (1 - δ) exp (-r1-*>*-*(-Jr + r'8), r(x) > 1.

By (5) we have

Δ exp (-r1-5) < (1 - δ) exp ( - r 1 - 5 ) ^ 2 5 ! ! - Crδl(2 + r)1'^] .

Since 1 — ε/2 < ^ we obtain (4) for sufficiently large rx.

Let Λ be a continuous function on the geodesic unit sphere S0(l) in

M with center at oeM. We extend h radially along rays from o to a

function h0 on Λί\o with boundary values h on S(oo). Let λ: [0, oo)->

[0, 1] be a C2 function satisfying

, ίe[2, oo).

We define a C2 function H(x) on M by

( 6 ) H(x) = £ λ(r(x, yY)ho{y)dy/^ λl(r(x, y?)dy,

where r(x, y) = dist (x, y) and the integral is with respect to the volume

form on M. We see that H(x) is continuous on M and H = h on S(oo).

If we put λt(t) = λ(ί2), we have £)^(r2) = ;,dr ® dr + lD2r. If 2f(x) satisfies

0 > K(x) ^ — α2, then 0 < Ury(x) <; α coth(αΓj,(x)) G for any x , y e M by

the Hessian comparison theorem [9], where rv(x) = r(x, y). Thus we obtain

-Qg < D\ry(xY) £Qg, x,yeM,

for a positive constant C2. We see that

) = Δ[H -
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The curvature bounds imply that the volumes of Bx(ΐ) and Bx(2) are

bounded from below and above for any xe M. Then we have the follow-

ing lemma.

LEMMA 3. If 0 > K(x) :> — α2 on M, then we have

( 7 ) \ΔH{x)\ < QsupyζBχi2)\h0(y) - ho(x)\ for xeM,

where C3 is a positive constant.

Proof of the theorem. We identify S(oo) with the set of geodesic rays

starting from o. We can approximate h of C°(S(oo)) by Lipshitz continuous

function on S0(ϊ) ~ S(co). By the maximum principle and the Harnack's

principle, if a sequence of harmonic functions uk e C°(M) converges uni-

formly on S(oo), uk converges uniformly on M to a harmonic function

u e C°(M). Thus we may assume that h is Lipshitz continuous on S0(ΐ).

We extend h radially on M. Define H(x) by (β). From Lemma 3 we get

H(x) < C4 max y 6 5 x ( 2 ) <£0 (x, y) since H is Lipshitz continuous with respect to

<£0(x, y). By Lemma 1 we obtain

max y e B n ( 2 ) ^L0 (x, y) < exp (5 - (2 + r(x))ε/2)

if r(x) > 2. Then

( 8 ) \ΔH(x)\ < C5 exp (-(2 + r)^), r(x) > 2 .

Choose a constant δ with 1 > δ > 1 — ε/2, and define

F+(x) - F(x) + C6 exp (-r(x)-O ,

F-(x) - i/(x) - C6 exp (-Kx)1 '5)

From (4) and (8) we have

JF+(x) < C5 exp (-(2 + r)s'2) - C.C^x)-25 exp ( - r 1 " 5 ) ,

JF-(x) > - C 5 exp (-(2 + r)εη + QCβφ)- 2 ' exp (-r 1" 5)

on xeM\B 0(r 1). If we fix a constant r2 with r2 > r1? JF + and F~ is su-

perharmonic and subharmonic respectively on M\B0(r2) since ε/2 > 1 — £.

Moreover we choose C6 such that

( 9) max ϊ 6 j ? ff(x) - min,GJ7 ίί(x) < C6 exp ( - r ^ )
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Now we define G+(x) and G~(x) by

G+(x) = min {inf,e5o(r2) H(x) + C6 exp (-rj-*), F

G-(x) = max {supx6jBo(7.2) H(x) - C6 exp ( - r J Ό ,

Clearly G+(x) and G~(x) are continuous on M and constant on J30(r2). Then

G+(x) is superharmonic and G~(x) is subharmonic on M. By (9) we can

check G+(x) > G~(x) on M, moreover we can find a constant r3 > r2 such

that

(10) C6 exp (-rJ 'O - (max, 6 f H(x) - m i n ^ * #(x)) > C6 exp ( -

(10) implies

F+(x) < MxeBo{r2) H(x) + C6 exp (-rJ"O

F-(x) > supx€Bo(r2) F(x) - C6 exp ( - r i "0

for reM\B0(rB). The above inequalities mean F+(x) = G+(x) and F"(x) =
G'(x) on M\βo(r3). Hence G+(x) - G"(x) = Λ(x) on S(oo). G+(x) and

G"(x) are barrier functions to solve the Dirichlet problem at infinity by

the Perron method. Consequently there is the Perron solution which is

exactly the solution of the Dirichlet problem at infinity. The uniqueness

follows from the maximum principle. This completes the proof.

