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Abstract

A positive recurrent, aperiodic Markov chain is said to be long-range dependent (LRD)
when the indicator function of a particular state is LRD. This happens if and only if the
return time distribution for that state has infinite variance. We investigate the question
of whether other instantaneous functions of the Markov chain also inherit this property.
We provide conditions under which the function has the same degree of long-range
dependence as the chain itself. We illustrate our results through three examples in diverse
fields: queueing networks, source compression, and finance.

Keywords: Markov chain; long-range dependence; Hurst index

2010 Mathematics Subject Classification: Primary 60J10
Secondary 68M20; 68P30; 91G70

1. Introduction

A stationary random process (Xn) with E[X2
n] < ∞ is said to be long-range dependent

(LRD) if

lim sup
n→∞

n∑
r=1

cov(X0, Xr) = ∞.

The degree of long-range dependence is measured by the Hurst index H ( 1
2 ≤ H ≤ 1):

H := inf

{
h : lim sup

n→∞

∑n
r=1 cov(X0, Xr)

n2h−1 < ∞
}
.

Equivalently, we can write

H := inf

{
h : lim sup

n→∞
var(

∑n
i=1 Xi)

n2h
< ∞

}
.

Take (Mn), a positive recurrent, aperiodic, discrete-time, countable state Markov chain with
state space N, where N denotes the set of natural numbers. The chain is in stationarity with
stationary distribution π . The indicator function 1(Mn = i) of state i of this chain is LRD if
and only if indicator functions of every state are LRD [4]. When this is true, (Mn) is said to be
an LRD Markov chain. Moreover, the Hurst index of these functions is also a class property [4].
The common Hurst index H is said to be the Hurst index of the chain.
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In [4] it was proved that such a Markov chain is LRD if and only if the return time distribution
of any state has infinite variance. It was also argued that finite weighted sums of indicator
functions on this chain also inherit this property. It is natural to conjecture that this might
be true for all functions of the chain. However, this conjecture is disproved, most easily
by considering a constant function (see also the two counter examples in [4]). It is then of
considerable interest to find which functions of an LRD Markov chain are also LRD.

Let �n = ρ(Mn) be an L2 function of Mn. In this paper, we provide conditions under which
one can infer the long-range dependence of (�n) from that of (Mn).

Our main result, given in Section 3, provides a technical condition under which the rate of
growth of

∑n
r=1 cov(X0, Xr) is identical for Xn = �n and Xn = 1(Mn = i). We set up the

proof with a collection of lemmas presented in Section 8. For convenience, most of the notation
is collected together in Section 2.

There are many interesting scenarios where the results of this paper might be useful. In the
second half of the paper, we collect three such examples. In Section 4 we discuss a simple
queueing network of two parallel queues. One queue is driven by an LRD process, whereas
the other queue is driven by a short-range-dependent process. We model the inputs and queue
lengths by countable state Markov chains, and show that, under longest queue first scheduling,
both queues are LRD.

A particularly novel example is given in Section 5, where we re-prove a recent result in the
source coding of LRD sequences [13]. We show that the code length process of any lossless
encoder which is compressing an LRD renewal process must dominate an LRD process with
the same Hurst index as the source process.

The last example concerns the long-range dependence in financial series. We discuss how
our model can explain the LRD behavior observed in some instantaneous functions of the
absolute returns of some asset.

2. Notation and setup

Let (Mn) be a positive recurrent, discrete-time, countable state Markov chain with state space
N and stationary distribution πi, i ∈ N. Most of the notation we use is borrowed from [5].

• ρ : N → R is such that
∑

i∈N
ρ(i)2πi < ∞.

• �n := ρ(Mn).

• µ := ∑
i ρ(i)πi is the mean of ρ.

• p
(n)
ij := P(Mn = j | M0 = i), n ≥ 0, is the n-step transition probability from i to j .

• kp
(n)
ij := P(Mn = j ; Ml �= k, 0 < l < n | M0 = i), n > 0, is the n-step transition prob-

ability from i to j with taboo state k.

• kp
∗
ij := ∑∞

n=1 kp
(n)
ij .

• Hp
(n)
ij := P(Mn = j ; Ml �∈ H , 0 < l < n | M0 = i), n > 0, is the n-step transition

probability from i to j with taboo set H .

• Hp∗
ij := ∑∞

n=1 Hp
(n)
ij .

• f
(n)
ij := jp

(n)
ij , n > 0.

• Q
(n)
ij := ∑n

r=1(p
(r)
ij − πj ), n > 0.
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• R
(n)
ij := ∑n

r=1 Q
(r)
ij , n > 0.

• Tj := inf t {t > 0 : Mt = j} is the first time to state j at stationarity.

• mij := Ei[Tj ] is the mean time to state j starting from i.

• H := inf{h : lim supn→∞ var(
∑n

i=1 1(Mi = 1))/n2h < ∞} is the Hurst index of (Mn).

• H� := inf{h : lim supn→∞ var(
∑n

i=1 �i)/n2h < ∞} is the Hurst index of (�n).

To understand the results in the next section, it is useful to know the following properties.

Lemma 2.1. For an LRD Markov chain,

lim
n→∞ Q

(n)
ij = ∞, (2.1)

lim
n→∞

R
(n)
ij

n
= ∞, (2.2)

lim
n→∞

Q
(n)
ij /πj

Q
(n)
11 /π1

= 1. (2.3)

Proof. Equation (2.3) is Equation 8 of [4]. Equation (2.1) follows from Equations 8 and 5
of [4]. Equation (2.2) follows from (2.1). This completes the proof.

We will assume henceforth that n is large enough such that Q
(n)
11 , R

(n)
11 > 1.

3. Main results

Theorem 3.1. Let

(i) lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi(ρ(i) − c)(ρ(j) − c)Hp
(r)
ij = 0

for some constant c and nonempty, finite set H , and

(ii) lim
L→∞ lim sup

n→∞
1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi |ρ(i)ρ(j)|1(|ρ(i)| > L, |ρ(j)| > L)Hp
(r)
ij = 0.

Then

lim
n→∞

var(
∑n

r=1 �i)

R
(n)
11 /π1

= (µ − c)2.

Moreover, if c �= µ then H� = H .

Some remarks about Theorem 3.1(i) and (ii) are in order.

1. They fail to hold if limi ρ(i) exists and is not c. This shows that limi ρ(i) is the unique
choice for c in this case.

2. They will hold whenever limi (ρ(i) − c) = 0. Specifically, when ρ(i) − c = 0 for i

greater than some value.

Both these remarks follow directly from Lemma 8.6, which is stated in Section 8.
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3. They are implied by the considerably stronger condition

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi |ρ(i) − c||ρ(j) − c|1p(r)
ij → 0.

