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Abstract

We consider a two-step Sal’nikov reaction scheme occurring within a compressible
viscous gas. The first step of the reaction may be either endothermic or exothermic,
while the second step is strictly exothermic. Energy may also be lost from the system
due to Newtonian cooling. An asymptotic solution for temperature perturbations of
small amplitude is presented using the methods of strained coordinates and multiple
scales, and a travelling wave solution with a sech-squared profile is derived. The method
of lines is then used to approximate the full system with a set of ordinary differential
equations, which are integrated numerically to track accurately the evolution of the
reaction front. This numerical method is used to verify the asymptotic solution and
investigate behaviours under different conditions. Using this method, temperature waves
progressing as pulsatile fronts are detected at appropriate parameter values.

2010 Mathematics subject classification: 76N15.

Keywords and phrases: Sal’nikov reaction, combustion, solitons, pulsatile waves,
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1. Introduction

In 1949 the Russian scientist Sal’nikov [17] analysed a simple chemical model, which
now bears his name. This model considered a mechanism in which a chemical species,
A, decays to an inert species, P, by way of an intermediate stage X, with each step
occurring at a temperature-sensitive rate. The reaction system may be considered in
isolation, such that the only dependent quantities are the chemical concentration and
temperature. This seemingly simple scheme can display highly varied behaviour and
has been the subject of thorough study. It is well known that such a system may
lead to self-sustaining periodic fluctuations in concentration and temperature, the so-
called thermokinetic oscillator. The conditions necessary for these behaviours have
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been studied extensively, and an in-depth investigation by Gray and Roberts [11] has
found multiple regions of the parameter space with oscillatory behaviour as well as an
unstable orbit surrounding a stable one. These regions have been further investigated
by Forbes [6], Forbes et al. [10] and Nelson and Sidhu [16]. These oscillations were
observed experimentally by Coppersthwaite et al. [4], who noted temperature spikes
of more than 200 K in the reaction of hydrogen and chlorine gases.

It is also well known that such a model can have travelling wave solutions, a
phenomenon which has roots in the study of reaction diffusion equations made famous
by the work of Fisher [5] and Kolmogorov et al. [12]. Barenblatt et al. [2] provided
a derivation of differential equations which model chemical reactions such that the
reagents are subject to the equations of fluid dynamics. Such a model was considered
by Forbes and Derrick [8], who demonstrated the existence of a travelling wave
solution with a sech-squared temperature profile. Under the right conditions, this
solution evolved a steep shock front resulting in the complete exhaustion of the
chemical components behind the reaction front.

In certain circumstances, the system may exhibit both oscillatory and travelling
wave behaviour simultaneously, manifesting as travelling waves of nonconstant but
periodic amplitude and wave speed. Such solutions have been noted by Weber et al.
[20], who used adaptive numerical techniques to model the evolution of combustion
waves in gases and solids, and similar results have been observed by Matkowsky and
Sivashinksy [14] and Bayliss and Matkowsky [3]; however, the authors assumed the
fuel itself to be stationary within the reaction vessel. In this paper, we consider a
Sal’nikov reaction scheme in which the reactions occur between compressible viscous
gases modelled as a nonstationary fluid governed by the conservation of mass and
Navier–Stokes equations. Using the method of multiple scales, we show that the
leading order approximation for the behaviour of the gas velocity is a viscous Burgers’
equation, in which the viscous term depends on the parameters of the two reaction
steps, the bulk viscosity and the diffusion rate of the gas mixture.

The solutions to Burgers’ equation are well documented, owing largely to the
Cole–Hopf transform under which it reduces to the heat equation (see Whitham [21,
p. 97]). Of particular interest in this paper are the travelling wave solutions, which
manifest as a sech-squared temperature profile, and pulsatile solutions, in which the
wave front propagates with periodic amplitude and wave speed. When the viscosity
term is small, Burgers’ equation is capable of developing steep fronts, which become
shocks in the inviscid limit. When two of these shocks interact, they are known to
merge, forming a larger shock whose speed is between the speeds of the initial profiles.
All of these behaviours are described by Whitham [21, pp. 96–112].