Remark. Recently Proffesor H. Wu informed the author that H. Wu

and R. Schoen proved that if -a-r(x)2 ^ K(x) ^ -b-r(x)-2 (b > 2), then

the Dirichlet problem at infinity is solvable.

§ 2. Complex analysis on Kέihler Hadamard manifold

Now we prove the existence of bounded holomorphic functions on

Kahler Hadamard manifold I in a special class. For this purpose we

will consider the Dirichlet problem at infinity for d like that for Δ. If

the sphere at infinity S(oo) should admit a CR-structure and M should

be hyperbolic in a sense, there would be a holomorphic extension to M.

However, in general S(oo) admits no differentiable structure. We shall

define a CR-function on S(oo) for a special class of Kahler Hadamard

manifolds, and extend to a holomorphic function on M. The boundedness

of the extended function follows from the absolute maximum principle.

By the same idea we shall show in Theorem 3 that a manifold in

the special class is biholomorphic to a bounded domain in Cn under some

curvature condition.

https://doi.org/10.1017/S002776300000088X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000088X


COMPLEX ANALYSIS 85

Let M be a complex manifold of dimension n, n >̂ 2. Let J be the

complex structure of M. For a real C00 hypersurface iV of M, we define

the vector subspace HP(N) of iyV® C by

HP(N) = {Ze TPN® C: JZ = - v ^ Ί Z } .

It is obvious that dimc Hp — n — 1. Let Λ be a complex valued function

on N. If Zh = 0 for every Z e HP(N), we call that Λ satisfies the tangential

Cauchy-Rίemann equation at p. If h satisfies the tangential Cauchy-Riemann

equation at every point of N, we call h a CR-function on N.

In the following let M be a Kahler Hadamard manifold of complex

dimension n, n ^ 2. Suppose that the metric of M is of the form

(11) ds2 = dr2 + g(r, θ)2{dθl + sin2 0 2d$ + + sin2 Θ2> -sin2 Θ2n^dθ2

2n},

where in terms of the geodesic polar coordinates at o, θ = (02, > 2̂n) is

a spherical angle of S0(ΐ), and r denotes the distance from o, i.e. each

geodesic sphere with center at o is conformal to the standard sphere in

R2n. The Dirichlet problem at infinity on such manifolds is studied by

Choi [4]. For example, every rotationally symmetric manifold satisfies this

condition (cf. Milnor [12], Shiga [14]).

Identifying S0(ΐ) with S(oo), for any heC°(S(oo)) we define a con-

tinuous function h0 on M\o by

ho(r, θ) - h(θ) for θeS(oo)^ S 0(l).

DEFINITION. We call h e C°(S(oo)) a CR-function at infinity with re-

spect to oeM, if ho(r, θ) is differentiate on M\o and Λ0(l, θ) is a CR-

function on S0(ί).

The following lemma shows that our definition is natural for the above

manifolds. We denote by CR0(oo) the set of all CR-functions at infinity

with respect to o e M. Note that there exists a bijection between CR0(oo)

and the set of all CR-functions on S0(l). Regarding Bo(2) a domain in Cn,

we see that CR0(oo) is not empty.

LEMMA 4. Let M be a Kahler Hadamard manifold of complex dimen-

sion n (n ^ 2). Assume that the Kahler metric in terms of the geodesic

polar coordinates at o is of the form (11). If /ιeCR0(oo), then ho\SM is a

CR-function on SQ(t) for all t > 0.

Proof. It is sufficient to show that for any rays ϊ(t) starting from

https://doi.org/10.1017/S002776300000088X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000088X


86 TAKASHI YASUOKA

o e M, Zh = 0 at r(ί) for all Z e Hr(to)(S0(t)) and ί > 0. Then we fix a ray

Γ(£) and tQ > 0. In the geodesic polar coordinates we denote ϊ(ΐ) by (1,

θ'), and we may assume that sin θ'2, , sin θ'2n are not 0.