Theorem 3.1(ii) is trivially satisfied for bounded functions. When the �n are not bounded,
condition (ii) ensures that they can be truncated without affecting the long-range dependence
discussions.

In light of remark 2, c can be interpreted as a ‘limiting mean’, in a weak sense, of � as the
return time to the compact set H becomes large. The deviance of � from its average behavior
in this limiting regime, given by µ − c, determines the limiting constant in the statement of
Theorem 3.1. When (µ − c)2 = 0, the behavior of � is similar to its average behavior even
when Mn takes a long excursion before returning to H . Therefore, the long-range dependence
of M might not exhibit itself in �. In this case � might have a lower Hurst index, or even be
short-range dependent. What happens exactly depends on the detailed structure of M and ρ,
and cannot be captured by our formulation which only investigates the asymptotics at the scale
of the Hurst index of M . In this regard, (µ − c)2 > 0 is necessary for � to be LRD at the same
scale as M , and examples can easily be constructed to show that the � that fail this condition
fail to be LRD to the same degree. We give one such nonexample in Section 7.

The following theorem extends the usefulness of the preceding theorem considerably. It
describes the case when the state space of the Markov chain is divided into a finite number of
subsets, with communication between the sets happening almost only through a finite set of
states H . The canonical example for such a structure would be the Markov chain representation
of a semi-Markov process given by the pair (S, T ), where S is described by a finite-state Markov
chain and T is the time since the last transition, having an arbitrary distribution with E[T ] < ∞.
In this case, the state space would be divided into sets {S = k}, and transition between sets is
only possible by visiting (S, 0).

Theorem 3.2. Let {Ak}, 1 ≤ k ≤ K , be a finite partition of the state space N. Let H be a
nonempty finite set, and let

(i) lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i∈Ak, j∈Al

πi |ρ(i) − µ||ρ(j) − µ|Hp
(r)
ij = 0 for all k �= l.

Also, suppose that

π∞
Ak

:= lim
n→∞

∑
i,j∈Ak

πi

∑n
r=1 1p

(r)
ij∑

i,j πi

∑n
r=1 1p

(r)
ij

exists for all k. Let there exist constants ck, 1 ≤ k ≤ K , such that, for all k,

(ii) lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi(ρ(i) − ck)(ρ(j) − ck)Hp
(r)
ij = 0

and

(iii) lim
L→∞ lim sup

n→∞
1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi |ρ(i)ρ(j)|1(|ρ(i)| > L, |ρ(j)| > L)Hp
(r)
ij = 0.
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Then

lim
n→∞

var(
∑n

r=1 �i)

R
(n)
11 /π1

=
K∑

k=1

π∞
Ak

(µ − ck)
2.

Moreover, if π∞
Ak

(ck − µ) �= 0 for some k then H� = H .
Note that if ck = cl for a pair of subsets Ak, Al then (i) is not needed for this particular

pair.

Theorem 3.2(ii) defines a ‘limiting mean’ ck for � in each set Ak , as Theorem 3.1(i) did.
Condition (iii) is the analogue of Theorem 3.1(ii). Condition (i) ensures that transition events
across different sets Ak without visiting H can be ignored. Here π∞

Ak
can be regarded as the

limiting probability of Ak as the return time back to H becomes large.
As before, π∞

Ak
(ck − µ) �= 0 for at least one k is necessary for the long-range dependence

of � to be at the same scale as M .
We now illustrate the use of these tools with some examples. In the first example we use

Theorem 3.1 directly, while in the last two examples we use Theorem 3.2.

4. Example 1: longest queue first with mixed heavy- and light-tailed inputs

This example replicates the conclusion in [12] that long-range dependence might spread
under longest queue first (LQF) scheduling in a parallel queue setting, using a general technique
based on Theorems 3.1 and 3.2.

There is a single server of rate R ∈ N with two parallel queues. The queues are fed
by independent random processes, each modeled by a discrete-time, countable state Markov
chain. As an example, we investigate the scenario where X1 is independent and identically
distributed (i.i.d.) with heavy-tailed (var(X1) = ∞) arrival distribution on N. Either X2 ∈ N

is an i.i.d. process with light-tailed (var(X2) < ∞) arrivals or X2 is a finite-state, N-valued
Markov chain in stationarity. We assume that E[X1(0)] + E[X2(0)] < R.

Let Q1(n) and Q2(n) be the stationary queue lengths. We assume that the queue is work
conserving, and moreover that the scheduling decision at time n (number of packets to be served
from each queue at time slot n) is a function of (Q1(n), Q2(n)), the queue sizes at time n. Given
such a scheduling strategy, it is easily verified that (X1(n), X2(n), Q1(n), Q2(n)) is a countable
state Markov chain.

Lemma 4.1. (X1(n), X2(n), Q1(n), Q2(n)) is positive recurrent.

Proof. The condition
E[X1(0)] + E[X2(0)] < R

implies that the queue process (Q1(n), Q2(n)) is positive recurrent. Pick M1 > 0, and define
the set S1 = {Q1(n) + Q2(n) < M1}. The return times to this set have finite mean (say ν).
Also, define S2 = {X1(n) + X2(n) < M2} (or in the case where X2 is a finite state chain,
S2 = {X1(n) < M2}), where M2 is large enough such that S2 is nonempty. S1 ∩ S2 is a
nonempty compact set. We claim that the return times to this set have a finite mean. Since
1n(S2) is i.i.d., there is a positive probability (say at least p) of visiting S2 each time there is a
visit to S1 (independent of previous visits). It is easily seen that the mean return time to S1 ∩S2
is at most ν/p (expectation of a sum of geometrically many i.i.d. variables). This completes
the proof.

We will look at long-range dependence through the Hurst indices of the busy–idle processes
of the queues. Let (X1, Q

′
1) be the Markov chain in which all the capacity is allocated to
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queue 1. Denote by 1(Q′
1(n) = 0), the busy–idle process of this queue. We know that the

busy periods of Q′
1 have infinite variance (see, e.g. [3, Theorem 8.10.3]). Therefore, both the

Markov chain (X1, Q
′
1) and the function 1(Q′

1(n) = 0) are LRD (see the introduction). The
similarly defined (X2, Q

′
2) is a short-range-dependent chain.

Lemma 4.2. (X1(n), X2(n), Q1(n), Q2(n)) is LRD.

Proof. Consider the chain (X1(n), Q′
1(n), X2(n), Q′

2(n)). This chain is LRD because it is
a combination of the two independent chains (X1, Q

′
1) and (X2, Q

′
2), one of which we assume

to be LRD. Let t1 be the return time to a nonempty compact set S1 = {X1(n), Q1(n), X2(n),

Q2(n) < M}. Similarly, let t2 be the return time to the set S2 = {X1(n), Q′
1(n), X2(n),

Q′
2(n) < M}. Since Q′

1(n) ≤ Q1(n) and Q′
2(n) ≤ Q2(n), t1 stochastically dominates t2, and

therefore (X1(n), X2(n), Q1(n), Q2(n)) is also LRD. This completes the proof.