In Section 2, we present the model and its governing equations. In Section 3, we
present a weakly nonlinear approximation of the system using asymptotic expansions
based on the methods of strained coordinates and multiple time scales, and a travelling
wave solution to this approximation is then considered in Section 4. A numerical
scheme is derived in Section 5 to solve the full nonlinear problem, and it confirms the
travelling waves predicted by the weakly nonlinear theory. In addition, pulsatile wave
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fronts are obtained and a sample solution is presented. The paper concludes with a
discussion in Section 6.

2. Combustion model
Consider a pipe of infinite length positioned such that it extends along the x-axis.

Inside the pipe a chemical species, A, decays to an intermediate species, X, at a rate,
k0, which is dependent on temperature, T . This decay may proceed endothermically
or exothermically. The species, X, then decays exothermically to a chemically inert
species, P, at a temperature-dependent rate, k1. Schematically, we represent this
reaction process as follows:

A
k0(T )
−−−−→ X

k1(T )
−−−−→ P.

The gas flow is assumed to be one dimensional and the only spatial variation in the
gas properties is in the direction of the x-axis. It is also assumed that the concentration
of species, A, is in such an excess that it remains effectively constant as the reactions
proceed; the assumption [A] = constant is known as the pool-chemical approximation
(see for example Scott [18, p. 31]). The gas density, ρ, is governed by the convection–
diffusion equation, which, assuming Fick’s laws of diffusion and constant diffusion
coefficient, S , is given by

∂ρ

∂t
+
∂

∂x
( ρu) = S

∂2ρ

∂x2 , (2.1)

in which u is the gas speed along the x-axis. A simple derivation of equation (2.1) is
given by Stocker [19, p. 56]. It follows from a similar argument that the concentration
of species X, denoted [X], satisfies the equation

∂[X]
∂t

+
∂

∂x
(u[X]) = [A]k0(T ) − [X]k1(T ) + S

∂2[X]
∂x2 , (2.2)

wherein [A] is the molar concentration of A. Denoting the pressure of the gas as p and
its bulk viscosity as ν, the Navier–Stokes equation for viscous and compressible fluids
may be written as

∂

∂t
( ρu) +

∂

∂x
( ρu2 + p) =

4
3
ν
∂2u
∂x2 . (2.3)

We may also relate the pressure of the gas to its density and temperature using the
ideal gas law

p = ρRT, (2.4)
in which R is the universal gas constant. Finally, we consider the balancing of energy in
the system. Defining γ to be the ratio of specific heats of the gas, B the rate of heat loss
due to Newtonian cooling, w the rate of thermal diffusion, Q0 and Q1 the enthalpies of
creation of X and P, respectively, and Ta the ambient temperature outside the pipe, the
energy equation is

∂

∂t

[
ρ
(
γRT
γ − 1

+
1
2

u2
)]

+
∂

∂x

[
uρ

(
γRT
γ − 1

+
1
2

u2
)]
−
∂p
∂t

= w
∂2T
∂x2 +

4
3
ν
∂

∂x

(
u
∂u
∂x

)
+ Q0[A]k0(T ) + Q1[X]k1(T ) − B(T − Ta). (2.5)
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Equations (2.3) and (2.5) follow from the derivations given by Liepmann and Roshko
[13, p. 337] with a little algebra. Far ahead of the reaction front, we expect the system
to attain its unperturbed state, and so we introduce the upstream boundary conditions

p→ ρ0RTa, ρ→ ρ0, u→ 0, T → Ta, [X]→ [X]0 as x→∞.