For any Zo e Hr(tQ)(S0(tQ)) we denote by Z(ί) the parallel vector field

along ϊ(t) with Z(t0) = ZQ. Since J is parallel and Z(£) is always orthogonal

to r(t), we see that Z(ΐ) e F ( r ) (1)(S0(l)).

We define the vector field X^t) along ϊ(i) by

(12) X<(t) = {g(ί, 0') sin θί sin ^ . J " 1

i = 2, , 272. Therefore

F,(t)X4(f) - -dgldt-ig1-sinθi- s i n ^ . J - 1

where we put Fmdldθt = Γlβ/dr + Σf=2 Γΐ.d/dθ,. We see that ΓJ, = 0 and

ΓK = f-i-df/dr. Since the metric tensor is diagonal with respect to the

polar coordinates, other Γf/s are vanished. Then Vnt)Xt{t) = 0, that is,

Xt(ί) is parallel for all / ^ 2.

{Xί(4)} is an orthonormal frame of Tΐito)(S0(t)). So we may set Y(t) =

ΣΓ-2 α*Jffc(ί), J(y(ί)) = ΣS-. 6*

(13) Z(t) = Σ

= Σ S . 6*^(0. Thus

Λ e CR0(oo) implies Z(ΐ)h0 = 0 at Γ(l). In the geodesic polar coordinates

we have

'1 Σϊ-2 [αfc(sin θί .sin ^ _ 1 ) " 1 3ΛO(1,

ί ^ 1 ) 0 ( , 0 / J = 0

by (12) and (13). Similarly

θ')

= g-1 Σ ϊ " 2 [α*(sin θί"- sin ^ ,,)- 1 dho(tQ, θr)\dθk

Recall that Λo(ί0, θ) = Λ0(l, ^), hence Z(tQ)h0 = 0 at r(O by (14). This com-

pletes the proof.

THEOREM 2. Lei M be a Kάhler Hadamard manifold of complex dimen-

sion n, n^2. Assume that the Dirichlet problem at infinity is solvable

on M, and the Kάhler metric in terms of the geodesic polar coordinates at
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o e M is of the form

ds2 = dr2 + g(r, θ)2{dθ\ + sin2 θ2dθl + + sin2 θ2- -sin2 Θ2n_1dθ2

2n}.

Then for any he CR0(oo), there exists a holomorphίc function H on M with

boundary values h, and H coincides with the solution of the Dirichlet

problem at infinity.

Remark. Trivial examples of Kahler manifolds as above are Cn and

the unit ball B in Cn with the invariant metric. For the ball B we may

identify a CR-function at infinity with respect to the origin as a CR-

function on dBy hence we can extend it to a holomorphic function on B

by the well known method (Hδrmander [10, Theorem 2.3.2']). On one

hand by Liouville's theorem we see that any CR-function at infinity on

the sphere at infinity of Cn can not be extended to a holomorphic func-

tion on Cn. So in order to extend a function of CR0(oo) to a holomor-

phic function, we need some hypothesis on N relating to hyperbolicity.

The hypothesis that the Dirichlet problem at infinity be solvable is

fulfilled if, for example, the sectional curvature K(x) satisfies — a2 <, K(x)

<; -1/(1 + r2~ε) by Theorem 1.

Proof. We denote h by h — h1 + V —l/ι2, where h1 — Re h, h2 — Im h.

Since the Dirichlet problem at infinity is solvable on M, there exist har-

monic functions H1 and H2 on M with H1 = h1 and H2 — h2 on S(oo).

Thus we have only to show that H = H1 + V — Iff2 is holomorphic on M.

It is shown in [9] that a Kahler Hadamard manifold is a Stein mani-

fold. By Lemma 4 hυ is a CR-function on S0(r) for all r > 0. We see

that the boundary S0(r) of B0(r) is connected and B0(r) is relatively com-

pact in M. Then we can find a holomorphic function Hr on B0(r) with

Hr — h0 on S0(r) (Shiga [13, Theorem 2-5]). So we have a sequence of

holomorphic functions {Hk} with Hk — h0 on S0(k) for k e N. Put HI =

Re Hk and HI — Im Hk. Then HI and HI are harmonic on B0(r) since M

is Kahler. In the polar coordinates we have hl(k, θ) — Hl(k, θ), and

h2

0(k, θ) = H&k, θ) on S0(k). Since H1 and H2 are continuous on M, for

any ε > 0 there is a large integer £0 such that

\Hί(k, θ) - Hj(k, θ)\<ε for i = 1, 2

on So(&) for all ^ > k0. The maximum principle implies

\Hί-W\<ε for y = l,2
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on B0(k) for all k > k0. This means that {Hk} converges to H uniformly

on every compact subset of M. Then H is holomorphic since {Hk} is a

sequence of holomorphic functions.