The question we want to ask then is whether 1(Q2(n) = 0), the busy–idle process of the
second queue (fed by short-range-dependent traffic), is also LRD.

Define�n := 1(Q2(n) = 0) to be anL2 function of the chain (X1(n), X2(n), Q1(n), Q2(n)).
Take c = 0 in Theorem 3.1. Let H = {X1(n), X2(n), Q1(n), Q2(n) ≤ R}. Condition (ii)
holds trivially for bounded functions. Thus, we are left with having to check the condition

lim
n→∞

1

Q
(n)
11 /π1

∑
{i,j : Q2,j =0, Q2,i=0}

πi

n∑
r=1

Hp
(r)
ij = 0.

To see why this is true, note that
∑

{i,j : Q2,j =0, Q2,i=0} πi

∑∞
r=1 Hp

(r)
ij is bounded above by 1

plus the stationary time spent in the states {Q2 = 0} before the chain visits H . Note that
the length of an idle period for Q2 has finite expectation. Also, note that if an idle period
begins at time n + 1, this implies, owing to the LQF policy, that Q1(n) ≤ R, Q2(n) ≤ R,
X1(n) ≤ R, and X2(n) ≤ R. Thus, between successive idle periods of Q2, the chain must
visit H . The stationary expected time spent in {Q2 = 0} without visiting H is therefore finite.
Since Q

(n)
11 → ∞ (by (2.1)), the above limit holds. Using Theorem 3.1, we conclude that

1(Q2(n) = 0) has the same Hurst index as the chain (X1(n), X2(n), Q1(n), Q2(n)).
The advantage of this approach is that in general the input processes need not be i.i.d.

Dependencies can easily be modeled, as long as the sources can be represented as countable
state Markov.

5. Example 2: compressing an LRD renewal process

In this section we provide an alternative proof for the result in [13].
Let (Xn) ∈ {0, 1} be a discrete, stationary, ergodic renewal process. Denote by τ1 and τ2

the times of the first two arrivals. Then we denote by T
d= τ2 − τ1 a random variable having

the interarrival distribution. We assume that E[T ] < ∞ and E[T 2] = ∞. As discussed in
the introduction, this is equivalent to stating that the renewal process is LRD. (For instance,
consider a Markov chain with return times to state 1 having the law of T . Then the renewal
process can be defined as the indicator function of state 1.)

We begin by introducing the function

�n(X
n−∞) = − log P(Xn | Xn−1−∞),

which is of central importance to coding theory. The behavior of (�n) restricts the minimum
code length of lossless compression algorithms by the following lemma from [1], which is also
proved in [10].
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Lemma 5.1. (Barron’s lemma.) Given {c(n), n ≥ 1}, positive constants with
∑

n 2−c(n) < ∞,
we have

Ln(X
n
1 ) ≥ − log P(Xn

1 | X0−∞) − c(n) eventually, almost surely (a.s.).

Here Ln(X
n
1 ) is the code length for the first n symbols of the source for some lossless

coding algorithm that produces bit strings. (That is, let Ln(X
n
1 ) be the length of φ(Xn

1 ), where
φ(xn

1 ) : {0, 1}n → {0, 1}∗ is a one-to-one mapping.) c(n) can be made logarithmic in n.
By the ergodic theorem, the limit of (1/n)

∑n
i=1 �i as n → ∞ exists a.s. and equals η :=

E[− log P(X1 | X0−∞)], i.e. the entropy rate of (Xn). This implies the following well-known
first-order converse source coding theorem for such sources.

Theorem 5.1. It holds that

lim inf
n

1

n
Ln(X

n
1 ) ≥ η a.s.

Lemma 5.1 is strong enough to permit second-order refinements to Theorem 5.1 once we
know more about the process (�n). For example, in [10], it was shown that, for certain short-
range-dependent classes of sources (e.g. finite-state Markov chains) and appropriate coding
schemes (e.g. Lempel–Ziv coding), (Ln − nη) satisfies a central limit theorem.

Here, we will prove a second-order converse source coding theorem, stating that the bit
length process (Ln) will eventually dominate an LRD process, the growth of whose variance
is identical to that of (Xn), so that, in particular, it has the same Hurst exponent as (Xn). The
proof relies on our general Theorem 3.2. This result provides partial theoretical justification to
existing empirical work in the field of variable bit-rate (VBR) video traffic (see [2], [7], [8], and
[14], among others). A conclusion resulting from this work is that long-range dependence is
omnipresent in VBR video traffic, and persists across a wide variety of codecs. Combined with
these observations, the result backs the intuition that, for many information sources, long-range
dependence persists under compression.

Theorem 5.2. Let (Xn) be an aperiodic, LRD, stationary, ergodic renewal process. Then there
exists an LRD random process (γn) such that

Ln(X
n
1 ) ≥ γn eventually, a.s.

for all uniquely decodable source codes. Moreover, (γn) has the same Hurst index as (Xn).

Proof. This follows immediately from Barron’s lemma once we show that the (�n) are LRD
with the same Hurst index as (Xn). This will follow from Theorem 3.2 if we can set up (�n) as
a function of a Markov chain.

We construct the following Markov chain (Mn) from the renewal process (Xn) (see Fig-
ure 1):

• Mn ∈ {0, 1, 2, 3, . . . },
• {Mn = 0} = {Xn

n−1 = 11},
• for k ∈ {1, 2, . . . },

• {Mn = 2k − 1} = {Xn = 0 and k zeros since last arrival},
• {Mn = 2k} = {Xn = 1 and k zeros since last arrival in Xn}.
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10001 6

4

2

0 1 3 5 7

1001

101

11 10 100 1000 10000

Mn

nX 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 00 000
0 1 3 4 1 3 5 7 8 0 0 1 3 5 6 31 975—

Figure 1: Construction of the Markov chain (Mn), with an example sequence showing the correspondence
with Xn.

Note that this Markov chain is equivalent to the characterization (Xn, tn) (where tn is the time
since the last transition), only the states are numbered such that the state space is N.

We establish some additional notation: let (Xn) denote the stationary renewal process,
whose interval arrival lengths have the law of T +1; fT (k) := P(T = k); FT (k) := P(T ≤ k);
�n(X

n−∞) := − log P(Xn | Xn−1−∞); and η := E[log P(X1 | X0−∞)].
We can easily check that �n = ρ(Mn), with

• ρ(0) = − log fT (0),

• ρ(2k − 1) = − log P(T > k − 1 | T ≥ k − 1),

• ρ(2k) = − log P(T = k | T ≥ k).