Before nondimensionalising, we must consider the forms of the reaction rates k0(T )
and k1(T ). Assuming Arrhenius reaction kinetics (see Williams [22, p. 373]), these
rates are

k0(T ) = z0e−E0/RT ,

k1(T ) = z1e−E1/RT ,

where E0 and E1 are the activation energies of the respective reactions and z0 and
z1 are the reaction coefficients. Although alternative forms for these rates may
be chosen later, we will nevertheless make use of their activation energies and
reaction coefficients to define dimensionless parameters. We now proceed to introduce
nondimensional variables in relation to appropriate scales. The reference length is
chosen to be

√
E1/z1, the time scale is 1/z1 and, consequently, the speed scale is

√
E1. Temperature is scaled relative to the quantity E1/R and the upstream density

ρ0 provides the reference for the density. This then suggests the quantity ρ0E1 as the
natural choice to scale pressure. Finally, we scale concentration relative to the quantity
ρ0E1/Q1. We now introduce nine new dimensionless parameters

µ =
4z1ν

3ρ0E1
, β =

B
z1ρ0R

, φ =
z1w
ρ0E1R

, ζ =
z0

z1
,

q =
Q0

Q1
, ε =

E0

E1
, σ =

z1S
E1

, θa =
RTa

E1
, A =

[A]Q1

ρ0E1
,

where the constant µ represents the dimensionless bulk viscosity, β the rate of
Newtonian cooling, φ the rate of thermal diffusion, σ the rate of diffusion of both X and
ρ, A the dimensionless concentration of chemical A and θa the ambient temperature.
The quantities ζ, q and ε represent the ratio of reaction coefficients, heat of reaction
and activation energies of each of the reaction steps, respectively.

From here onwards, we will drop the square bracket notation used to denote
concentration and molar concentration. As such, the transport equation (2.2) becomes

∂X
∂t

+
∂

∂x
(uX) = ζAk0(T ) − Xk1(T ) + σ

∂2X
∂x2 , (2.6)

where the Arrhenius reaction rates k0 and k1 are now

k0(T ) = e−ε/T ,
k1(T ) = e−1/T .

(2.7)

The conservation of mass equation (2.1) becomes

∂ρ

∂t
+
∂

∂x
( ρu) = σ

∂2ρ

∂x2 , (2.8)
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while the momentum equation (2.3) yields

∂

∂t
( ρu) +

∂

∂x
( ρu2 + p) = µ

∂2u
∂x2 . (2.9)

The energy equation (2.5) is
∂

∂t

[
ρ
(
γT
γ − 1

+
1
2

u2
)]

+
∂

∂x

[
uρ

(
γT
γ − 1

+
1
2

u2
)]

=
∂p
∂t

+ φ
∂2T
∂x2 + µ

∂

∂x

(
u
∂u
∂x

)
+ qζAk0(T ) + Xk1(T ) − β(T − Ta), (2.10)

and the gas law (2.4) has the form
p = ρT. (2.11)

Finally, the upstream boundary conditions become

p→ θa, ρ→ 1, u→ 0, T → θa, X → X0 as x→∞.

3. Weakly nonlinear analysis
In this section, we use the method of strained coordinates with the method of

multiple scales to derive a set of equations which approximate the behaviour of the
model outlined in Section 2 for small-amplitude perturbations. We do so by assuming
that the values vary from their steady-state solutions by a small value, characterised by
the parameter κ. Much of this analysis is similar to the process used by Forbes [7] and,
interestingly, the solutions are qualitatively similar, despite the addition of diffusion
and viscosity into the model. Much of the notation in this analysis will be retained for
ease of comparison. First we introduce two strained coordinates given by

t̃1 = κt, x̃ = κx.

We also introduce a second time scale, t̃2, defined as

t̃2 = κ2t.

The dependent variables are now expanded as power series in the small parameter, κ,
around their steady states as follows:

u = κu1 + κ2u2 + O(κ3),
ρ = 1 + κρ1 + κ2ρ2 + O(κ3),

T = θa + κT1 + κ2T2 + O(κ3),
p = θa + κp1 + κ2 p2 + O(κ3),
X = X0 + κX1 + κ2X2 + O(κ3).

The Arrhenius reaction rates in (2.7) are now approximated with the two rates

k0(T ) =

0 if T ≤ θa,

1 − e−ε(T−θa) if T > θa,

k1(T ) =

0 if T ≤ θa,

1 − e−(T−θa) if T > θa.