If the Dirichlet problem at infinity is solvable on a Hadamard mani-

fold M, then we see that there is the harmonic measure μx on S(co) from

the Riesz representation theorem. Then we have the following corollary

(cf. [1,2]).

COROLLARY. Let M be as in Theorem 2. Let μx is the harmonic me-

asure on S(oo). Then for every h e CR0(oo),

h(x) = ί hdμx

is a holomorphic function on M with boundary values h.

Let M, and M2 be complex manifolds of complex dimension n, n ^ 2.

Let D, and D2 be bounded domains with smooth boundaries 3Dίy 3D2 re-

spectively. We call a C°° mapping / of 3D1 to 3D2 a CR-mappίng if

f*(Hp((3DJ) c Hf(p)(3D2) for all p e 3D,. Note that / is a CR-mapping if

and only if for any CR-function h on 3D2y /oft is a CR-function on 3D,

[13].

Let M be a complex manifold and dM the Kobayashi pseudodistance

[11]. If dM is a distance and M is complete with respect to dMy Mis said

to be complete hyperbolic.

Let D be a domain in Cn. D is called a strictly pseudoconvex domain

with Ck boundary if there exist an open neighborhood U of D and a

strictly plurisubharmonic function r(z) on U of class Cfe such that D =

{2 e £7: r(z) < 0} and grad r(z) φ 0 for all z e 3D.

THEOREM 3. Let M be a Kάhler Hadamard manifold of complex dim-

ension ny n^>2. Assume that the Kdhler metric in terms of the geodesic

polar coordinates at o is of the form

ds2 = dr2 + g(r, θ)2{dθ\ + ήn2θ2dθ\ + + sin2 θ2- -sin2 Θ2n_,dθ\n},

and the holomorphic sectional curvature Kh(x) satisfies Kh(x) < —1/(1 +

r(x)2). Then M is biholomorphic to a strictly pseudoconvex domain in Cn.

Remark. It is shown in Shiga [14] that if g(r, θ) = g(r), and the

holomorphic radial curvature K(x) satisfies K(x) < — (1 + ε)/r2iogr, then

M is biholomorphic to the unit ball in Cn (cf. Milnor [12]).
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The following Lemma is given in Fridman [6].

LEMMA 5. Let D dCn be a bounded strictly pseudoconvex domain

with C3 boundary, and M is a completely hyperbolic manifold of complex

dimension n. Suppose that M can be exhausted by biholomorphic images

of D, that is, for any compact KczM there is a biholomorphic imbedding

Fκ: D —> M such that Fκ(D)aK. Then M is biholomorphically equivalent

either to D or to the unit ball in C\

Proof of the theorem. Recall that M is a Stein manifold. Choose a

holomorphic coordinate neighborhood U of M such that B0(ε) CKZU for a

positive ε. By the Hessian comparison theorem [9], r(xf is strictly pluri-

subharmonic on M since M is Kahler. Clearly grad r(x)2 Φθ on M\o.

Then we may regard B0(ε) as a strictly pseudoconvex domain with C°

boundary in C°°. We define a diffeomorphism fk from S0(ε) to S0(h), k e

N, by

Us, θ) = (A, θ)

where (r, θ) is the polar coordinates at o. Lemma 4 implies that fk is a

CR-diffeomorphism. Obviously S0(ε) and S0(k) are connected. From the

Bochner-Hartogs' theorem on Stein manifolds (Shiga [13]) we see that jB0(ε)

is biholomorphic to B0(h) for all integer k. For any compact set K in M,

there exists an integer k so that B0{h)Z)K since exp0: TJA-+M is a dif-

feomorphism. So M is exhausted by biholomorphic images of the strictly

pseudoconvex domain B0(ε). Since Kh(x) < —1/(1 + r2) and M is complete,

M is complete hyperbolic from the theorem of Green and Wu [9, Theorem

E].

It follows that M is biholomorphically equivalent either to the unit

ball B in Cn or to B0(ε) from Lemma 5. Both B0(ε) and B are strictly

pseudoconvex, then the theorem is proved.
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