Lemma 5.2. �n is an L2 function of Mn.

Proof. Let πi be the stationary distribution of (Mn). Note that πi > 0 implies that ρ(i) < ∞.
We want to prove that ∑

ρ(i)2πi < ∞.

Note that π2k+1 = π2k−1 P(T > k | T ≥ k) and π2k = π2k−1 P(T = k | T ≥ k) for
k = 1, 2, . . . . This gives

∑
ρ(i)2πi = π0ρ(0)2 + π1ρ(1)2 +

∞∑
k=1

π2k−1 P(T = k | T ≥ k) log2 P(T = k | T ≥ k)

+
∞∑

k=1

π2k−1 P(T > k | T ≥ k) log2 P(T > k | T ≥ k),

π0ρ(0)2 =
( ∞∑

k=1

π2k

)
fT (0) log2 fT (0),
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and

π1ρ(1)2 =
( ∞∑

k=1

π2k

)
(1 − fT (0)) log2(1 − fT (0)).

Since the p log2 p terms are bounded above by 1,
∑

ρ(i)2πi ≤ 4. This completes the proof.

Now, to apply Theorem 3.2, we partition into three sets: A1 = {i > 0 : even i}, A2 =
{0}∪ {odd i : ρ(i) ≤ − log(1 − εi)}, and A3 = {odd i : ρ(i) > − log(1 − εi)}. We will choose
εi ↓ 0 later. Take c1 = c2 = c3 = 0 and H = 1 in Theorem 3.2. By the note at the end of the
statement of Theorem 3.2, we do not need condition (i). We will check that conditions (ii) and
(iii) hold for each of the sets.

When i, j ∈ A1, note that 1p
(r)
ij = 0, so both conditions hold automatically. For i, j ∈ A2,

condition (ii) holds due to remark 2 because the limit of ρ(i) as i → ∞ is 0, and condition
(iii) holds because ρ is bounded on this set. Thus, we focus on i, j ∈ A3. Define ρ(i) =:
− log(1 − ε̃i ). Let subsequence {ik} = A3. We have ε̃ik ≥ εik , πik ≤ π1

∏k
l=1(1 − ε̃ik ), and∑∞

1 1p
(r)
ikij

= πij /πik . Thus,

∑
i

ρ(i)πi

∑
j

ρ(j)

n∑
r=1

1p
(r)
ij

≤
∑

k

k∏
l=1

(1 − ε̃il )(− log(1 − ε̃ik ))
∑
j>k

− log(1 − ε̃ij )

j∏
l=k+1

(1 − ε̃il )

=
∑
j

∑
k<j

(1 − ε̃ik ) log(1 − ε̃ik )(1 − ε̃ij ) log(1 − ε̃ij )

j∏
l=1, l �=k,j

(1 − ε̃il )

<
∑
j

j

j∏
l=3

(1 − ε̃il ).

We can easily choose εi ↓ 0 such that this is finite. Dividing by Q
(n)
11 , both conditions (ii)

and (iii) of Theorem 3.2 will be satisfied. This completes the proof.

6. Example 3: long-range dependence in financial time series

Let (Pn, −∞ < n < ∞) be the price of some financial asset, and let Xn = log Pn.
It is an established assumption that the log returns, rn = Xn − Xn−1, are well modeled
by a martingale difference process. Such a model accounts for the fact that the log returns
exhibit little correlation. Nevertheless, it is also a widely observed fact that some instantaneous
functions of the log returns, such as |rn|d , exhibit long memory (see, e.g. [6]).

The popular approach to modeling this behavior has been to explicitly incorporate the
dependence of the absolute log returns into the statistical description of the model. The result
is the various long-memory, autoregressive conditional heteroskedasticity (ARCH) process
models of financial time series (see, e.g. [9]).

We want to show in this example that, given a martingale difference sequence (rn) that can
be represented as a function of an LRD Markov chain, the outcome that |rn|d will exhibit
long-range dependence should not be considered surprising.

We want to illustrate this with a very simple example based on Mandelbrot’s model for
wheat prices (see [11]). We note that this simple model is for purposes of illustration only,
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and does not account for all known properties of financial time series. For instance, it has
been observed in many situations that (rn) has a finite variance, despite having a polynomially
decaying marginal distribution. The (rn) in this example have infinite variance. Nevertheless,
the proof scheme used here to establish the long-range dependence of |rn|d should be applicable
much more generally.

Let (Wn) be a stationary random process which models the weather. The process (Wn) can
take on three values: good, bad, and neutral, denoted by {g, b, n}. The length of a good period,
T (number of consecutive good days), has the same distribution as the length of a bad or a
neutral period. Let P(T ≥ t) = t−α . The period T has finite mean but infinite variance (i.e.
1 < α ≤ 2). A good or bad period is followed necessarily by a neutral period. A neutral period
is followed by a good or bad period with equal probability.

Let X̂n be the fundamental (log) price of the asset (which can be thought of as summarizing
exogenous variables that affect the real price). The variation of X̂n is such that it increases by 1
for every good day, decreases by 1 for every bad day, and stays the same for every neutral day.
The market calculates the real (log) price by projecting the expected future fundamental price:

Xn = lim
t→∞ E[X̂n+t | X̂n−∞].

By construction, (rn) is itself a martingale difference sequence. We will now show that,
�n = |rn|d is LRD with Hurst index 1

2 (3 − α). (For var(�0) to be finite 0 < d < α/2.)
It can be verified (see also the calculations in Mandelbrot’s original paper [11]) that Xn

changes as follows: jumps by E[T ] on the first good day, jumps by − E[T ] on the first bad day,
increases by E[T | T ≥ t] − E[T | T ≥ t − 1] on the t th good day (t ≥ 2), and decreases
by E[T | T ≥ t] − E[T | T ≥ t − 1] on the t th bad day. The first neutral following t good
days decreases Xn by E[T | T ≥ t] − t . The first neutral following t bad days increases Xn

by E[T | T ≥ t] − t .
Let Jn = 1 (there is a transition at time n). Let

Tn := inf
t

{t ≥ 0 : Wn−t−1 �= Wn−t−2}

be the number of days since the last transition (0 on the first day following).
Then Mn = (Wn, Jn, Tn) is a countable state, LRD Markov chain, with Hurst index 1

2 (3−α).
Moreover, �n = |rn|d is a function of Mn:

• ρ({g, b}, 0, t) = (E[T | T ≥ t + 2] − E[T | T ≥ t + 1])d ,

• ρ({n}, 0, ·) = 0,

• ρ({g, b}, 1, ·) = (E[T ])d ,

• ρ({n}, 1, t) = (E[T | T ≥ t + 1] − (t + 1))d .