(3.1)
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Forms similar to these were used by Forbes and Derrick [8] and Forbes [7], and
have the advantage of approximating the qualitative behaviour of the Arrhenius rates
(2.7) for large temperatures while avoiding the cold boundary problem, in which the
reactions proceed for any arbitrarily small positive temperature (see Williams [22,
p. 21]). We may now expand these rates in powers of the parameter κ, yielding

k0(T ) = κεT1 + κ2(εT2 −
1
2ε

2T 2
1 ) + O(κ3),

k1(T ) = κT1 + κ2(T2 −
1
2 T 2

1 ) + O(κ3)
(3.2)

for T > θa. These expansions are substituted into the dimensionless governing
equations and coefficients of each power of κ are equated. The order, κ, equation
obtained from expanding the energy equation yields

T1(x̃, t̃1, t̃2) ≡ 0,

which, upon expanding the gas law (2.11), gives the relations

p1 = θaρ1, p2 = T2 + θaρ2

at first and second orders in κ. The second-order temperature equation, coupled with
the first-order mass equation and the new reaction rate expansion (3.2), yields the
equation

T2(x̃, t̃1, t̃2) = −ω
∂u1

∂x̃
, (3.3)

in which we have defined the constant

ω =
θa

β − ζqεA − X0
. (3.4)

The resulting first-order momentum and mass equations may be cross differentiated to
yield

∂2u1

∂t̃2
1

= θa
∂2u1

∂x̃2 . (3.5)

Thus, the fluid speed at first-order obeys a linear wave equation with characteristic
speed,

√
θa, on the short time scale. Ahead of further analysis, we define the following

constant in terms of ω, in equation (3.4):

Γ =
1

µ + σ + ω
.

Then, after some algebraic manipulation of the second-order momentum and mass
equations, it can be shown that the variable, u1, satisfies the partial differential equation

1
Γ

∂2u1

∂x̃2 −
∂

∂x̃
(u2

1) − 2
∂u1

∂t̃2
= 0 (3.6)

in the long time scale, which is of utmost interest here.
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4. Travelling waves

A travelling wave solution is sought in terms of the variable

η = x̃ −
√
θa t̃1 − mt̃2. (4.1)

This transformation satisfies equation (3.5) identically and, so, that equation is
considered no further. Equation (3.6) may now be integrated exactly, yielding

du1

dη
= Γ(u1 − 2m)u1, (4.2)

which has solution

u1(η) =
2m

1 + exp(2mΓη)
. (4.3)

Equation (3.3) now takes the form

T2(η) = −ω
du1

dη
.

Evaluating this expression using equation (4.3) yields

T2(η) = m2ωΓsech2(mΓη), (4.4)

and thus the asymptotic representation for temperature is

T (x, t) = θa + κ2m2ωΓsech2(κmΓ(x − ct)) + O(κ3).

Here c is the wave speed in the physical coordinates, x and t, and it follows from (4.1)
that along a characteristic of (3.5),

c =
dx
dt

=
√
θa + κm + O(κ2). (4.5)

We may now make use of the first-order mass equation and second-order transport
equation to find the forms of the density and concentration profiles. The resulting
expressions are

ρ1(η) =
2m

√
θa[1 + exp(2mΓη)]

and

X1(η) =
2m(X0 − X0ω + ωζεA)
√
θa[1 + exp(2mΓη)]

.

Notice that the amplitude of the solution (4.4) could in fact be negative, corresponding
to a cold soliton if ωΓ < 0. However, in the present model, this is precluded by the
assumption, T > θa, in equation (3.2). Nevertheless, cold soliton solutions might be
possible for more complex reaction systems, in which the full Arrhenius reaction rates
are included.
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5. Numerical analysis

We now proceed to analyse the full system of partial differential equations (2.6) and
(2.8)–(2.11) by approximating them with a set of ordinary differential equations using
the method of lines (see Ames [1, p. 193]). We do so by approximating the infinite
pipe with one of length 2L, discretising the spatial coordinate −L ≤ x ≤ L into N mesh
points and replacing the corresponding spatial derivatives with appropriate centred
finite differences. Using a j subscript to represent the value of a dependent variable at
the jth spatial mesh point, a prime to represent temporal derivatives and letting ∆x be
the width between mesh points, the governing equations may be approximated by

ρ′j =
ρ j(u j−1 − u j+1) + u j( ρ j−1 − ρ j+1)

2∆x
+ σ

(ρ j+1 − 2ρ j + ρ j−1

∆x2

)
, (5.1)

u′j =
2u j(u j−1 − u j+1) + T j−1 − T j+1

2∆x

+
1
ρ j

[ (T j + u2
j)( ρ j−1 − ρ j+1)

2∆x
− u jρ

′
j + µ

(u j+1 − 2u j + u j−1

∆x2

)]
, (5.2)

T ′j = (γ − 1)
{
u j

( J j−1 − J j+1

2∆x
− u′j

)
+

J j(u j−1 − u j+1)
2∆x

+
1
ρ j

[
µ
(u j(u j+1 − 2u j + u j−1)

∆x2 +

(u j+1 − u j−1

2∆x

)2)
+

J ju j( ρ j−1 − ρ j+1)
2∆x

+ φ
(T j+1 − 2T j + T j−1

∆x2

)
+ ρ′j(T j − J j) + X jk0(T j) + ζqAk1(T j) − β(T j − θa)

]}
, (5.3)

X′j = ζAk0(T j) − X jk1(T j)

+
X j(u j−1 − u j+1) + u j(X j−1 − X j+1)

2∆x
+ σ

(X j+1 − 2X j + X j−1

∆x2

)
(5.4)

for 1 ≤ j ≤ N. In equation (5.3), we have defined the quantity

J j =
γT j

γ − 1
+

1
2

u2
j ,

the total enthalpy of the gas (see Liepmann and Roshko [13, p. 190]) at the jth mesh
point, for convenience. The reaction rates may be used in their approximated form
(3.1), evaluated at the mesh point x j. The best choice of boundary conditions is not
obvious, since the only conditions on the original system were those which applied
far upstream. For this analysis, we have chosen to enforce zero-derivative conditions
for each dependent variable at both ends of the mesh. This is achieved by introducing
false boundaries at x = −(L + ∆x) and x = L + ∆x, which correspond to mesh points
at j = 0 and j = N + 1, respectively. Approximating the derivatives with appropriate
central finite differences, these conditions on the gas speed u reduce to

u0 = u2, uN+1 = uN−1
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with similar results holding for ρ, X and T . Further details of this technique are
discussed in the book by Ames [1]. This system (5.1)–(5.4) of 5N equations can now
be integrated forwards in time using an appropriate method. For this analysis we have
used the ode45 routine in MATLAB [15], which uses fourth- and fifth-order Runge–
Kutta methods and an adaptive time step to control the error. The starting values are
chosen such that the initial temperature has the form

T (x, 0) = θa + AT sech2(κmΓ(x + x0)),

where AT is the amplitude of the initial temperature profile and x0 is an offset for
the location of the pulse. The value of x0 is chosen to position the centre of the initial
impulse away from the boundaries, minimising the effects of boundary conditions. The
starting values of u, ρ and X are all chosen such that they satisfy the weakly nonlinear
system derived in Section 3. As such, they become

u(x, 0) =
2κm

1 + exp{2κmΓ(x + x0)}
,

ρ(x, 0) = 1 +
2κm

√
θa[1 + exp{2κmΓ(x + x0)}]

,

X(x, 0) = X0 +
2κm(X0 − X0ω + ωζεA)
√
θa[1 + exp{2κmΓ(x + x0)}]

.

The parameter combination κm may be calculated using the relation

κm =

√
AT

ωΓ
.