Lemma 6.1. It holds that

E[T | T ≥ t + 2] − E[T | T ≥ t + 1] → α

α − 1
as t → ∞.

Proof. We have

P(T ≥ s | T ≥ t) = s−α

t−α
, s ≥ t,
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and

E[T | T ≥ t + 1] − E[T | T ≥ t] =
∞∑

s=t+1

P(T ≥ s | T ≥ t + 1) − P(T ≥ s | T ≥ t)

= ((t + 1)α − tα)

∞∑
s=t+1

s−α

→ α

α − 1
,

since

1

α − 1
(t + 2)−α+1 =

∫ ∞

t+2
s−αds <

∞∑
s=t+1

s−α <

∫ ∞

t+1
s−αds = 1

α − 1
(t + 1)−α+1

and ((t + 1)α − tα)/tα−1 → α. This completes the proof.

Lemma 6.2. It holds that
E[T | T ≥ t] − t ≤ t

α − 1
.

Proof. We have

E[T | T ≥ t] − t =
∞∑
s=t

s−α

t−α
≤

∫ ∞

t

s−αds = t

α − 1
,

completing the proof.

We will utilize Theorem 3.2 with A1 = ({g, b}, 0, ·), A2 = ({n}, 0, ·), A3 = ({g, b}, 1, ·),
A4 = ({n}, 1, ·), c1 = c4 = (α/(α − 1))d , c2 = c3 = 0, and H = (·, ·, 0). We have

var(�0) ≤ E �2
0

=
∑

i

πiρ(i)2

=
∑
i �∈A4

πiρ(i)2 +
∑
i∈A4

πiρ(i)2

≤ C +
∞∑
t=1

1

2
P(T = t)

(
t

α − 1

)2d

< ∞
by Lemma 6.2. As ρ(i) is bounded when i �∈ A4, the contribution to the sum is a constant C.
We also used the fact that if i = ({n}, 1, t −1) then πi = P(W−t = n) P(T = t) = 1

2 P(T = t).
We need to first show that Theorem 3.2(i) holds:

lim
n→∞

1

Q
(n)
11

n∑
r=1

∑
i∈Ak, j∈Al

πi |ρ(i) − µ||ρ(j) − µ|Hp
(r)
ij → 0 for all k �= l.

By inspection, the following transitions require visiting H : (k, l) or (l, k) = (1, 2), (1, 3),
(2, 4), (3, 4). The sum is 0 for these pairs. For (k, l) or (l, k) = (1, 4), (2, 3), the condition is
not needed due to the note at the end of the statement of Theorem 3.2(ii).
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Theorem 3.2(ii) reads

lim
n→∞

1

Q
(n)
11

∑
i,j∈Ak

πi(ρ(i) − ck)(ρ(j) − ck)

n∑
r=1

Hp
(r)
ij = 0 for all k.

For k = 3, 4, Hp
(r)
ij = 0 because these states must go to H in one step. For k = 1, 2, we have

chosen ck such that ρ(i) − ck → 0 by Lemma 6.1. The condition holds by remark 2.
Theorem 3.2(iii) also holds for A1, A2, and A3 because ρ is bounded on these sets. On A4,

it holds because Hp
(r)
ij = 0, as argued earlier. We finally have the conclusion:

lim
n→∞

∑n
r=1 cov(|r0|d , |rn|d)

Q
(n)
11 /π1

=
K∑

k=1

π∞
k (µ − ck)

2 > 0.

7. A nonexample

Consider an LRD Markov chain with p
(1)
12 = 1 and p

(1)
i2 = 0 for i > 1. Set ρ(1) = 1,

ρ(2) = −1, and ρ(i) = 0 for i > 2. We have for this chain π1 = π2 and µ = 0. Since
ρ(i) = 0 for i > 2, the conditions of Theorem 3.1 hold with c = 0 and H = {1}. However,
since µ = c, the conclusion about the equality of the Hurst indices does not follow. In fact, we
can show � to be short-range dependent. From [5, Section 3] we know that

n∑
r=1

cov(�0, �r) =
∑
i,j

ρ(i)ρ(j)πiQ
(n)
ij .

The right-hand side is a finite sum, giving

n∑
r=1

cov(�0, �r) = π1(Q
(n)
11 + Q

(n)
22 ) − π1(Q

(n)
12 + Q

(n)
21 ),

where we have used the fact that π1 = π2. Since p
(1)
12 = 1 and p

(1)
i2 = 0 for i > 1, we also

know that p
(r+1)
12 = p

(r)
11 and p

(r+1)
22 = p

(r)
21 . Expanding the Q(n) as sums, we obtain

n∑
r=1

cov(�0, �r) = π1

n∑
r=1

(p
(r+1)
12 − π1) − (p

(r)
12 − π1) + π1

n∑
r=1

(p
(r)
22 − π1) − (p

(r+1)
22 − π1)

= π1[(p(n+1)
12 − π1) + (p

(1)
22 − π1) − (p

(1)
12 − π1) − (p

(n+1)
22 − π1)],

which remains bounded, demonstrating that (�n) is a short-range-dependent process.

8. Proofs of the theorems

For the proofs, we will rely on several lemmas, most of which are already known.

Lemma 8.1. ([5, Corollary 1, Chapter 11].) For p ≥ 0,

E1 T
p
1 = ∞ ⇐⇒ Ei T

p
i = ∞ for all i ∈ N.

Lemma 8.2. Let (an) be an arbitrary sequence, and let bn → ∞. Let c be a finite real number.
If

an

bn

→ c
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then ∑n
r=1 ar∑n
r=1 br

→ c.

Proof. This elementary result follows from the discrete analogue of l’Hôpital’s rule, referred
to as the Stolz–Cesàro theorem.

Lemma 8.3. (i) cov(�0, �r) = ∑
i,j πip

(r)
ij (ρ(i) − µ)(ρ(j) − µ).

(ii)
∑n

r=1 cov(�0, �r) = ∑
i,j ρ(i)ρ(j)πiQ

(n)
ij .

(iii) var(�0 + · · · + �n) − (n + 1) var(�0) = 2
∑

i,j ρ(i)ρ(j)πiR
(n)
ij .

Proof. Part (i) is a simple expansion. Part (ii) is derived from (i), and (iii) can be found in
[4, Section 3].

Lemma 8.4. ([5, Equation (1), Theorem 9.1].) It holds that

p
(r)
ij = 1p

(r)
ij +

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j , r ≥ 1.