Figure 1 displays the temperature above ambient as returned by the numerical
solution obtained for parameters θa = 0.15, X0 = 0.25, A = 1, ζ = 0.4, q = 0.2, ε = 0.75,
β = 1, σ = 0.1, µ = 0.03, φ = 0.2 and γ = 1.4 for times t = 0, 20, 40, . . . , 500. The grid
spacing is ∆x = 0.02, since this has been found sufficient for the convergence of the
numerical results. The initial condition is given perturbation amplitude AT = 10−4 and
initial displacement x0 = 100 to the left of the origin. The solution increases slightly
in amplitude at first, but continues travelling at a constant speed while maintaining a
profile closely matching its initial shape. Analysis of the solution indicates an average
wave speed of about 0.397. This value is calculated by simply taking the change
in position of the maximum temperature divided by the final time of the numerical
scheme (in this case 500). This measured value for the average wave speed is in close
agreement with the predicted speed of

√
θa + κm ≈ 0.400 in equation (4.5). Figure 2

shows a comparison of the numerical solution (plotted with a solid blue line) with the
asymptotic solution (dashed red line) for the same parameters as Figure 1 for times
t = 0, 200, 400, . . . , 1000. It can be seen that the two solutions are almost identical,
and there is little noticeable separation of the two until t = 1000. This confirms the
usefulness of the weakly nonlinear solution (4.4) in Section 4.

Forbes [7] showed that in the weakly nonlinear case, two sech-squared pulses
with different amplitudes could run into each other and form a single larger pulse.
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Figure 1. Travelling wave solution obtained by the numerical scheme, with parameter values given in the
text.
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Figure 2. Comparison of numerical solution (solid blue line) to asymptotic solution (dashed red line) for
the same parameter values illustrated in Figure 1. (Colour available online.)
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Figure 3. Evolution of two sech-squared pulses of differing amplitudes for the parameter values listed in
the text.

To investigate whether this is also true for large-amplitude disturbances in the full
system, Figure 3 displays the numerical solution to the full system of partial differential
equations, given a two-sech-squared pulse starting condition of the form

T (x, 0) = θa + AT1sech2(κm1Γ(x + x01)) + AT2sech2(κm2Γ(x + x02)),

where

κm1 =

√
AT1

ωΓ
, κm2 =

√
AT2

ωΓ
.

Here the system parameters are chosen to be θa = 0.35, X0 = 0.25, A = 1, ζ = 0.4,
q = 0.2, ε = 0.75, β = 1, σ = 0.25, µ = 0.1, φ = 0.4 and γ = 1.4 with initial amplitudes
AT1 = 8 × 10−3 and AT2 = 2 × 10−3. The solution is calculated using spacing ∆x = 0.02
and is displayed at times t = 0, 26, 52, . . . , 650. The figure shows that the larger, left-
most pulse travels faster than the smaller, right-most pulse and the two eventually meet
at around t = 400. After coinciding, the two merge to form a single, larger pulse, which
continues travelling to the right.

Figure 4 displays the approximate speed of the larger pulse in Figure 3. The
wave speed at the point x j, denoted v j, was calculated by tracking the position
of the maximum temperature in Figure 3 at intervals of one time unit and
numerically differentiating the results with a forward finite difference. The numerical
differentiation produced rapid, low-amplitude oscillations over several numerical mesh
points. In order to reduce these variations, triangular smoothing was employed. The
velocity at the position x j, denoted v j, was replaced with a weighted average of the
nearby values, v∗j , according to the rule

v∗j =
v j−2 + 3v j−1 + 5v j + 3v j+1 + v j+2

13
. (5.5)
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Figure 4. Approximate speed of the left-most pulse before and after it interacts with the smaller pulse
displayed in Figure 3.

Ten iterations of this procedure were needed before the majority of the variations were
smoothed away. From Figure 4, we can see that the speed increases rapidly before
settling at a value of around 0.817. Some remaining small-amplitude oscillations may
still be visible in this diagram. When the two waves interact the wave speed decreases
to about 0.769; behaviour consistent with that of confluent shocks in Burgers’ equation
(see Whitham [21]). While the equation for the gas speed given in (4.3) is not strictly
a shock, it begins to look more like one as mΓ becomes large. As such, it is perhaps
not too surprising that their behaviours are qualitatively similar.