Lemma 8.5. ([4, Equation (12)].) It holds that

Q
(n)
11 ∼ (π1)

2
∞∑

u=1

min(u, n)

∞∑
s=u+1

f
(s)
11

= (π1)
2

∞∑
u=1

min(u,n)∑
r=1

∞∑
s=u+1

f
(s)
11

= (π1)
2

n∑
r=1

∞∑
u=r

∞∑
s=u+1

f
(s)
11 .

Lemma 8.6. It holds that

lim
n→∞

1

Q
(n)
11 /π1

∑
i,j

πi

n∑
r=1

1p
(r)
ij = 1.

Proof. We have

∑
i,j

πi

n∑
r=1

1p
(r)
ij =

n∑
r=1

∑
i,j

πi1p
(r)
ij

=
n∑

r=1

∑
i

πi

∞∑
u=r

f
(r)
i1

=
n∑

r=1

∞∑
u=r

1

m11

∞∑
s=u

f
(s)
11

= 1

m11

n∑
r=1

∞∑
u=r

f u
11 +

n∑
r=1

∞∑
u=r

1

m11

∞∑
s=u+1

f
(s)
11

https://doi.org/10.1239/jap/1339878798 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878798
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= 1

m11

n∑
r=1

P1(T1 ≥ r) +
n∑

r=1

∞∑
u=r

1

m11

∞∑
s=u+1

f
(s)
11

∼ 1

π2
1 m11

Q
(n)
11

= Q
(n)
11

π1
,

since
∑n

r=1 P1(T1 ≥ r) ≤ m11 and by Lemma 8.5. In the second equality we have used the
fact that

∑
j 1p

(r)
ij = ∑∞

r f
(r)
i1 , which is an equivalent way of expressing the probability of

going from i to any other state without going to 1 in r steps. This expression also appears in
Chapter 9 of [5] (see the proof of Theorem 6 therein). In the third equality we have used the
fact that Pπ (T1 = r) = P1(T1 ≥ r)/m11, where T1 is the first return time to 1 at stationarity.
This completes the proof.

Lemma 8.7. Let M > 0 be a finite number. Then

lim
n→∞

1

Q
(n)
11 /π1

∑
{i<M}∪{j<M}

πi

n∑
r=1

1p
(r)
ij = 0.

Proof. Pick m such that 1p
(m)
1i > 0. Then

1p
(m)
1i 1p

∗
ij ≤ 1p

∗
1j = πj

π1
.

Thus, there exists a finite constant CM such that 1p
∗
ij < CMπj for all i < M . Therefore,

∑
i<M,j

πi

n∑
r=1

1p
(r)
ij ≤ CM

∑
i<M,j

πiπj ≤ CM.

Similarly, there exists a finite constant DM such that 1p
∗
ij ≤ 1 + 1p

∗
jj ≤ DM for all j < M .

Hence, ∑
j<M,i

πi

n∑
r=1

1p
(r)
ij ≤ DM

∑
j<M,i

πi ≤ MDM.

Using (2.1) completes the proof.

Lemma 8.8. ([4, p. 1051].) It holds that∣∣∣∣Q(n)
1j /πj

Q
(n)
11 /π1

∣∣∣∣ ≤ 1.

Lemma 8.9. It holds that∣∣∣∣ n∑
r=1

∑
i,j

πi |ρ(i)ρ(j)|1p(r)
ij −

n∑
r=1

∑
i,j

πi |ρ(i)ρ(j)|Hp
(r)
ij

∣∣∣∣
≤ (|H | + 1)CH

∑
i,j

πiπj |ρ(i)ρ(j)|,

where H is any nonempty set with a finite number of states and CH is a constant that depends
only on H .
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Proof. Let H ′ = H ∪ {k}, k �∈ H . We will argue by induction. We write

n∑
r=1

Hp
(r)
ij − H ′p

(r)
ij

=
n∑

r=1

P(Mr = j ; Ml �∈ H , 1 ≤ l < r; Ml = k for some 1 ≤ l < r | M0 = i)

=
n∑

r=1

r−1∑
m=1

H ′p
(m)
ik Hp

(r−m)
kj

=
n−1∑
m=1

H ′p
(m)
ik

n∑
r=m+1

Hp
(r−m)
kj

≤
( ∞∑

m=1
H ′p

(m)
ik

)
︸ ︷︷ ︸

C1

( ∞∑
r=1

Hp
(r)
kj

)
︸ ︷︷ ︸

Hp∗
kj

.

The constant C1 is bounded above by 1 since

∞∑
m=1

H ′p
(m)
ik ≤

∞∑
m=1

kp
(m)
ik = 1.

Let h ∈ H . Choose m such that hp
(m)
hk > 0. Then

hp
(m)
hk Hp∗

kj ≤ hp
∗
hj = πj

πh

.

Thus, Hp∗
kj ≤ πj/(hp

(m)
hk πh) = CH ′ . Therefore,

n∑
r=1

∑
i,j

πi |ρ(i)ρ(j)|Hp
(r)
ij −

n∑
r=1

∑
i,j

πi |ρ(i)ρ(j)|H ′p
(r)
ij ≤ CH ′

∑
i,j

πiπj |ρ(i)ρ(j)|.

Therefore, adding or subtracting a state from the set H (as long as the resulting set is nonempty)
only affects the sum in question by a bounded amount. As a result, replacing H by {1} can
change the sum by at most (1 + |H |)CH

∑
i,j πiπj |ρ(i)ρ(j)|. (Add state 1 if it is not already

in set H . Then subtract all other states until only state 1 is left.) This completes the proof.

8.1. Proof of Theorem 3.1

By (2.1) and Lemma 8.9, conditions (i) and (ii) of Theorem 3.1 are respectively equivalent
to

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi(ρ(i) − c)(ρ(j) − c)1p
(r)
ij = 0 (8.1)

for some constant c and

lim
L→∞ lim sup

n→∞
1

Q
(n)
11 /π1

n∑
r=1

∑
i,j

πi |ρ(i)ρ(j)|1(|ρ(i)|, |ρ(j)| > L)1p
(r)
ij = 0.
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Define

ρM(i) =
{

ρ(i), i ≤ M,

c, i > M,

µ̄M = E[�M
n ], ρM(i) = ρ(i) − ρM(i), and µM = E[�M

n
]. We adopt the shorthand notation

φn = �0 + · · · + �n − (n + 1)µ√
2R

(n)
11 /π1

, φ
M

n = �̄M
0 + · · · + �̄M

n − (n + 1)µM√
2R

(n)
11 /π1

,

and
φM

n
= φn − φ

M

n .