In the interest of exploration, we have run this system for a different set of
parameters but made use of the Arrhenius reaction rates as in (2.7). Figure 5 shows
the solution under this scheme with parameter values θa = 0.15, X0 = 0.4, A = 0.8,
ζ = 0.3, q = 0.1, ε = 0.1, β = 1, σ = 0.3, µ = 0.2, φ = 0.5, γ = 1.4, initial amplitude
AT = 10−2 and offset x0 = 100. The solution is displayed for t = 0, 5, 10, . . . , 350 and
has been calculated with a grid spacing ∆x = 0.02. The temperature quickly increases
in amplitude around t = 60 and reaches a temperature of T ≈ 2.15. At this point the
wave front (the location of the temperature peak) diverges, forming both forward and
backward travelling waves with periodically varying amplitudes and wave speeds.
This behaviour continues with more pulsatile wave fronts branching off in both the
positive and negative x-directions. Coinciding with each temperature spike, there are
large increases in the reaction temperature along the upper and lower lengths of the
pipe, independent of the behaviour of the reaction front. These oscillations are caused
by the behaviour of the well-mixed reaction system, in which u ≡ 0 and there is no
spatial variation. They are thus limit cycles in the purely temporal system, and come
about through a Hopf bifurcation in the Sal’nikov reaction; further details are given by
Forbes and Gray [9]. This behaviour did not occur if the Arrhenius rates were replaced
with the approximate rates in (3.1).

The periodic behaviour in the amplitude and wave speed is best illustrated by the
right-most wave front. Figure 6 displays the amplitude of this front over time and its
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Figure 5. Pulsatile travelling wave solution with Arrhenius rates for parameters given in the text. The
diagram shows periodic oscillations in time at all positions x, corresponding to the well-mixed system. In
addition, a pulsatile travelling wave system moving in each direction is also present.
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Figure 6. Amplitude of right-most wave front of pulsatile solution displayed in Figure 5.

periodic nature is evident. Similar behaviour is observed in the wave speed shown
in Figure 7. This plot was produced in much the same way as Figure 4, that is,
numerically differentiating the wave position and using one iteration of the smoothing
scheme in (5.5) to reduce the rapid variations (some residual oscillations from the
numerical differentiation may still be visible at early times). At around t = 40 the
speed begins to increase rapidly and reaches a value of about 3.3 before decreasing to
less than 1. These rapid increases and decreases in wave speed occur approximately
every 65 time units, and direct comparison with Figure 6 indicates that wave speed
and amplitude maxima coincide. These plots were produced by finding the position
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Figure 7. Approximate wave speed of the forward front in Figure 5.

and amplitude of the maximum temperature in the domain [−L, L] at the initial time.
At the next time step, this domain is updated to [xm, L], where xm is the position of the
maximum temperature at the previous step, and this process is repeated. This has the
effect of tracking the right-most reaction front.

6. Conclusion

We have demonstrated a weakly nonlinear analysis of a Sal’nikov reaction scheme
in a viscous and diffusive compressible gas mixture using the methods of strained
coordinates and multiple scales. Interestingly, it was demonstrated that the solution
to the weakly nonlinear equations governing the system is a sech-squared travelling
wave, qualitatively similar to that which was investigated by Forbes [7], despite the
inclusion of strong fluid viscosity and diffusion. It is possible to demonstrate the
stability of these solutions by considering the behaviour of a perturbation of the
form u1(η) + û1(η) in equation (4.2). This analysis is identical to the one provided
by Forbes in the aforementioned paper and has been excluded in the interest of
space. We have also made use of the method of lines to develop a numerical
scheme to approximate accurately the behaviour of the full set of governing partial
differential equations. Using this scheme, we have numerically verified the conclusion
of the weakly nonlinear solution, demonstrating stable travelling wave solutions. In
addition, the fully nonlinear system permits pulsatile travelling wave solutions, in
which periodic oscillations in the well-mixed system are also present, and such a case
has been illustrated.
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