We will be referring to the reverse triangle inequality for random variables:

|√var(φn) −
√

var(φ
M

n )| ≤
√

var(φM
n

). (8.2)

Using Lemma 8.4, write Lemma 8.3(i) as

n∑
r=1

cov(�0, �r) =
∑
i,j

πi(ρ(i) − µ)(ρ(j) − µ)

n∑
r=1

1p
(r)
ij

+
∑
i,j

πi

n∑
r=1

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j (ρ(i) − µ)(ρ(j) − µ). (8.3)

The second term can be rewritten as

∑
i,j

πi

n∑
r=1

r−1∑
m=1

1p
(m)
i1 p

(r−m)
1j (ρ(i) − µ)(ρ(j) − µ)

=
∑
i,j

πi

n−1∑
m=1

1p
(m)
i1

n∑
r=m+1

p
(r−m)
1j (ρ(i) − µ)(ρ(j) − µ)

=
n−1∑
m=1

( n∑
r=m+1

∑
i,j

1p
(m)
i1 πi(p

(r−m)
1j − πj )(ρ(i) − µ)(ρ(j) − µ)

+
n∑

r=m+1

∑
i,j

1p
(m)
i1 πiπj (ρ(i) − µ)(ρ(j) − µ)

︸ ︷︷ ︸
0

)

=
n−1∑
m=1

∑
i,j

πi1p
(m)
i1 Q

(n−m)
1j (ρ(i) − µ)(ρ(j) − µ).

Dividing by Q
(n)
11 /π1 we obtain

n−1∑
m=1

∑
i,j

πi1p
(m)
i1 πj

Q
(n−m)
1j /πj

Q
(n)
11 /π1

(ρ(i) − µ)(ρ(j) − µ).
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By Lemma 8.8 we have

∑
j

πj

∣∣∣∣Q(n−m)
1j /πj

Q
(n)
11 /π1

∣∣∣∣|(ρ(j) − µ)| < ∞.

We also know that
∑

i πi

∑n−1
m=1 1p

(m)
i1 (ρ(i) − µ) → 0. Therefore,

lim
n→∞

n−1∑
m=1

∑
i,j

πi1p
(m)
i1 πj

Q
(n−m)
1j /πj

Q
(n)
11 /π1

(ρ(i) − µ)(ρ(j) − µ) = 0,

by the dominated convergence theorem. The above result has the interpretation that the sum of
the covariances between �0 and �n on the event that the chain visits state 1 at least once before
time n is negligible compared to Q

(n)
11 .

We want to use these results to conclude that var(φM
n

) → 0. For this, we write (8.3) for ρM ,
c = 0. The first term in (8.3) reads, after a little manipulation,

∑
i,j

πi[ρM(i)ρM(j) − µM(ρM(i) + ρM(j)) + (µM)2]
n∑

r=1
1p

(r)
ij . (8.4)

Now assume that ρ is bounded. Upon dividing by Q
(n)
11 /π1, the second and third terms are

O(µM) as µM → 0 by Lemma 8.6. Since µM → 0 with M , these terms go to 0 as M → ∞
uniformly in n.

For the first term in (8.4), write (8.1) as follows for comparison:

lim
n→∞

1

Q
(n)
11 /π1

( n∑
r=1

∑
i≤M, j≤M

πi(ρ(i) − c)(ρ(j) − c)1p
(r)
ij

+
n∑

r=1

∑
i≤M, j>M

πi(ρ(i) − c)(ρ(j) − c)1p
(r)
ij

+
n∑

r=1

∑
i>M, j≤M

πi(ρ(i) − c)(ρ(j) − c)1p
(r)
ij

+
n∑

r=1

∑
i>M, j>M

πi(ρ(i) − c)(ρ(j) − c)1p
(r)
ij

)
= 0.

The first three sums have limit 0 owing to the fact that ρ is assumed to be bounded and using
Lemma 8.7. The last sum is identical to the first term in (8.4). Therefore, dividing (8.3)
by Q

(n)
11 /π1 and applying Lemma 8.2, together with Lemma 8.3(ii) and (iii), we conclude

that limM→∞ limn→∞ var(φM
n

) = 0, and, by (8.2), also that limM→∞ limn→∞ var(φ
M

n ) =
limn→∞ var(φn).

To calculate var(φ
M

n ), rewrite (8.3) for ρM :

∑
i,j

πi[(ρM(i) − c)(ρM(j) − c) − (µM − c)(ρM(i) + ρM(j) − 2c) + (µM − c)2]
n∑

r=1
1p

(r)
ij .
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The first two sums will go to 0 when dividing by Q
(n)
11 /π1, by the boundedness of ρ and

Lemma 8.7 because of truncation. The last term will read

(µM − c)2 1

Q
(n)
11 /π1

∑
i,j

πi

n∑
r=1

1p
(r)
ij → (µM − c)2 as n → ∞

by Lemma 8.6. By Lemma 8.3(ii) and (iii), and Lemma 8.2, this concludes the proof when
(�n) is bounded.

When (�n) is not bounded, we truncate by value, i.e. ρ̃L(i) = ρ(i)1(ρ(i) ≤ L), µ̃L = E[�̃L
n ],

ρ˜L(i) = ρ(i) − ρ̃L(i), and µ˜L = E[�˜L
n ]. Also, define

φ̃L
n = �̃L

0 + · · · + �̃L
n − (n + 1)µ̃L√

2R
(n)
11 /π1

, φ˜L
n = φn − φ̃L

n .

We can express
∑n

r=1 cov(�˜L
0 , �˜L

r ) as in (8.3), and argue as there that the second term has
limit 0 as n → ∞ when divided by Q

(n)
11 /π1. The first term also has limit 0 due to the

assumed condition (ii). We appeal again to Lemma 8.3(ii) and (iii), and Lemma 8.2, to argue
that limL→∞ limn→∞ var(φ˜L

n ) = 0. By (8.2), we also obtain limL→∞ limn→∞ var(φ̃L
n ) =

limn→∞ var(φn). We conclude that

lim
n→∞

var(
∑n

r=1 �i)

R
(n)
11 /π1

= lim
L→∞ lim

n→∞ var(φ̃L
n ) = lim

L→∞(µ̃ − c)2 = (µ − c)2.

The claim about the Hurst indices can be argued as follows. Consider the expression in
Lemma 8.3(ii) for �n = 1(Mn = 1). Dividing by Q

(n)
11 /π1, we see that the right-hand

side has limit π2
1 > 0. From the above argument, it follows that (

∑n
r=1 cov(1(M0 = 1),

1(Mr = 1)))/(
∑n

r=1 cov(�0, �r)) has a finite, nonzero limit if µ �= c. It is easily seen from
the definition of H that ρ has the same Hurst index as the indicator function 1(Mn = 1). This
completes the proof.

8.2. Proof of Theorem 3.2

By (2.1) and Lemma 8.9, conditions (i)–(iii) are respectively equivalent to

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i∈Ak,j∈Al

πi |ρ(i) − µ||ρ(j) − µ|1p(r)
ij = 0

for all k �= l,

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi(ρ(i) − ck)(ρ(j) − ck)1p
(r)
ij = 0

for all k, and

lim
L→∞ lim sup

n→∞
1

Q
(n)
11 /π1

n∑
r=1

∑
i,j∈Ak

πi |ρ(i)ρ(j)|1(|ρ(i)|, |ρ(j)| > L)1p
(r)
ij = 0

for all k. We truncate as follows:

ρM(i) =
{

ρ(i), i < M,

ck, i ≥ M, i ∈ Ak.

Define ρM , µM , µM , φ
M

, and φM as before.
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The first sum in (8.3) can be decomposed as

∑
i,j

πi(ρ(i) − µ)(ρ(j) − µ)

n∑
r=1

1p
(r)
ij

=
K∑

k=1

∑
i,j∈Ak

πi(ρ(i) − µ)(ρ(j) − µ)

n∑
r=1

1p
(r)
ij

+
∑

k,l∈{1,...,K}, k �=l

∑
i∈Ak, j∈Al

πi(ρ(i) − µ)(ρ(j) − µ)

n∑
r=1

1p
(r)
ij . (8.5)

The first condition ensures that the cross terms on the right-hand side are insignificant. There-
fore, we can work with each subset separately.

We will argue as in the proof of Theorem 3.1 to show that var(φM
n

) → 0. The analogue of
(8.4) for each of the remaining sums reads

∑
i,j∈Ak

πi[ρM(i)ρM(j) − µM(ρM(i) + ρM(j)) + (µM)2]
n∑

r=1
1p

(r)
ij .

Assume that ρ is bounded. Upon dividing by Q
(n)
11 /π1, the second and third terms are O(µM)

as µM → 0 by Lemma 8.6. Since µM → 0 as M → ∞, these terms tend to 0 as M → ∞
uniformly in n.

For the first term, we argue exactly as in the proof of Theorem 3.1 that condition (i), together
with Lemma 8.7, implies that this term, when divided by Q

(n)
11 /π1, goes to 0 as n → ∞.

Applying Lemma 8.2, together with Lemma 8.3(ii) and (iii), we conclude that

lim
M→∞ lim

n→∞ var(φM

n
) = 0,

and, by (8.2), also that limM→∞ limn→∞ var(φ
M

n ) = limn→∞ var(φn).
To calculate var(φ

M

n ), rewrite (8.3) for ρM . We again omit the cross sums:

∑
i,j∈Ak

πi[(ρM(i)−ck)(ρ
M(j)−ck)−(µM −ck)(ρ

M(i)+ρM(j)−2ck)+(µM −ck)
2]

n∑
r=1

1p
(r)
ij .

The first two sums will go to 0 due to truncation, the boundedness of ρ, and by Lemma 8.7,
when dividing by Q

(n)
11 /π1. The last term will read

(µM − ck)
2 1

Q11/π1

∑
i,j∈Ak

πi

n∑
r=1

1p
(r)
ij → π∞

Ak
(µM − ck)

2

by Lemma 8.6 and the definition of π∞
Ak

. This concludes the proof when (�n) is bounded.
When (�n) is not bounded, we truncate by value, i.e. ρ̃L(i) = ρ(i)1(ρ(i) ≤ L), µ̃L = E[�̃L

n ],
ρ˜L(i) = ρ(i) − ρ̃L(i), and µ˜L = E[�˜L

n ]. Also, define

φ̃L
n = �̃L

0 + · · · + �̃L
n − (n + 1)µ̃L√

2R
(n)
11 /π1

, φ˜L
n = φn − φ̃L

n .
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We also partition �˜L
n as

∑K
k=1 �˜L

n 1(�˜L
n ∈ Ak). Define

kφ˜L
n =

�˜L
0 1(�˜L

0 ∈ Ak) + · · · + �˜L
n 1(�˜L

n ∈ Ak) − (n + 1) E[�˜L
0 1(�˜L

0 ∈ Ak)]√
2R

(n)
11 /π1

.

We can express
∑n

r=1 cov(�˜L
0 1(�˜L

0 ∈ Ak), �˜L
r 1(�˜L

r ∈ Ak)) by writing (8.3) for ρ˜L(i)1(ρ˜L(i) ∈
Ak), and argue as there that the second term has limit 0 as n → ∞ when divided by
Q

(n)
11 /π1. The first term also has limit 0 due to the assumed condition (iii). We appeal again

to Lemma 8.3(ii) and (iii), and Lemma 8.2 to argue that limL→∞ limn→∞ var(kφ˜L
n ) = 0.

Applying (8.2), we conclude that

lim
L→∞ lim

n→∞ var(φ˜L
n ) = lim

L→∞ lim
n→∞ var

( K∑
k=1

kφ˜L
n

)
= 0.

One more application of (8.2) gives limL→∞ limn→∞ var(φ̃L
n ) = limn→∞ var(φn). We con-

clude that

lim
n→∞

var(
∑n

r=1 �i)

R
(n)
11 /π1

= lim
M→∞ lim

n→∞ var(φ
M

n )

= lim
M→∞

K∑
k=1

π∞
Ak

(µM − ck)
2

=
K∑

k=1

π∞
Ak

(µ − ck)
2,

where the second equality follows from the bounded version of the theorem proved above.
To prove the note given at the end of the theorem statement, consider Ak ∪Al as one subset.

We can safely ignore the cross terms in (8.5), without needing to use condition (i) for the pair
Ak, Al . We do not use condition (i) in the remaining part of the proof.

All that remains is to note that

(µM − ck)
2 1

Q11/π1

∑
i,j∈Ak∪Al

πi

n∑
r=1

1p
(r)
ij → π∞

Ak∪Al
(µM − ck)

2,

where π∞
Ak∪Al

= π∞
Ak

+ π∞
Al

.

9. Conclusion

We have provided conditions under which the growth rate of the variance of a function of
a Markov chain is identical to that of the chain itself. Although our results simplify certain
proofs greatly, there is still considerable art in using them. One needs to first construct a
suitable Markov chain for the problem. One also needs to choose the parameters in the theorems
carefully. Although the answer will ultimately be the same, picking state 1, partitioning {Ak}
and {ck} appropriately can greatly reduce the amount of calculation required.

We do not have an answer for the case where ρ(i) grows without bound as i → ∞. In this
case there might possibly exist examples in which the (�n) have a higher Hurst index than the
chain. The proof of Theorem 3.1 can provide insights for solving such questions.

https://doi.org/10.1239/jap/1339878798 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878798


Hurst index of functions of LRD Markov chains 471

The usefulness of the theorems was demonstrated by various examples in three diverse fields.
Many more can be contemplated in other areas, such as queue analysis in stochastic networks
and agent-based models in finance.
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